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Abstract

In this paper, we study two issues of semantic
parsing approaches to conversational question
answering over a large-scale knowledge base:
(1) The actions defined in grammar are not
sufficient to handle uncertain reasoning com-
mon in real-world scenarios. (2) Knowledge
base information is not well exploited and in-
corporated into semantic parsing. To mitigate
the two issues, we propose a knowledge-aware
fuzzy semantic parsing framework (KaFSP).
It defines fuzzy comparison operations in the
grammar system for uncertain reasoning based
on the fuzzy set theory. In order to enhance
the interaction between semantic parsing and
knowledge base, we incorporate entity triples
from the knowledge base into a knowledge-
aware entity disambiguation module. Addi-
tionally, we propose a multi-label classification
framework to not only capture correlations be-
tween entity types and relations but also de-
tect knowledge base information relevant to
the current utterance. Both enhancements are
based on pre-trained language models. Exper-
iments on a large-scale conversational ques-
tion answering benchmark demonstrate that the
proposed KaFSP achieves significant improve-
ments over previous state-of-the-art models,
setting new SOTA results on 8 out of 10 ques-
tion types, gaining improvements of over 10%
F1 or accuracy on 3 question types, and improv-
ing overall F1 from 83.01% to 85.33%. The
source code of KaFSP is available at https:
//github.com/tjunlp-lab/KaFSP.

1 Introduction

With the growing popularity of intelligent virtual
assistants (e.g., Alexa, Siri, Cortana) and the avail-
ability of large-scale knowledge bases (e.g., DBPe-
dia (Auer et al., 2007), Wikidata (Vrandečić and
Krötzsch, 2014), YAGO (Rebele et al., 2016)), con-
versational question answering (QA) over knowl-
edge bases (KB) has attracted broad interests. It
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aims to satisfy users’ information needs by re-
trieving answers from a given knowledge graph
to users’ questions in a multi-turn conversational
setting with a wide range of discourse phenomena
(e.g., ellipsis, coreference, lexical cohesion).

While conversational QA over large-scale KBs
can be realized without explicit semantic parsing
(e.g., HRED-KVM (Kacupaj et al., 2021)), the ma-
jority of effort is dedicated to the exploration of
contextual semantic parsers (Guo et al., 2018; Shen
et al., 2019; Thirukovalluru et al., 2021; Kacupaj
et al., 2021; Lan and Jiang, 2021). The seman-
tic parsing based approaches usually project an
utterance into a logical form that can be executed
on a given knowledge base. Early semantic pars-
ing method D2A (Guo et al., 2018) suffers from
the stepwise error propagation issue, which is im-
proved by MaSP (Shen et al., 2019) that jointly
learns pointer-equipped semantic parsing and type-
aware entity detection in a multi-task learning
framework. The very recent work LASAGNE
(Kacupaj et al., 2021) further enhances MaSP via
a graph attention network that exploits the correla-
tion (missing in MaSP) between entity types and
relations and achieves the state-of-the-art results
on the CSQA benchmark (Saha et al., 2018).

Despite the aforementioned progress, we argue
that current semantic parsing approaches to conver-
sational QA over large-scale KBs still suffer from
two critical issues. First, grammar rules that form
the base for the mapping of questions to logical
forms, although being constantly updated in D2A,
MaSP, and LASAGNE, are still not sufficient to
cover all real-world situations, e.g., fuzzy inference
on numbers. Consider the question "Which nutri-
ents can interact with approximately 89 chemical
substances and drugs?". It is difficult for existing
grammar to represent "approximately 89". Second,
the interaction between questions and knowledge
base is not adequate for entity disambiguation and
redundancy detection in semantic parsing. For the
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question "Which educational institution is the alma
mater of Pierre Lefebvre?", without using relevant
information from KB, it is difficult for semantic
parsing to distinguish whether "Pierre Lefebvre" is
a French military physician or a French politician
as more than one persons named "Pierre Lefebvre"
are in the knowledge base.

To address these two issues, we propose
a Knowledge-aware Fuzzy Semantic Parsing
(KaFSP) model to enhance both grammar rules and
the interaction between KB and semantic parsing.
Particularly, we introduce fuzzy operations into the
grammar system used in previous work, enabling
the system to perform uncertainty reasoning on
numbers. Such updates have a significant impact
on answering quantitative and comparative ques-
tions. In order to make the knowledge base well
facilitate semantic parsing, we incorporate deep
entity knowledge in the given knowledge base into
different modules in the proposed semantic parsing
framework. In the entity disambiguation module,
entity triples from the knowledge base are exploited
to disambiguate candidate entities. In the entity
type and relation prediction module, a multi-label
classification framework is proposed to capture cor-
relations between entity types and relations and
to pinpoint KB information relevant to the current
utterance.

Contributions Our main contributions are as fol-
lows:

• We propose a knowledge-aware fuzzy seman-
tic parsing framework for conversational QA
over large-scale KBs, which enables the gram-
mar system to model uncertainty reasoning
based on the fuzzy set theory, and enhances
the interaction between KB and semantic pars-
ing with two knowledge-aware modules.

• Experiment results demonstrate that our pro-
posed model achieves new state-of-the-art re-
sults on 8 out of 10 question types on the
CSQA dataset (Saha et al., 2018), which is to
date the largest dataset for complex conversa-
tional question answering over a large-scale
knowledge base.

2 Related Work

Semantic parsing approaches have conventionally
been used for knowledge base question answering
(KBQA). Early efforts parse natural language ques-
tions into logical forms typically via dictionary-

based parsers or similarity models (Wong and
Mooney, 2007; Zettlemoyer and Collins, 2007,
2009; Kwiatkowski et al., 2011; Andreas et al.,
2013; Artzi and Zettlemoyer, 2013; Reddy et al.,
2014; Zhao and Huang, 2015; Dubey et al., 2016;
Long et al., 2016).

Recent years have witnessed that semantic pars-
ing has been shifted from traditional statistical mod-
els with feature engineering to neural approaches
that learn continuous representations for generat-
ing logical forms (Yih et al., 2014; Jia and Liang,
2016; Xiao et al., 2016; Bao et al., 2016; Dong
and Lapata, 2018, 2016; Bhutani et al., 2020; Lan
and Jiang, 2020, 2021). For example, Dong and
Lapata (2016) use the encoder-decoder framework
equipped with a neural attention mechanism to cast
semantic parsing into Seq2Seq generation.

As knowledge bases are becoming large, seman-
tic parsing for KBQA is usually performed in a step-
wise, modular framework. Guo et al. (2018) recog-
nize entities in questions and link them to the given
large-scale knowledge graph at the first stage and
then learn to map the entity-linked questions into
logical forms. Dong and Lapata (2018) propose a
coarse-to-fine two-stage decoding method for se-
mantic parsing, which generates a coarse sketch for
a question with low-level features at the first stage
and then continues to decode the final logical form
based on the output of the first stage as well as the
question itself.

As mentioned in Section 1, such stepwise meth-
ods are confronted with error propagation across
stages (e.g., from entity linking to mapping, from
coarse parse to fine parse). In order to alleviate
such problem, Shen et al. (2019) and Kacupaj
et al. (2021) use a multi-task learning framework to
jointly learn entity detection, linking, and semantic
parsing in a single model. Kacupaj et al. (2021)
also use a graph attention network (Veličković et al.,
2018) to explore entity type and relation informa-
tion in the knowledge base.

Due to the superiority of multi-task learning for
semantic parsing tailored for KBQA, our work is
also based on the multi-task learning framework.
However, our model is significantly different from
existing works in both fuzzy grammar rules and
knowledge-aware entity disambiguation together
with entity type and relation prediction.
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How many people acted as an influence on Thomas Aquinas ?[SEP] 15 [SEP] And also tell me about Walt Whitman? [CTX]
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Figure 1: The diagram of KaFSP. Note that Q* and P* are entity and relation IDs defined in Wikidata where an
entity type is also regarded as an entity.

3 KaFSP

We use a multi-task learning framework to map
an input (current question concatenated with con-
text) into a logical form where entities are detected
and linked to the given knowledge base. Figure 1
shows the architecture of KaFSP. The backbone
network of KaFSP follows LASAGNE (Kacupaj
et al., 2021) consisting of a seq2seq network, an
entity recognition module and a graph attention net-
work module (Section 3.2). Our contributions lie
in the fuzzy grammar (Section 3.1), the knowledge-
aware entity disambiguation module (Section 3.3),
and the entity type and relation prediction module
(Section 3.4). The two knowledge-aware modules
are shown in the black dashed box in Figure 1.

3.1 Fuzzy Grammar

In semantic parsing approaches tailored for con-
versational KBQA, a grammar with the minimum
number of actions is usually defined to construct
KB-executable logical forms (i.e., semantic parse
trees). The actions defined in the previous gram-
mar system (Guo et al., 2018; Kacupaj et al., 2021)
are all deterministic operations. However, vague
and fuzzy questions are common in real-world sce-
narios, e.g., "How many works of art did approxi-
mately the same number of people do the dubbing
for as Another ?", which cannot be answered by

previous deterministic grammars. The grammar
of LASAGNE includes an action termed "approx",
which aims to perform the operation of "approx-
imately equal to". However, how two numbers
are measured to be roughly equal to each other is
not defined. Therefore, we take the grammar of
LASAGNE as a starting point for building our own
grammar and add fuzzy actions to the grammar
to make it to adapt to real-world vague questions
mentioned above. The new grammar is briefly sum-
marized in Table 1.

We further give a "precise" (measurable) defi-
nition for these added fuzzy actions based on the
fuzzy set theory (Zadeh, 1965). For a number a,
we define its fuzzy set as A = {x, µ(x)|x ∈ R}.
µ(x) is the membership function of set A, which
indicates the degree of similarity between x and a,
and is defined based on a generalized bell-shaped
membership function as:

µ(x) =
1

1 + |x−a
c |2b

, (1)

where c ∈ R and b ∈ N+. When µ(x) = 1, x and
a are strictly equal; and when µ(x) = 0, x and a
are strictly not equal.

A threshold λ ∈ (0, 1] can be defined to get three

463



Category Action Description

find
set→subject(e, r) set of subjects part of the triples with object e and relation r
set→object(e, r) set of objects part of the triples with subject e and relation r
boolean→in(e, set) check if the entity e is part of the set

filter set→types(sete, sett) filter the entity set sete based on type set sett

count
num→count(set) count the number of elements in the set

dict→sub_triples(r, τ1, τ2)
extracts a dictionary, where keys are entities of type τ1 and values are
the number of objects of type τ2 related with r

dict→ob_ triples(r, τ1, τ2)
extracts a dictionary, where keys are entities of type τ1 and values are
the number of subjects of type τ2 related with r

strict
comparison

set→greater (dict, num) set of those entities that have greater count than num
set→lesser(dict, num) set of those entities that have lesser count than num
set→equal(dict, num) set of those entities that have equal count with num
set→atmost(dict, num) set of those entities that have at most same count with num
set→atleast(dict, num) set of those entities that have at least same count with num
set→argmax(dict, num) set of those entities that have the most count
set→argmin(dict, num) set of those entities that have the least count

fuzzy
comparison

set→equal(dict, num) set of those entities that are in the fuzzy set A≈
λ of num

set→greater(dict, num) set of those entities that are in the fuzzy set A≳
λ of num

set→lesser(dict, num) set of those entities that are in the fuzzy set A≲
λ of num

set
operation

set→intersection(set1, set2) interesection of set1 and set2
set→union(set1, set2) union of set1 and set2
set→difference(set1, set2) difference of set1 and set2

Table 1: Fuzzy grammar defined for KaFSP.

fuzzy sets:

A≈
λ = {µ(x) > λ|x ∈ R},

A
≳
λ = {x > a|x ∈ R} ∪A≈

λ ,

A
≲
λ = {x < a|x ∈ R} ∪A≈

λ .

(2)

When µ(x) > λ, then x ∈ A≈
λ , which denotes

that x and a is approximately equal to each other.
When x ∈ A

≳
λ , x is considered to be greater than

or approximately equal to a. When x ∈ A
≲
λ , x is

considered to be less than or approximately equal
to a.

It is worth noting that all the parameters in Eq.
(1) and the threshold λ can be flexibly predefined,
which makes our grammar adjustable to different
fuzzy scenarios.

3.2 Backbone Network
We follow the multi-task learning framework of
LASAGNE (Kacupaj et al., 2021) to build the back-
bone network for our KaFSP.

Encoder and Decoder The skeleton of the entire
model is a Transformer-based encoder-decoder net-
work. The input x fed into the encoder is formed
in a way similar to LASAGNE, which is composed
of the previous question, the answer to the previ-
ous question, and the current question separated

by a symbol "[SEP]". A special token "[CTX]" is
appended to the input for encoding the input rep-
resentation henc

ctx , as shown in Figure 1. Both the
encoder and decoder use a two-layer multi-head
attention Transformer block, which can be formu-
lated as:

henc = encoder(x;θenc),

zdec = decoder(henc;θdec),

P (ydec|x) =
∏
t

softmax(W deczdec
t ),

(3)

where zdec
t ∈ R|Vdec| is the hidden state of the de-

coder at time step t, and W dec is the linear projec-
tion matrix at the targe side. The key task of the
decoder is to generate an action (listed in Table 1)
at each time step to obtain the logical form ydec

corresponding to the input x.

Entity Recognition Inspired by Shen et al.
(2019), we jointly detect entities and their types
in a BIO sequence labeling way. The labels for
the input sequence x are in {O, {B, I}×{Ti}

Ntp
1 }.

Ti stands for the i-th entity type label, and Ntp
denotes the number of the distinct entity types in
the knowledge base. An LSTM network, stacked
over the encoder, is used to perform the sequence
labeling task. To make the outputs of the sequence
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labeling task compatible with logical forms, we fol-
low LASAGNE to use a feedforward layer stacked
over the LSTM layer. The entire module of entity
recognition is hence formulated as follows:

hLSTM = LSTM(henc;θLSTM),

hFFN = LeakyReLU(W FFN1 [henc;hLSTM]),

P (yER|x) =
∏
t

softmax(W FFN2hFFN
t ),

(4)
where hLSTM is the LSTM hidden state at time step
t, hFFN is the FFN-transformed version of hLSTM,
and P (yER|x) denotes the probability distribution
over entity tags.

Graph Attention Network (GAT) We follow
LASAGNE to use the GAT module to learn the
correlations between entity types and their relations
in the knowledge base. It can be defined as:

hGAT = GAT(enode;θGAT), (5)

where enode are the embeddings of nodes in the
type-relation graph constructed from the knowl-
edge base. Please refer to Kacupaj et al. (2021) for
more details on the GAT module.

3.3 Entity Disambiguation
In a large-scale knowledge base, it is common that
entities with different meanings share the same
surface forms. Predicting entity types could help
differentiate them. However, when candidates have
both the same type and surface form, it is difficult
for entity type prediction to distinguish them again.
In order to address this issue, we incorporate more
information about these ambiguous entities from
the knowledge base to disambiguate them.

We model the entity disambiguation problem as
a binary classification problem:

y = f(c, s,K(e)), (6)

where s is the surface form of a candidate entity
e, c is the context where e occurs, and K(e) de-
notes relevant information of the candidate entity e
from the knowledge base. If y = 1 the entity e is
disambiguated and linked to the true entity in the
knowledge base defined by K(e). The purpose of
this is to maximize both the true positive and true
negative.

We define the context of e as the entire input x.
To define K(e), we use all triples that are relevant
to e in the knowledge base, regardless of whether

the entity is a subject or an object in triples. That
is, K(e) is an ordered set of KB triples. Each triple
in K(e) can be formulated as (eh, r, et), where the
candidate entity e is either the head entity (eh) or
tail entity (et).

In Eq. (6), f is the classifier to disambiguate
candidate entities. We use a pre-trained language
model XLNet (Yang et al., 2019) fine-tuned in the
training dataset as the classifier.

In order to feed s, c, and K(e) into the pre-
trained and fine-tuned classifier, we reorganize
them into a concatenated textual sequence, with
components be separated by the token "[SEP]".
KB triples are all instantiated with corresponding
words in the knowledge base, where eh, r, and et
are separated by blanks. We use the top 3 triples in
K(e) and feed them into the classifier, where the
triples are sorted by their IDs. Such a choice is a
trade-off between knowledge graph coverage and
memory consumption in practice. If the number of
relevant triples retrieved from the knowledge base
is less than 3, we use the candidate entity itself to
fill in the empty triples.

3.4 Type and Relation Prediction
This module mainly performs two subtasks: the
unified recognition of entity types and relations,
and the KB-guided prediction of correct entity
types and relations stacked over the first subtask, as
shown in the Type & Relation Prediction module
in Figure 1.

Let G ⊆ E ×R× E denote the knowledge base,
where E is the entity set and R is the relation set.
Each entity e ∈ E has an entity type τ ∈ T (entity
type set).

We model the type and relation recognition sub-
task as a multi-label classification task and use a
classifier to predict the probability of an output
sequence from a given input sequence.

To obtain neural representations of both entity
types and entity relations for the recognition sub-
task, we use a pre-trained language model BERT
(Devlin et al., 2019). The input fed into BERT is
formed in a way similar to the entity disambigua-
tion module. The difference is that we replace the
entity with its entity type. Formally, the neural
representation eτ of an entity type is computed as
follows:

eτ = BERT[CLS]([CLS]s(τ)[SEP]K(τ)[SEP]),

where [CLS] indicates that we use the representa-
tion of the prepended artificial [CLS] token as the
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representation of the entity type τ , s(τ) and K(τ)
represent the surface form and triples of τ , respec-
tively. Similarly, the neural representation er of a
relation is formulated as:

er = BERT[CLS]([CLS]s(r)[SEP]K(r)[SEP]).

Kacupaj et al. (2021) find that modeling the cor-
relations between entity types and relations is cru-
cial for semantic parsing. In our KaFSP, we use
a single classifier to predict both entity types and
relations, instead of using two separate classifiers
that share no common information (Shen et al.,
2019; Kacupaj et al., 2021). Hence, the prediction
space of our classifier is T ∪R, and the correlations
between types and relations are naturally captured
in the same single classifier. We use a sigmoid
function to output probabilities as follows:

P (yMLC|x) = Sigmoid(henc
ctx ×WMLC(eτr)⊤),

(7)
where WMLC ∈ R|T ∪R|×d is a linear projection
matrix, and eτr are the concatenation of the em-
beddings of τ ∈ T and r ∈ R.

The KB-guided prediction of entity types and re-
lations is actually to make final decisions on them
with relevant information from the knowledge base.
Since KB contains a lot of triples irrelevant to the
current utterance u, in order to make the knowl-
edge graph embedding provide the information re-
lated to u, we use the output probabilities from
the proposed multi-label classifier to pinpoint rele-
vant information from the knowledge base encoded
by GAT. Particularly, we calculate the Hadamard
product of P (yMLC|x) and hGAT:

hMLC = W TRP(hGAT ⊙ P (yMLC|x)), (8)

where W TRP ∈ R2d×d is a linear projection ma-
trix.

Given the hidden states of the decoder zdec and
last hidden state of the encoder henc

ctx , we use a
feedforward network to predict the sequence of
types and relations:

P (yTRP|x) =∏
t

softmax((hMLC)⊤FFN(henc
ctx ; z

dec
t )), (9)

where FFN(henc
ctx ; z

dec
t ) is the projection of the con-

catenation of the context representation and the
hidden state of the decoder at time step t.

4 Learning and Inference

4.1 KaFSP Training
Before training KaFSP, we use weak supervisions
(only the final answers) to obtain golden stan-
dard logical forms of questions in the training set
through BFS, following Guo et al. (2018).

In KaFSP, we have 6 subtasks: the encoder-
decoder subtask (DEC), the entity recognition sub-
task (ER), the filtering and permutation subtask
from LASAGNE (FP), the multi-label classifica-
tion subtask (MLC) described in Section 3.4, the
type and relation prediction subtask (TRP) and the
entity disambiguation subtask (ED). We a mixed
training strategy to train these subtasks. The first
5 subtasks are jointly trained in a multi-task learn-
ing way while the last subtask is separately trained.
Reasons for this strategy are twofold: 1) Entity
disambiguation is a relatively independent subtask
compared with other subtasks. 2) We fine-tune
a huge pre-trained language model XLNet (Yang
et al., 2019) on this subtask. Direct incorporation
of the fine-tuning procedure into multi-task learn-
ing may make it difficult for the entire model to
converge.

The joint loss J for the multi-task learning train-
ing is formulated as:

J =
∑
m∈M

γmLm, (10)

where M = {DEC,ER,FP,MLC,TRP} is the set
of subtasks and γs are the weights of these subtasks,
which are learned during training. In learning these
weights, we take into account the difference in
magnitude among the 5 losses according to the log
standard deviation (Kendall et al., 2018). LDEC,
LER, LFP and LTRP are the negative log-likelihood
losses of 4 subtasks, which are defined as follows:

LDEC = −
m∑
k=1

logP (yDEC
k |x),

LER = −
n∑

j=1

logP (yER
j |x),

LFP = −
n∑

j=1

logP (yFP
j |x),

LTRP = −
m∑

k=1,ydec
k ∈P

logP (yTRP
k |x),

(11)

where n and m are the length of the input utterance
x and the golden standard logical form, respec-
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tively. P is the set of placeholders for relations and
types. y∗ are ground-truth labels for corresponding
subtasks.

The loss for the multi-label classification LMLC

is a binary cross-entropy loss, defined as:

LMLC = −1

l

l∑
i=1

yMLC
i log(P (yMLC

i |x))

+ ȳi
MLC log(P (ȳi

MLC|x)),

(12)

where l is the size of T ∪ R, ȳMLC = 1 − yMLC,
yMLC is defined in Eq. (7).

The entity disambiguation is trained separately,
and its loss function is defined as:

LED =
∑
e∈Ex

yED
i log(P (yED

i |x))

+ ȳi
ED log(P (ȳi

ED|x)),
(13)

where Ex is the set of entities that appear in x and
yED is defined in Eq. (6).

To train this subtask, we retrieve all entities that
are present in the current input from the knowl-
edge base. Note that we only construct 500,000
and 40,000 samples respectively for training and
validation of the entity disambiguation module.

4.2 Grammar-Guided Inference

The grammar defined in Table 1 is used to guide the
decoding step. The decoder generates a sequence
mixed with actions and placeholders. Placeholders
are instantiated with specific entities, types, rela-
tions, and numbers. The decoding process for a log-
ical form terminates when no nonterminals remain.
After decoding, we use a shift-reduce method to
check the logical form sequence and delete or cor-
rect wrong placeholders.

Once the BIO tags and entity types are identi-
fied, entity spans can be located from the input
utterance. We search from the inverted index con-
structed for the knowledge base for each predicted
entity span to obtain an entity candidate list. After
filtering the retrieved entity candidate list according
to the corresponding entity type, if there are still
multiple candidate entities, the entity disambigua-
tion module is activated to calculate the conditional
probability of each candidate entity. The candidate
entity with the highest probability is selected.

Finally, we use the relation and type prediction
results and disambiguated entities to instantiate the
placeholders to get final logical forms.

5 Experiments

We carried out experiments and analyses to validate
the effectiveness of the proposed KaFSP.

5.1 Experimental Settings

Dataset We evaluated the proposed model on
the CSQA dataset (Saha et al., 2018), a standard
dataset for complex sequential question answering.
The dataset is composed of 200K dialogues with
1.6M turns, and over 12.8M entities from Wikidata,
where 153K, 16K, and 28K dialogues are used for
training, verification, and test, respectively. The
questions cover a wide range of linguistic phenom-
ena, such as co-reference, ellipsis, and reasoning.

Evaluation Metrics We used the same evalua-
tion metrics as Saha et al. (2018). When answers
are composed of one or more entities, F1 score is
used as the evaluation metric. When answers are a
Boolean value or number, accuracy is used as the
metric. Following previous works (Guo et al., 2018;
Shen et al., 2019; Kacupaj et al., 2021), we also
calculated overall scores for all types of questions
under each evaluation metric.

Baselines We compared KaFSP against 5 state-
of-the-art baselines on the CSQA. The first baseline
is HRED+KVM (Saha et al., 2018), which com-
bines the HRED model with the key-value mem-
ory network. The other four baselines are D2A
(Guo et al., 2018), MaSP (Shen et al., 2019), KISP
(Thirukovalluru et al., 2021), LASAGNE (Kacu-
paj et al., 2021), which achieve state-of-the-art re-
sults on different types of questions on the CSQA
dataset. More details for model settings can be
found in Appendix A.

5.2 Results

Table 2 shows experiment results on the CSQA
dataset. Our model outperforms LASAGNE on all
types of questions and achieves new SOTA results
in 8 out of 10 question types. Additionally, our
model outperforms all previous baselines in terms
of "overall" results.

For question types that involve one or more
entities, namely Logical Reasoning (All), Simple
Question (Direct), and Verification (Boolean), the
improvements over LASAGNE on these question
types are 3.14%, 2.78%, and 1.29% respectively.
This is mainly because we have added a knowledge-
aware entity disambiguation module to improve the
accuracy of entity linking.
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Method HRED-KVM D2A MaSP KISP LASAGNE KaFSP ∆
# Params - - 15M 160M 14.7M 133.7M

Question Type F1 score
Overall 9.39% 66.70% 79.26% 83.01% 82.91% 85.33% +2.42%

Clarification 16.35% 35.53% 80.79% 76.33% 69.46% 81.37% +11.91%
Comparative Reasoning (All) 2.96% 45.85% 68.90% 67.83% 69.77% 86.00% +16.23%

Logical Reasoning (All) 8.33% 67.31% 69.04% 87.14% 89.83% 92.97% +3.14%
Quantitative Reasoning (All) 0.96% 56.41% 73.75% 77.52% 86.67% 93.74% +7.07%

Simple Question (Co-referenced) 7.26% 57.69% 76.47% 79.66% 79.06% 79.61% +0.55%
Simple Question (Direct) 13.64% 78.42% 85.18% 87.68% 87.95% 90.73% +2.78%

Simple Question (Ellipsis) 9.95% 81.14% 83.73% 86.06% 80.09% 81.75% +1.66%
Question Type Accuracy

Overall 14.95% 37.33% 45.56% 46.22% 64.34% 69.32% +4.98%
Verification (Boolean) 21.04% 45.05% 60.63% 72.72% 78.86% 80.15% +1.29%

Quantitative Reasoning (Count) 12.13% 40.94% 43.39% 50.92% 55.18% 61.23% +6.05%
Comparative Reasoning (Count) 8.67% 17.78% 22.26% 27.32% 53.34% 72.79% +19.45%

Table 2: Comparison results against 5 baselines on CSQA. The last column shows the absolute improvements of
our model over LASAGNE.

For question types Clarification, Comparative
Reasoning (All), and Comparative Reasoning
(Count), they usually involve multiple entity types
and relations. KaFSP achieves huge improvements
of 11.91%, 16.23%, and 19.45% on these question
types over LASAGNE. This is mainly due to fuzzy
comparison rules in the new grammar system and
the proposed knowledge-aware type and relation
prediction module. The module benefits from the
multi-label classification with a single classifier
that not only helps to capture correlations between
entity types and relations but also pinpoints and
incorporates only relevant information from the
knowledge base into relation and type prediction,
which makes the predictions of types and relations
more accurate.

Our model does not outperform previous SOTA
results on only 2 question types, i.e., Simple Ques-
tion (Co-referenced) and Simple Question (Ellip-
sis). Although KaFSP is lower than KISP on these
two question types, it is 0.55% and 1.66% higher
than LASAGNE. We conjecture that the reasons
for being not superior to KISP on these question
types are twofold. First, spurious logical forms
may have a negative impact on the decoder when it
is trained on data indeed with false logical forms.
Second, in conversational QA, not only entities but
also entity relations can be omitted in questions.
For example, "How many people acted as an influ-
ence on Thomas Aquinas? And also tell me about
Walt Whitman?". In KaFSP, we replace the real ID
of an omitted entity with "previous-entity". How-
ever, this strategy is not used for omitted relations
when producing logic forms, which may have neg-

Methods KaFSP w/o Fuzzy w/o ED w/o MLC
Question Type F1 score
Clarification 81.37% 69.96% 79.44% 79.17%
Comparative 86.00% 70.55% 85.88% 85.65%

Logical 92.97% - 90.03% 89.60%
Quantitative 93.74% 86.64% - 93.32%

Simple(Coref) 79.61% - 77.94% 77.28%
Simple(Direct) 90.73% - 88.13% 88.19%

Simple(Ellipsis) 81.75% - 80.34% 79.05%
Question Type Accuracy

Verification 80.15% - 78.15% 79.02%
Quantitative 61.23% 57.74% 59.36% 59.46%
Comparative 72.79% 54.55% 72.39% 71.93%

Table 3: Ablation Study. "-" means the result is the
same as KaFSP.

ative impacts on the two question types mentioned
above.

Furthermore, although KaFSP increases the num-
ber of parameters, most added parameters are from
the pretrained XLNet (base) model included for
entity disambiguation. This does not have a big
impact on the inference speed of KaFSP compared
to LASAGNE.

5.3 Ablation Study

Table 3 summarizes experiment results of ablation
study on our major contributions: fuzzy grammar,
the knowledge-aware entity disambiguation mod-
ule, and the multi-label classification framework.
We observe that all three key components make
substantial contributions to our proposed model.

For the ablation study on the entity disambigua-
tion module, we compared KaFSP against "w/o
ED" that directly selects the first entity from the
ordered candidate list retrieved from the knowledge
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Question Type Disamb. Total Perc.
Total 38, 023 272, 060 13.98%

Clarification 1, 403 12, 121 11.57%
Comparative 1, 540 15, 284 10.08%

Logical 4, 982 22, 466 22.18%
Quantitative 0 9, 253 0%

Simple (Coref) 5, 061 54, 854 9.23%
Simple (Direct) 11, 570 81, 994 14.11%

Simple (Ellipsis) 1, 466 10, 045 14.59%
Verification 5, 961 26, 728 22.30%

Quantitative (Cnt) 4, 495 24, 281 18.51%
Comparative (Cnt) 1, 545 15, 034 10.28%

Table 4: The number of entities in different types of
questions, the number and percentage of entities disam-
biguated by the proposed entity disambiguation module.

base as the disambiguated entity. When ED module
isn’t used, candidate entities are sorted lexicograph-
ically by their IDs. This was done to be consistent
with previous approaches in our baselines. We find
that for all types of questions, the application of
the proposed knowledge-aware ED improves the
results to various degrees. This is because entity
ambiguity is present in a wide range of questions.
For Simple Question (Direct) questions, our further
analysis shows that 14.11% of entities are updated
by our knowledge-aware ED, which leads to an
improvement of 2.60%. Both natural language
questions and the knowledge base contain infor-
mation that can be used to disambiguate entities.
The proposed knowledge-aware ED incorporates
both types of information for disambiguation.

Table 4 shows the total number of entities, the
total number of disambiguated entities, and their
proportions in the logical forms of different types
of questions. It can be seen that overall, the disam-
biguated entities account for 13.98%. For Logical
Reasoning and Verification questions where the
proportion of disambiguated entities is relatively
high, correspondingly, the improvements achieved
by adding the entity disambiguation module is high.
This further validates the effectiveness of the pro-
posed entity disambiguation module.

Similarly, our ablation study validates the ef-
fectiveness of both the fuzzy grammar and the
knowledge-aware multi-label classification (case
study on the multi-label classification can be found
in Appendix B).

5.4 Error Analysis

For error analysis, we randomly sampled 100 in-
correct predictions and summarized the following

two types of typical errors:

Entity Ambiguity (54%) Although our entity
disambiguation model can achieve a prediction ac-
curacy of 95.16%, ambiguous entities still exist
in some questions. Take the question "What lead
to the death of Jerry Stephenson?" as an exam-
ple. Both entity Q6184489 and Q100927364 are
found in the knowledge base, which matches the
surface form "Jerry Stephenson". However, it is
difficult to determine whether the real entity in the
question is Q100927364 (college basketball player
(1971–1971) Austin Peay) or Q6184489 (Ameri-
can baseball player) with only information of three
triples and insufficient context.

Spurious Logical Forms (6%) Similar to previ-
ous works (Shen et al., 2019; Kacupaj et al., 2021),
we find that our model can infer correct answers
even with wrong "ground-truth" logical forms gen-
erated with the algorithm taken from previous work
(Guo et al., 2018). This will affect the overall per-
formance of the model. Such a phenomenon is es-
pecially common in complex reasoning questions.

6 Conclusion

In this paper, we have presented a knowledge-
aware fuzzy semantic parsing framework KaFSP
for conversational question answering over a large-
scale knowledge base. KaFSP defines fuzzy com-
parison actions in grammar based on the fuzzy set
theory to cover approximately comparative reason-
ing. In addition to this, we propose two knowledge-
aware components in KaFSP to incorporate infor-
mation from the knowledge base for entity disam-
biguation and entity type & relation prediction. Ex-
periment results demonstrate that KaFSP is sub-
stantially better than all previous state-of-the-art
models, setting new SOTA results on 8 out of 10
question types on the CSQA dataset and achieving
over 90% F1 or accuracy in 3 question types for
the first time.
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Hyper-parameters value
epochs 16

batch size 50
dropout ratio 0.1
learning rate 0.001
warmup steps 4000

optumizer Adam
β1 0.9
β2 0.999
ϵ 1e-09

model dimension 300
word embeddings GloVe

non-linear activation LeakyReLU
GAT input dimension 3072
GAT node dimension 300

GAT pre-trained embeddings BERT
λ for the fuzzy set A 0.85

b for the membership function µ(x) 1
c for the membership function µ(x)

√
51a
20

Table 5: Hyper-parameters for KaFSP.

A Hyperparamters and Module
Configurations

Table 5 summarizes the hyperparameters used in
the KaFSP framework. For the Transformer mod-
ule, we used the standard configurations from
Vaswani et al. (2017). Following the setting for
Transformer base, we used residual dropout (Sri-
vastava et al., 2014) in the summation of word
embeddings and positional encodings in both the
encoder and decoder with a rate of 0.1.

B Case Study on the Multi-Label
Classification

We sample 12 questions and list the ground-truth la-
bels (i.e., entity types and relations) corresponding
to each question in Table 6. Through the proposed
knowledge-aware multi-label classification module,
we get the probabilities of different labels for each
question, which are visualized in Figure 2.

We observe that the knowledge-aware multi-
label classification module can effectively recog-
nize entity types and relations in the questions.
Take Question 10 and 11 as examples. Both ques-
tions contain type T2 and relation R1, while Ques-
tion 11 has another relation R4. In Figure 2, we
observe that this module can recognize these types
and relations correctly. Applying the proposed
multi-label classification module to the type and
relation prediction module will hence effectively
filter information irrelevant to the current question

R0 R1 R2 R3 R4 R5 R6 R7 R8 T0 T1 T2 T3 T4 T5

0
1

2
3

4
5

6
7

8
9

10
11 0.0

0.2

0.4

0.6

0.8

Figure 2: MLC probabilities of entity types and rela-
tions on sampled 12 questions. We represent questions
with their IDs, and use T* and R* to represent Q* and
P* which are the real IDs of the entity types and the re-
lations in the Wikidata. Original questions with ground-
truth entity types and relations are shown in Table 6.

and help the model make better predictions.
We also find that some questions have a higher

probability on a very small number of irrelevant
labels. However, as the number of labels in KBs
is large, having a high probability of only a few
irrelevant labels will not greatly affect the results
of the entire model.

472



ID Question Ground-truth Labels

0
Which administrative territories have diplomatic relationships
with Greece and do Eliyahu Sasson belong to ?

P27 (R4), P530 (R5),
Q15617994 (T2)

1
Which administrative territories are the countries of
citizenship of Alfred Haighton or Thom Vink ?

P27 (R4),
Q15617994 (T2)

2
Which administrative territories are the places of
birth of Alfred Haighton or Dougie Bell ?

P19 (R2),
Q56061 (T4)

3
Which administrative territories were Argo Arbeiter or
Vera Hrochova born ?

P19 (R2),
Q56061 (T4)

4
Which nucleic acid sequences are the species that have
Pusl1 or SGCZ as their orthologous gene ?

P684 (R7),
Q863908 (T5)

5
Which special fields are the medical specalities concerned
with infectious disease or Borderline tuberculoid leprosy ?

P1995 (R3),
Q1047113 (T0)

6
Which administrative territories are the countries
of citizenship of Dinei or Jurgen Beck ?

P27 (R4),
Q15617994 (T2)

7
Which occupations do Margaret Cavendish, Duchess of
Newcastle-upon-Tyne and Jonathan Mayhew do for a living ?

P106 (R0),
Q12737077 (T1)

8
Which nucleic acid sequences genes encode inorganic
polyphosphate/ATP-NAD kinase CBU_1296 or formate
dehydrogenase-specific chaperone VP1511 ?

P702 (R8),
Q863908 (T5)

9
Which nutrients are involved in metabolic process and
phosphorylation ?

P682 (R6),
Q181394 (T3)

10
Which administrative territories are 1980 Winter
Olympics or Ha Tien, Kien Giang present in ?

P17 (R1),
Q15617994 (T2)

11
Which administrative territories are 1980 Winter Olympics
a part of or are the native countriesof Dale M. Cochran ?

P17 (R1), P27 (R4),
Q15617994 (T2)

Table 6: Sample questions, IDs, and their ground-truth labels (entity types and relations).
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