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Abstract

Multimodal machine translation (MMT) aims
to improve neural machine translation (NMT)
with additional visual information, but most
existing MMT methods require paired input
of source sentence and image, which makes
them suffer from shortage of sentence-image
pairs. In this paper, we propose a phrase-level
retrieval-based method for MMT to get visual
information for the source input from exist-
ing sentence-image data sets so that MMT can
break the limitation of paired sentence-image
input. Our method performs retrieval at the
phrase level and hence learns visual informa-
tion from pairs of source phrase and grounded
region, which can mitigate data sparsity. Fur-
thermore, our method employs the conditional
variational auto-encoder to learn visual repre-
sentations which can filter redundant visual in-
formation and only retain visual information
related to the phrase. Experiments show that
the proposed method significantly outperforms
strong baselines on multiple MMT datasets, es-
pecially when the textual context is limited.

1 Introduction

Multimodal machine translation (MMT) introduces
visual information into neural machine transla-
tion (NMT), which assumes that additional visual
modality could improve NMT by grounding the
language into a visual space (Lee et al., 2018).
However, most existing MMT methods require
additional input of images to provide visual rep-
resentations, which should match with the source
sentence. Unfortunately, in practice it is difficult to
get this kind of pairwise input of text and images
which hinders the applications of MMT. What is
worse, to train an MMT model, the training data
still involves the target sentence besides the source

∗Corresponding author: Yang Feng.
Code is publicly available at https://github.com/

ictnlp/PLUVR.

sentence and the image, which is costly to collect.
As a result, the MMT model is usually trained on
a small Multi30K (Elliott et al., 2016) data set,
which limits the performance of MMT. Therefore,
it is necessary to utilize the separate image data
set to obtain visual representations to break the
constraints of pairwise input.

Towards this end, some researchers (Zhang et al.,
2020; Wu et al., 2021) propose to integrate a re-
trieval module into NMT, which retrieve images re-
lated to the source sentence from existing sentence-
image pairs as complementary input, and then use a
pre-trained convolutional neural network (CNN) to
encode the images. However, such sentence-level
retrieval usually suffers from sparsity as it is dif-
ficult to get the images that properly match with
the source sentence. Besides, visual features out-
putted by the CNN contain richer information (e.g.,
color, size, shape, texture, and background) than
the source text, thus encoding them in a bundle
without any filtering will introduce noise into the
model.

To solve these problems, we propose a novel
retrieval-based method for MMT to learn phrase-
level visual representations for the source sentence,
which can mitigate the aforementioned problems
of sparse retrieval and redundant visual represen-
tations. For the sparsity problem, our method re-
trieves the image at the phrase level and only refers
to the grounded region in the image related with the
phrase. For the redundancy problem, our method
employs the conditional variational auto-encoder to
force the learned representations to properly recon-
struct the source phrase so that the learned repre-
sentations only retain the information related to the
source phrase . Experiments on Multi30K (Elliott
et al., 2016) show that the proposed method gains
significant improvements over strong baselines.
When the textual context is limited, it achieves
up to 85% gain over the text-only baseline on the
BLEU score. Further analysis demonstrates that
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the proposed method can obtain visual information
that is more related to translation quality.

2 Phrase-Guided Visual Representation

We use phrase-level visual representation to im-
prove NMT. In this section, we will introduce our
proposed phrase-guided visual representation. We
first build a phrase-level image set, and then in-
troduce a latent-variable model to learn a phrase-
guided visual representation for each image region.

2.1 Phrase-Level Image Set

Our phrase-level image set is built from the training
set of Multi30K, which contains about 29K bilin-
gual sentence-image pairs. We only use the images
e and source descriptions x from them, which is
denoted as D = {(xi, ei)}Ni=1. We extract <noun
phrase, image region> pairs from <sentence, im-
age> pairs in D to build our phrase-level image set,
which is denoted as Dp.

For each sentence xi, we use an open-source li-
brary spaCy1 to identify the noun phrases, which
is denoted as Pi = (pi1,p

i
2, ...,p

i
ti), where ti is

the number of noun phrases in xi. For each noun
phrase pij , we detect the corresponding region rij
from the paired image ei using the visual ground-
ing toolkit (Yang et al., 2019). Then (pij , r

i
j) is

added to our phrase-level image set Dp. Figure 1
illustrates an example.

Finally, we obtain the phrase-level image set
Dp = {(pi, ri)}Ti=1, where T =

∑N
i=1 ti. It con-

tains about 102K pairs in total.

2.2 Latent-Variable Model

For an image region r, we can obtain the visual
features v with a pre-trained ResNet-101 Faster
R-CNN (He et al., 2016; Ren et al., 2015), which
contains rich visual information (e.g., color, size,
shape, texture, and background). However, we
should not pay much attention to the visual infor-
mation not mentioned in the corresponding phrase,
which will introduce too much noise and even be
harmful to NMT. Therefore, we further introduce
a continuous latent variable to explicitly model
the semantic information of image regions under
the guidance of phrases. We adopt the framework
of conditional variational auto-encoder (CVAE)
(Kingma and Welling, 2014; Sohn et al., 2015) to
maximize the conditional marginal log-likelihood

1https://spacy.io

a black dog  jumping to catch  a rope toy

Figure 1: Example of extracting <noun phrase, image
region> pairs from existing <sentence, image> pairs.

log p(p|v) = log
∫
z p(p|z,v)p(z|v)dz by maxi-

mizing the evidence lowerbound (ELBO):

Lcvae(ω, φ, θ) =Ez∼qφ(z|p,v)[log pθ(p|z,v)]
−KL[qφ(z|p,v)‖pω(z|v)],

(1)
where pω(z|v) is the prior, qφ(z|p,v) is an approx-
imate posterior and pθ(p|z,v) is the decoder. The
prior pω is modeled as a Gaussian distribution:

pω(z|v) = N (z;µp(v),σp(v)
2I), (2)

µp(v) = Linear(v), (3)

σp(v) = Linear(v), (4)

where Linear(·) denotes linear transformation.
The approximate posterior qφ is also modeled as a
Gaussian distribution:

qφ(z|p,v) = N (z;µq(p,v),σq(p,v)
2I), (5)

µq(p,v) = Linear([RNN(p),v]), (6)

σq(p,v) = Linear([RNN(p),v]), (7)

where RNN(·) denotes a single-layer unidirec-
tional recurrent neural network (RNN). The final
hidden state of RNN is used to compute the mean
and variance vectors.

To be able to update the parameters using back-
propagation, we use the reparameterization trick
(Kingma and Welling, 2014) to sample z from qφ:

z = µq + σq � ε, ε ∼ N (0, I). (8)

The decoder pθ(p|z,v) is also implemented by a
single-layer unidirectional RNN. The initial hidden
state of decoder RNN is defined as:

s = Linear([z,v]), (9)
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Figure 2: Overview of our proposed method.

and then the decoder will reconstruct the phrase p
based on s. We refer to s as phrase-guided visual
representation, since it pays more attention to the
semantic information mentioned in the phrase and
filters out irrelevant information. We will describe
how to incorporate it into NMT in the next section.

3 NMT with Phrase-Level Universal
Visual Representation

In this section, we will introduce our retrieval-
based MMT method. Specifically, we obtain visual
context through our proposed phrase-level visual
retrieval, and then learn a universal visual repre-
sentation for each phrase in the source sentence,
which is used to improve NMT. Figure 2 shows
the overview of our proposed method, which is
composed of four modules: source encoder, phrase-
level visual retrieval module, multimodal aggre-
gation module, and target decoder. The source
encoder and target decoder are the same as the en-
coder and decoder of conventional text-only Trans-

former (Vaswani et al., 2017). Therefore, we will
introduce the phrase-level visual retrieval module
and multimodal aggregation module in detail in the
rest of this section.

We denote the input source sentence as x =
(x1, x2, ..., xn), the ground truth target sentence as
y∗ = (y∗1, y

∗
2, ..., y

∗
m) and the generated translation

as y = (y1, y2, ..., ym). The input source sentence
x will be encoded with the source encoder to obtain
source sentence representation, which is denoted
as H = (h1,h2, ...,hn).

3.1 Phrase-Level Visual Retrieval Module

To obtain the visual context of the source sentence
without input paired images, we design a phrase-
level visual retrieval module. Specifically, for the
input sentence x = (x1, x2, ..., xn), we identify
the noun phrases P̄ = (p̄1, p̄2, ..., p̄t) in x. Each
phrase p̄i = (xli , xli+1, ..., xli+di−1) is a continu-
ous list of tokens, where li is the index of the first
token and di is the length of p̄i. For each noun
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phrase p̄i, we will retrieve several relevant <noun
phrase, image region> pairs from our phrase-level
image set Dp according to the semantic similarity
between phrases, and then use the image regions
as visual context. We design a phrase encoder to
compute the phrase embedding, which is used to
measure the semantic similarity between phrases.

Phrase Encoder Our phrase encoder Encp(·) is
based on a pre-trained BERT (Devlin et al., 2019).
For a phrase p = (p1, p2, ..., pl), we first use BERT
to encode it into contextual embeddings:

c1, c2, ..., cl = BERT(p1, p2, ..., pl), (10)

then the phrase embedding is the average embed-
ding of all tokens:

Encp(p) =
1

l

l∑
i=1

ci. (11)

Visual Retrieval For a given phrase p̄, we re-
trieve top-K relevant <noun phrase, image region>
pairs from Dp. For (pi, ri) ∈ Dp, the relevance
score with given phrase p̄ can be defined as the
cosine distance between their phrase embeddings:

RS(p̄, (pi, ri)) =
Encp(p̄) · Encp(pi)
‖Encp(p̄)‖‖Encp(pi)‖

,

(12)
then we retrieve top-K relevant pairs for p̄:

{(pik , rik)}
K
k=1 = top-K

i=1..T
(RS(p̄, (pi, ri))).

(13)

Universal Visual Representation For every
pair (pik , rik), we can obtain the phrase-guided vi-
sual representation sik through our latent-variable
model as described in Section 2.2. Finally, the
phrase-level universal visual representation of p̄ is
defined as the weighted sum of all {sik}:

u =
1

K

K∑
k=1

RS(p̄, (pik , rik)) · sik . (14)

Our universal visual representation considers multi-
view visual information from several image regions,
which avoids the bias caused by a single image
region. Finally, for all phrases P̄ = (p̄1, p̄2, ..., p̄t)
in x, we obtain the corresponding universal visual
representation U = (u1,u2, ...,ut).

3.2 Multimodal Aggregation Module
Inspired by the recent success of modality fu-
sion in multimodal machine translation (Yin et al.,
2020; Zhang et al., 2020; Fang et al., 2022), we
design a simple multimodal aggregation module
to fuse the source sentence representation H and
phrase-level universal visual representation U. At
first, we perform a phrase-level aggregation. For
each phrase p̄i = (xli , xli+1, ..., xli+di−1), we
fuse the universal visual representation ui and
the textual representation of corresponding tokens
(hli ,hli+1, ...,hli+di−1):

mi = LayerNorm(ui +

li+di−1∑
j=li

oij � hj), (15)

oij = sigmoid(W1ui + W2hj), (16)

where � denotes element-wise product. Now
we obtain the multimodal phrase representation
M = (m1,m2, ...,mt). Afterwards, we apply a
multi-head attention mechanism to append M to
the source sentence representation:

S̄ = MultiHead(H,M,M). (17)

We then fuse S̄ and H with a gate mechanism:

S = H + λ� S̄, (18)

λ = sigmoid(W3H + W4S̄). (19)

Finally, S is fed into our target decoder for predict-
ing the translation. The translation model is trained
with a cross-entropy loss:

Ltrans = −
m∑
i=1

log p(y∗i |y<i,x). (20)

4 Experiments

We conduct experiments on the following datasets:

Multi30K Multi30K dataset contains bilingual
parallel sentence pairs with image annotations,
where each image is paired with one English
description and the translations in German and
French. Training, validation and test sets contain
29,000, 1,014, and 1,000 instances, respectively.
We also report the results on the WMT17 test set
and the ambiguous MSCOCO test set, which con-
tain 1,000 and 461 instances respectively.

WMT16 EN-DE WMT16 EN-DE dataset con-
tains about 4.5M sentence pairs. We choose new-
stest2013 for validation and newstest2014 for test.

5690



Models EN-DE EN-FR
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

Transformer (Vaswani et al., 2017) 39.87 31.78 29.36 60.51 52.44 42.49
Imagination (Elliott and Kádár, 2017) 39.70-0.17 32.15+0.37 29.76+0.40 60.88+0.37 52.89+0.45 42.87+0.38

UVR-NMT (Zhang et al., 2020) 38.19-1.68 31.85+0.07 28.55-0.81 60.02-0.49 51.50-0.94 43.22+0.73

Ours 40.30+0.43 33.45+1.67** 30.28+0.92 61.31+0.80* 53.15+0.71* 43.65+1.16*

Table 1: BLEU scores on Multi30K dataset. * and ** mean the improvements over Transformer (Vaswani et al.,
2017) baseline is statistically significant (p < 0.05 and p < 0.01, respectively).

WMT16 EN-RO WMT16 EN-RO dataset con-
tains about 0.6M sentence pairs. We choose news-
dev2016 for validation and newstest2016 for test.

For all the above datasets, all sentences are to-
kenized and segmented into subwords units using
byte-pair encoding (BPE) (Sennrich et al., 2016).
The vocabulary is shared for source and target lan-
guages, with a size of 10K for Multi30K, and 40K
for WMT16 EN-DE and WMT16 EN-RO.

4.1 System Settings

Model Implementation For the latent-variable
model, the image region is encoded with a pre-
trained ResNet101 Faster-RCNN (He et al., 2016;
Ren et al., 2015). Both the phrase encoder and
decoder are implemented using a single-layer uni-
directional RNN with 512 hidden states. The size
of the latent variable is set to 64. The batch size
is 1024, and the learning rate is 5e-5. We train
the model up to 200 epochs with Adam optimizer
(Kingma and Ba, 2015). We adopt KL cost anneal-
ing and word dropout tricks to alleviate the pos-
terior collapse problem following Bowman et al.
(2016). The annealing step is set to 20000 and the
word dropout is set to 0.1. Note that the phrases
are segmented using the same BPE vocabulary as
that for each source language.

For the translation model, we use Transformer
(Vaswani et al., 2017) as our baseline. Both en-
coder and decoder contain 6 layers. The num-
ber of attention heads is set to 4. The dropout
is set to 0.3, and the value of label smoothing is
set to 0.1. For the visual retrieval module, we re-
trieve top-5 image regions for each phrase. We use
Adam optimizer (Kingma and Ba, 2015) to tune
the parameters. The learning rate is varied under
a warm-up strategy with 2,000 steps. We train the
model up to 8,000, 20,000, and 250,000 steps for
Multi30K, WMT16 EN-RO, and WMT16 EN-DE,
respectively. We average the checkpoints of last 5
epochs for evaluation. We use beam search with
a beam size of 4. Different from previous work,

we use sacreBLEU2 (Post, 2018) to compute the
BLEU (Papineni et al., 2002) scores and the statis-
tical significance of translation results with paired
bootstrap resampling (Koehn, 2004) for future stan-
dard comparison across papers. Specifically, we
measure case-insensitive detokenized BLEU for
Multi30K (sacreBLEU signature: nrefs:1 | bs:1000
| seed:12345 | case:lc | eff:no | tok:13a | smooth:exp
| version:2.0.0)3 and case-sensitive detokenized
BLEU for WMT datasets (sacreBLEU signature:
nrefs:1 | bs:1000 | seed:12345 | case:mixed | eff:no
| tok:13a | smooth:exp | version:2.0.0).

All models are trained and evaluated using 2
RTX3090 GPUs. We implement the translation
model based on fairseq4 (Ott et al., 2019). We
train latent-variable model and translation model
individually.

4.2 Baseline Systems

Our baseline is the text-only Transformer (Vaswani
et al., 2017). Besides, we implement Imagination
(Elliott and Kádár, 2017) and UVR-NMT (Zhang
et al., 2020) based on Transformer, and compare
our method with them. The details of these meth-
ods can be found in Section 6. We use the same
configuration for all baseline systems as our model.

5 Results and Analysis

5.1 Results on Multi30K Dataset

Table 1 shows the results on Multi30K. Our pro-
posed method significantly outperforms the Trans-
former (Vaswani et al., 2017) baseline, demonstrat-
ing that our proposed phrase-level universal visual
representation can be helpful to NMT. Our method
also surpass Imagination (Elliott and Kádár, 2017)
and UVR-NMT (Zhang et al., 2020). We consider

2https://github.com/mjpost/sacrebleu
3This is because the official pre-processing script

of Multi30K dataset lowercases the corpus, see
https://github.com/multi30k/dataset/
blob/master/scripts/task1-tokenize.sh

4https://github.com/pytorch/fairseq

5691

https://github.com/mjpost/sacrebleu
https://github.com/multi30k/dataset/blob/master/scripts/task1-tokenize.sh
https://github.com/multi30k/dataset/blob/master/scripts/task1-tokenize.sh
https://github.com/pytorch/fairseq


(a) original

man
woman
people
shirt
girl
boy
dog
-PRON-

(b) phrase-guided

Figure 3: Visualization of different visual representa-
tions.

it is mainly due to the following reasons. First, our
phrase-level visual retrieval can obtain strongly cor-
related image regions instead of weakly correlated
whole images. Second, our phrase-level universal
visual representation considers visual information
from multiple image regions and pays more atten-
tion to the semantic information mentioned in the
phrases. Last, our phrase-level aggregation module
makes it easier for the translation model to exploit
the visual information.

5.2 Effects of Latent-Variable Model

In Section 2.2, we introduce a latent-variable model
to learn a phrase-guided visual representation for
each image region. To understand how it improves
the model performance compared with original vi-
sual features, we visualize the representations by
reducing the dimension with Principal Component
Analysis (PCA). Specifically, for all <noun phrase,
image region> pairs in Dp, we cluster the image
regions by the head5 of noun phrases. We select
top-8 clusters according to their size, and randomly
sample 1000 image regions for each cluster. As
shown in Figure 3, the original visual features of
different clusters are mixed together, indicating that
they contains too much irrelevant information. In
contrast, our proposed phrase-guided visual repre-
sentations, which pay more attention to the seman-
tic information, form several clusters according to
their heads.

Combined with our visual retrieval module, we
found that as the number of retrieved image regions
K increases, the BLEU score keeps decreasing
when we use original visual features, while increas-
ing when we use our proposed phrase-guided visual
representations, which is shown in Figure 4. We
believe the decrease of BLEU score is due to the

5https://en.wikipedia.org/wiki/Head_
(linguistics)
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Figure 4: BLEU scores with different number of re-
trieved image regions K. Phrase-guided visual repre-
sentations achieve better performance as K increases.

Models Test2016 Test2017 MSCOCO

Transformer 10.42 8.59 7.08
Ours 19.41+8.99 13.67+5.08 12.23+5.15

Table 2: BLEU scores on Multi30K En-De under
source-degradation setting.

irrelevant information in original visual features,
and thus directly sum them together will introduce
too much noise. Our method filters out those ir-
relevant information, and multiple image regions
could avoid the bias caused by a single one, which
leads to the increase of BLEU score. However, we
don’t observe further improvements when using
more image regions.

5.3 Source-Degradation Setting
We further conduct experiments under source-
degradation setting, to verify the effectiveness of
our method when the source textual context is lim-
ited. Following Wu et al. (2021), we mask the
visually grounded tokens in the source sentence,
which affects around 43% of tokens in Multi30K.
As shown in Table 2, our method achieves almost
85% improvements over the text-only Transformer
baseline. It means our proposed phrase-level uni-
versal visual representation can fill in the missing
information effectively.

5.4 Phrase-Level vs. Sentence-Level
Retrieval

To prove the effectiveness of phrase-level retrieval,
we implement a sentence-level variant of our
method. In this variant, we switch the latent-
variable model, retrieval module and aggregation
module from phrase-level to sentence-level. In
this way, we retrieve several images as visual con-
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#34 #25 #41 #101 #81

#13061 #21353 #22252 #21827

a person is driving a black car (#136 in Test2017)
<query> a person

<query> a black car

(#27907) a person is driving a red and black race car
(#28972) a person is walking with a white bag
(#23551) a person is riding a bike on a dirt road
(#17872) a person is riding a bike in a tunnel
(#28972) a person is walking by an old building

#27907 #28972

#28972 #23551 #17872

(a) Phrase-level retrieval (b) Sentence-level retrieval

<query> a person is driving a black car 

#9152

Figure 5: Example of different levels of retrieval. We denote the index of retrieved image (regions) in the training
set of Multi30K with #id.

Models Test2016 Test2016 (Mask)

Transformer 39.87 10.42
Ours-sentence 40.02+0.15 11.52+1.10*
Ours 40.30+0.43 19.41+8.99**

Table 3: BLEU scores on Multi30K En-De Test2016.
(Mask) indicates source-degradation setting. * and **
mean the improvements over Transformer (Vaswani
et al., 2017) baseline is statistically significant (p <
0.05 and p < 0.01, respectively).

text to help the translation. As shown in Table
3, the sentence-level variant Ours-sentence per-
forms worse than Ours, especially in the case of
source-degradation setting. We believe it is because
phrase-level retrieval can obtain more relevant im-
age regions as visual context, which contain less
noise and can be integrated into textual represen-
tations more precisely. In contrast, sentence-level
retrieval leads to images with much irrelevant in-
formation, and makes it difficult for the model to
capture the fine-grained semantic correspondences
between images and descriptions. To understand
this difference more intuitively, we give an example
in Figure 5. As we can see, for the input sentence,
phrase-level retrieval can obtain closely related im-
age regions for noun phrases a person and a black
car, while the results of sentence-level retrieval are
actually weakly related with the input sentence.

5.5 Results on WMT News Datasets

Finally, we conduct experiments on WMT16 EN-
DE and WMT16 EN-RO datasets. As shown in Ta-
ble 4, we observe that both Zhang et al. (2020) and
our method only achieve marginal improvements
compared with text-only Transformer baseline. We
consider that there are two main reasons. On the
one hand, most of tokens in such news text are not
naturally related to specific visual contents. We
found that the percentage of visual grounded to-
kens in the training set of WMT16 EN-DE is only
7% (vs. 43% in Multi30K), so the contribution
of visual information is indeed limited. On the
other hand, the news text is far from the descrip-
tive text in Multi30K. In this way, the retrieved
image regions are actually weakly correlated with
the source phrase. We did some analysis to verify
our hypotheses. As described in Section 3.1, we re-
trieve top-K pairs for each phrase according to the
relevance scores. We define the average relevance
scores (ARS) as follows:

ARS(k) = Ep∈Dval
RS(p, (pik , rik)), (21)

which means the average relevance scores for all
phrases in the validation set. As shown in Figure
6, ARS on WMT news datasets are much lower
than that on Multi30K, which proves that the gap
between news text and descriptive text does exists.
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Models EN-DE EN-RO

Transformer 26.54 32.67
UVR-NMT 26.89+0.35 32.93+0.26

Ours 26.97+0.43 33.18+0.51

Table 4: BLEU scores on WMT16 EN-DE and
WMT16 EN-RO dataset.
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WMT16 EN-DE
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Figure 6: Average relevance scores (ARS) during vi-
sual retrieval for all phrases in the validation set.

6 Related Work

Multimodal machine translation (MMT) aims to
enhance NMT (Vaswani et al., 2017; Zhang et al.,
2019; Li et al., 2021) with additional visual con-
text. Since the release of Multi30K (Elliott et al.,
2016) dataset, researchers have proposed many
MMT methods. Early methods (Huang et al., 2016;
Calixto and Liu, 2017; Caglayan et al., 2016; Cal-
ixto et al., 2016; Caglayan et al., 2017; Libovický
and Helcl, 2017; Delbrouck and Dupont, 2017b,a;
Zhou et al., 2018; Calixto et al., 2017; Helcl et al.,
2018; Caglayan et al., 2018) are mainly based on
the RNN-based encoder-decoder architecture with
attention (Bahdanau et al., 2015). Recent meth-
ods based on Transformer (Vaswani et al., 2017)
achieve better performance. Yao and Wan (2020);
Yin et al. (2020); Liu et al. (2021) design multi-
modal encoder to fuse the textual and visual in-
formation during encoding. Ive et al. (2019); Lin
et al. (2020) enhance the decoder with deliberation
networks (Xia et al., 2017) or capsule networks
(Sabour et al., 2017) to better utilize visual infor-
mation during decoding. Caglayan et al. (2021) pro-
pose a cross-lingual visual pre-training method and
fine-tuned for MMT. It is worth noting that some
of previous works (Ive et al., 2019; Lin et al., 2020;
Yin et al., 2020; Wang and Xiong, 2021; Nishi-
hara et al., 2020; Zhao et al., 2021) adopt regional

visual information like us, which shows effective-
ness compared with global visual features. The
major difference between our method and theirs is
that our method is a retrieval-based method, which
breaks the reliance on bilingual sentence-image
pairs, Therefore, our method is still applicable
when the input is text only (without paired images),
which is unfortunately not available with those pre-
vious methods.

In addition to focusing on model design, Yang
et al. (2020); Nishihara et al. (2020); Wang and
Xiong (2021) propose auxiliary loss to allow the
model to make better use of visual information.
Caglayan et al. (2019); Wu et al. (2021) conduct
systematic analysis to probe the contribution of
visual modality. Caglayan et al. (2020); Ive et al.
(2021) focus on improving simultaneous machine
translation with visual context.

All of the above methods require a specific im-
age as input to provide visual context, which heav-
ily restricts their applicability. To break this bot-
tleneck, Hitschler et al. (2016) propose target-side
image retrieval to help the translation. Elliott and
Kádár (2017) propose a multitask learning frame-
work Imagination to decomposes the multimodal
translation into learning translation and learning
visually grounded representation. Calixto et al.
(2019) introduce a latent variable and estimate
a joint distribution over translations and images.
Long et al. (2020) predict the translation with vi-
sual representation generated by a generative ad-
versarial network (GAN) (Goodfellow et al., 2014).
The most closely related work to our method is
UVR-NMT (Zhang et al., 2020), which breaks the
reliance on bilingual sentence-image pairs. Like
some retrieval-enhanced MT (Feng et al., 2017;
Gu et al., 2017) methods, they build a topic-image
lookup table from Multi30K, and then retrieve im-
ages related to the source sentence as visual context
based on the topic words. The central differences
between Zhang et al. (2020) and our method are as
follows:

• First, their method depends on the weak corre-
lation between words and images, which leads
to much noise in the retrieved images, while
our approach relies on the strong correlation
between noun phrases and image regions.

• Second, our phrase-level retrieval can ob-
tain more related visual context than their
sentence-level retrieval (Section 5.4).
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• Last, their method directly uses visual features
extracted by ResNet (He et al., 2016), which
may introduce too much noise. We adopt a
latent-variable model to filter out irrelevant
information and obtain a better representation.

7 Conclusion

In this paper, we propose a retrieval-based MMT
method, which learns a phrase-level universal vi-
sual representation to improve NMT. Our method
not only outperforms the baseline systems and most
existing MMT systems, but also breaks the restric-
tions on input that hinder the development of MMT
in recent years. Experiments and analysis demon-
strate the effectiveness of our proposed method.
In the future, we will explore how to apply our
method to other tasks.
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