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Abstract

Recently, various response generation models
for two-party conversations have achieved
impressive improvements, but less effort has
been paid to multi-party conversations (MPCs)
which are more practical and complicated.
Compared with a two-party conversation
where a dialogue context is a sequence of
utterances, building a response generation
model for MPCs is more challenging, since
there exist complicated context structures
and the generated responses heavily rely
on both interlocutors (i.e., speaker and
addressee) and history utterances. To address
these challenges, we present HeterMPC, a
heterogeneous graph-based neural network for
response generation in MPCs which models
the semantics of utterances and interlocutors
simultaneously with two types of nodes
in a graph. Besides, we also design six
types of meta relations with node-edge-type-
dependent parameters to characterize the
heterogeneous interactions within the graph.
Through multi-hop updating, HeterMPC can
adequately utilize the structural knowledge
of conversations for response generation.
Experimental results on the Ubuntu Internet
Relay Chat (IRC) channel benchmark show
that HeterMPC outperforms various baseline
models for response generation in MPCs.

1 Introduction

Enabling dialogue systems to converse naturally
with humans is a challenging yet intriguing prob-
lem of artificial intelligence and has attracted
increasing attention due to its promising potentials
and alluring commercial values (Kepuska and
Bohouta, 2018; Berdasco et al., 2019; Zhou et al.,
2020). A large number of researchers have focused
on building dialogue generation models with var-
ious neural networks. At first, researchers mostly
*Work done during the internship at Microsoft.
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Figure 1: Illustration of a graphical information flow
in an MPC. Pink rectangles denote utterances and blue
circles denote interlocutors. Each solid line represents
the “replied-by" relationship between two utterances.
Each dashed line indicates the speaker of an utterance.

focused on dialogues between two participants
(Shang et al., 2015; Serban et al., 2016; Wen et al.,
2017; Young et al., 2018). Recently, researchers
have paid more attention to a more practical and
challenging scenario involving more than two
participants, which is well known as multi-party
conversations (MPCs) (Ouchi and Tsuboi, 2016;
Zhang et al., 2018; Le et al., 2019; Hu et al., 2019b;
Wang et al., 2020b; Gu et al., 2021). Utterances
in a two-party conversation are posted one by one
between two interlocutors, constituting a sequential
information flow. Different from that, utterances
in an MPC can be spoken by anyone and address
anyone else in this conversation, which constitutes
a graphical information flow as shown in Figure 1.

Although sequence-to-sequence (Seq2Seq) mod-
els (Sutskever et al., 2014; Serban et al., 2016) are
effective at modeling sequential dialogues, they
fall short of modeling graph-structured ones. To
overcome this drawback, Hu et al. (2019b) first
proposed a graph-structured network (GSN) to
encode utterances based on the graph topology
rather than the sequence of their appearances.
The graph established in GSN was homogeneous,
where nodes represented only utterances. How-
ever, interlocutors are also important components
of MPCs. There exist complicated interactions
between interlocutors, and between an utterance
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and an interlocutor. Furthermore, when passing
messages over a graph, a bidirectional information
flow algorithm was designed for GSN. Since
both the forward and backward information flows
employed the same model structure and parame-
ters, this algorithm cannot distinguish the “reply"
or “replied-by" relations between two connected
utterance nodes. Also, information flows along
both directions are independently propagated, so
that a graph node cannot be jointly updated at a
single propagation step.

On account of above issues, we propose a hetero-
geneous graph-based neural network for response
generation in MPCs, named HeterMPC. First, a
heterogeneous graph is designed which employs
two types of nodes to represent utterances and
interlocutors respectively. Different from previous
methods that built a homogeneous graph modeling
only utterances, utterances and interlocutors are
modeled simultaneously in HeterMPC, so that
the complicated interactions between interlocutors,
between utterances, and between an interlocutor
and an utterance can be explicitly described. In
order to characterize the heterogeneous attention
over each (source, edge, target) triple, model
parameters dependent on both types of nodes and
edges are introduced when calculating attention
weights and passing messages. Specifically, we
introduce six types of meta relations for modeling
different edges including “reply” and “replied-
by” between two utterances, “speak” and “spoken-
by” between an utterance and a speaker, and
“address” and “addressed-by” between an utterance
and an addressee. With these node-edge-type-
dependent structures and parameters, HeterMPC
can better utilize the structural knowledge of
conversations for node representation and response
generation than conventional homogeneous graphs.
Finally, Transformer is employed as the backbone
of HeterMPC and its model parameters can be
initialized with PLMs to take advantage of the
recent breakthrough on pre-training.

We evaluate HeterMPC on the Ubuntu Internet
Relay Chat (IRC) channel benchmark released by
Hu et al. (2019b). Experimental results show that
HeterMPC outperforms GSN (Hu et al., 2019b),
GPT-2 (Radford et al., 2019), BERT (Devlin et al.,
2019) and BART (Lewis et al., 2020) by significant
margins in terms of both automated and human
evaluation metrics, achieving a new state-of-the-art
performance for response generation in MPCs.

In summary, our contributions in this paper are
three-fold: 1) To the best of our knowledge, this
paper is the first exploration of using heteroge-
neous graphs for modeling conversations; 2) A
Transformer-based heterogeneous graph architec-
ture is introduced for response generation in MPCs,
in which two types of nodes, six types of meta re-
lations, and node-edge-type-dependent parameters
are employed to characterize the heterogeneous
properties of MPCs; 3) Experimental results show
that our proposed model achieves a new state-
of-the-art performance of response generation in
MPCs on the Ubuntu IRC benchmark.

2 Related Work

Multi-Party Conversation Existing methods on
building dialogue systems can be generally catego-
rized into generation-based (Shang et al., 2015;
Serban et al.,, 2016; Wen et al.,, 2017; Young
et al., 2018; Zhang et al., 2020) or retrieval-based
approaches (Lowe et al., 2015; Wu et al., 2017;
Zhou et al., 2018; Tao et al., 2019a,b; Gu et al.,
2019, 2020). In this paper, we study the task of
response generation in MPCs, where in addition
to utterances, interlocutors are also important
components who play the roles of speakers or
addressees. Previous methods have explored
retrieval-based approaches for MPCs. For example,
Ouchi and Tsuboi (2016) proposed the dynamic
model which updated speaker embeddings with
conversation streams. Zhang et al. (2018) proposed
speaker interaction RNN which updated speaker
embeddings role-sensitively. Wang et al. (2020b)
proposed to track the dynamic topic in a conver-
sation. Gu et al. (2021) proposed jointly learning
“who says what to whom" in a unified framework by
designing self-supervised tasks during pre-training.
On the other hand, Hu et al. (2019b) explored
generation-based approaches by proposing a graph-
structured network, the core of which was an
utterance-level graph-structured encoder.

Heterogeneous Graph Neural Network Early
studies on graph neural networks (GNNs) focused
on homogeneous graphs where a whole graph is
composed of a single type of nodes. However,
graphs in real-world applications usually come
with multiple types of nodes, namely heteroge-
neous information networks (HINs) or heteroge-
neous graphs (Sun and Han, 2012). Recently,
researchers have attempted to extend GNNs to
model heterogeneity. For example, Zhang et al.
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(2019) adopted different RNNs for different types
of nodes to integrate multi-modal features. Wang
et al. (2019) extended graph attention networks by
maintaining different weights for different meta-
path-defined edges. Hu et al. (2020) proposed
heterogeneous graph Transformer (HGT) to model
heterogeneity by maintaining dedicated representa-
tions for different types of nodes and edges. In
addition, heterogeneous graphs have also been
applied to many NLP tasks, such as multi-hop
reading comprehension (Tu et al., 2019), text
classification (Hu et al., 2019a) and document
summarization (Wang et al., 2020a).

Previous studies have verified the superiority of
modeling MPCs with homogeneous graphs consid-
ering only utterances. We claim that it is indeed
necessary to model a complex information flow
in MPCs shown in Figure 1 with a heterogeneous
graph, since a homogeneous one cannot explicitly
model the relationships of multiple utterances
spoken by or addressing an interlocutor. Nowadays,
HINs have been widely used in many NLP tasks.
To the best of our knowledge, this paper makes
the first attempt to build a heterogeneous graph-
based neural network considering utterances and
interlocutors simultaneously for response gener-
ation in MPCs. In addition, we introduce many
task-specific modelings for MPCs such as graph
construction and node updating which will be
elaborated in the model section.

3 Problem Formulation

The task of response generation in MPCs is to
generate an appropriate response i given the
conversation history, the speaker of a response, and
which utterance the response is going to reply to,
which can be formulated as:

7 =argmax logP(r|G)

I (1)
= argmax Z logP(r|Gr<y).
" k=1

Here, G is a heterogeneous graph containing
both history conversation and the response to be
generated. The speaker and addressee of the
response are known and its contents are masked.
The response tokens are generated in an auto-
regressive way. 71 and 7. stand for the k-th
token and the first (k — 1) tokens of response r
respectively. |r| is the length of 7.

== 7l : Interlocutor
} : Utterance
! — :Replied-by
< ——3 —-——> :Reply
: Speak
: Spoken-by
T —— :Addressed-by
-——> :Address

Figure 2: Illustration of the two types of nodes and six
types of edges in a heterogeneous conversation graph.
This example demonstrates that I; speaks U, replying
U,,, that is spoken-by I;.

We will introduce how to construct the graph
and how to model the probability in Eq. (1) given
the built graph in the next section.

4 HeterMPC Model

HeterMPC adopts an encoder-decoder architecture
consisting of stacked encoder and decoder layers
for graph-to-sequence learning (Yao et al., 2020).
The graph encoder is designed to capture conver-
sation structures and output the representations of
all nodes in a graph that are fed to the decoder for
response generation.

4.1 Graph Construction

A heterogeneous graph is constructed to explic-
itly model the complicated interactions between
interlocutors, between utterances, and between an
interlocutor and an utterance in an MPC. This graph
models utterances and interlocutors by consider-
ing them as two types of nodes under a unified
framework. Given an MPC instance composed of
M utterances and [ interlocutors, a heterogeneous
graph G(V,E) is constructed. Specifically, V is a
set of M + I nodes. Each node denotes either an
utterance or an interlocutor. E = {equ}%;;ll isa
set of directed edges. Each edge ¢, , describes the
connection from node p to node q.

Inspired by Sun et al. (2011, 2012), we introduce
six types of meta relations {reply, replied-by, speak,
spoken-by, address, addressed-by} to describe
the directed edge between two graph nodes as
illustrated in Figure 2. Specifically, if an utterance
represented by node n replies another utterance
represented by node m, the edge e, ,, = reply
and the reversed edge e, , = replied-by. If an
utterance represented by node m is spoken by an
interlocutor represented by node i, €;,, = speak
and e, ; = spoken-by. If an utterance represented
by node n addresses an interlocutor represented by
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(a) Update of an utterance node

(b) Update of an interlocutor node
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Figure 3: Model architecture of HeterMPC for (a) update of an utterance node and (b) update of an interlocutor
node. “UTR" and “ITR" are abbreviations of “utterance" and “interlocutor”" respectively. The set of W} denotes

the node-edge-type-dependent parameters.

node i, e,; = address and e;, = addressed-by.
In other cases, e, ; = NULL indicating that there
is no connection between these two nodes. Note
that it is necessary to distinguish the bidirectional
edges between every two nodes that indicate the
active and passive tense information respectively.

4.2 Node Initialization

In HeterMPC, each node is represented as a vec-
tor. These vectors are first initialized individually
without considering graph edges.

Utterances When encoding utterances, a [CLS]

token is inserted at the start of each utterance,
denoting the utterance-level representation. Be-
sides, a [SEP] token is also inserted at the end
of each utterance (Devlin et al., 2019). Then each
utterance is encoded individually by stacked Trans-
former encoder layers through the self-attention
mechanism to derive the contextualized utterance
representations.! The output of a Transformer
encoder layer is used as the input of the next layer.
Readers can refer to Vaswani et al. (2017) for
details of Transformer. Formally, the calculation
for an utterance at the /-th Transformer layer is
denoted as:

H ! )
"In our experiments, BERT or BART was selected to
initialize the utterance encoder layers of HeterMPC. Then,
the built HeterMPC models were compared with the baseline
models directly finetuning BERT or BART, respectively. It is
worth noting that the utterance encoder layers of HeterMPC
can also be initialized by other types of PLMs, and the
comparison across PLMs is not the focus of this paper.

= TransformerEncoder(HY,),

where m € {1,..,M}, | € {0,..,L; — 1},
L; denotes the number of Transformer layers for
initialization, an € RFmxd [ denotes the
length of an utterance and d denotes the dimension
of embedding vectors.

Interlocutors Different from an utterance com-
posed of a sequence of tokens, an interlocutor
is directly represented with an embedding vector.
Interlocutors in a conversation are indexed accord-
ing to their speaking order and the embedding
vector for each interlocutor is derived by looking up
an order-based interlocutor embedding table (Gu
et al., 2020) that is updated during end-to-end
learning. The first interlocutors in all conversation
sessions share the same embedding vector in the
interlocutor embedding table, so do all the second
interlocutors.? Thus, this order-based embedding
table can be shared across the training, validation
and testing sets, and there is no need to estimate an
embedding vector for each specific interlocutor in
the dataset.

4.3 Node Updating

As shown in Figure 3, the initialized node repre-
sentations are updated by feeding them into the
built graph for absorbing context information (Kipf
and Welling, 2017; Velickovic et al., 2018; Yun

*In our experiments, the maximum interlocutor number
was set to 10 and an embedding table sized 10*768 was
learned during training. We did study initializing the
embedding vector of an interlocutor node by averaging the
representations of all utterance nodes it speaks, but no further
improvement can be achieved.
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et al., 2019). We calculate heterogeneous atten-
tion weights between connected nodes and pass
messages over the graph in a node-edge-type-
dependent manner, inspired by introducing param-
eters to maximize feature distribution differences
for modeling heterogeneity (Schlichtkrull et al.,
2018; Wang et al., 2019; Zhang et al., 2019; Hu
et al., 2020). After collecting the information from
all source nodes to a target node, a node-type-
dependent feed-forward network (FFN) followed
by a residual connection (He et al., 2016) is em-
ployed to aggregate the information. Then, in order
to let each token in an utterance have access to the
information from other utterances, an additional
Transformer layer is placed for utterance nodes
specifically. Ly denotes the number of iterations
for updating both utterance and interlocutor nodes.

4.3.1 Heterogeneous Attention

Since the representations of two types of nodes are
initialized in different ways, node-type-dependent
linear transformations are first applied to node
representations before attention calculation so that
the two types of nodes share similar feature distri-
butions (Wang et al., 2019; Hu et al., 2020). Mean-
while, each of the six relation types is assigned
a separate linear projection so that the semantic
relationship between two connected nodes can be
accurately described when calculating attention
weights. The forward and backward information
flows between them can also be distinguished.

Formally, let the triple (s, e, ) denote an edge e
connecting a source node s to a target node ¢. The
representations of the source and target nodes at the
I-th iteration® are denoted as b, and h!, serving as
a key (K) vector and a query (QQ) vector of attention
calculation respectively. Then, the heterogeneous
attention weight w!(s, e,t) before normalization
for this triple is calculated as:

k'(s) = hiW ] + bl ), 3)
Ly — plaa/@ Q
q(t) =W, +b5, “)

T/"Les,t
Vd -

Here, 7(s),7(t) € {UTR, ITR} distinguish utter-
ance (UTR) and interlocutor (ITR) nodes. Egs. (3)
and (4) are node-type-dependent linear transfor-
mations. Eq. (5) contains an edge-type-dependent
linear projection We‘:‘fT where fie, , is an adaptive

wl(s, e, t) = kl(s)WATqu(t) 5)

€s,t

3For an utterance, the representation for the [CLS] token
is extracted as the utterance-level representation.

factor scaling to the attention. All W* € R4*d
and b* € R? are parameters to be learnt.

4.3.2 Heterogeneous Message Passing

When passing the message of a source node
that serves as a value (V) vector to a target
node, node-edge-type-dependent parameters are
also introduced considering the heterogeneous
properties of nodes and edges. Mathematically:

v(s) = RyW,) + b, (©)
Bl (s) = vl (s) WMC, (7

€s,t
where @' (s) is the passed message and all W* ¢
R?*? and b* € R? are parameters to be learnt.

4.3.3 Heterogeneous Aggregation

For a target node, the messages passed from all
its connected source nodes need to be aggregated.
A softmax function is applied to normalize the
attention weights and then the messages from all
source codes are summarized as:

I_sz: Z softmax(w!(s, e, 1))@ (s),  (8)
s€S(t)

where S(t) denotes the set of source nodes for the
target node ¢. Then the summarized message h!
is aggregated with the original node representation
h! using a node-type-dependent FEN followed by
a residual connection (He et al., 2016) as:

ht! = FFN, ) (hy) + hy, ©)

where the output hiﬂ is used as the input of the
next iteration of node updating. One iteration can
be viewed as a single-step information propagation
along edges. When stacking L5 iterations, a node
can attend to other nodes up to Lo hops away.

A specific consideration on utterance nodes is
that the tokens except [CLS] in an utterance
have no access to other utterances during the
node updating process introduced above. To
overcome this disadvantage and derive more con-
textualized utterance representations, an additional
Transformer layer (Vaswani et al., 2017) is further
placed for utterance nodes as shown in Figure 3. In
detail, at the [-th iteration, the representations of an
utterance node before and after node updating, i.e.,
h! and h'*!, are concatenated and then compressed
by a linear transformation as:

R = (bl R Weom + beom,  (10)
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Figure 4: The decoder architecture of HeterMPC.

where W,,,, € R2¥%d and b, € R? are
parameters. Then, fzi“ replaces the representation
of [CLS] (i.e., h,lf) in the sequence representations
of the whole utterance. Finally, the updated
sequence representations are fed into the addi-
tional Transformer layer for another round of
intra-utterance self-attention, so that the context
information learnt by the [CLS] representation
can be shared with other tokens in the utterance.

4.4 Decoder

The decoder is composed of a stack of identical
layers as shown in Figure 4. We follow the standard
implementation of Transformer decoder to generate
responses. In each decoder layer, a masked self-
attention operation is first performed where each
token cannot attend to future tokens to avoid in-
formation leakage. Furthermore, a cross-attention
operation over the node representations of the
graph encoder output is performed to incorporate
graph information for decoding. It is notable that a
residual connection along with layer normalization
is followed by each attention operation.

5 Experiments

5.1 Datasets

We evaluated our proposed method on the Ubuntu
IRC benchmark used in Hu et al. (2019b). The data
processing script provided by Hu et al. (2019b)
was employed to derive the dataset.* In this dataset,
both speaker and addressee labels were included
for each utterance in a session. When testing, the

“We contacted the authors of Hu et al. (2019b) to obtain
the data processing script. As they claimed, it was an updated
version which was a little different from that used in their
paper. Thus, we re-implemented all baselines on this updated
dataset to ensure fair comparison.

speaker and addressee information was both given
for response generation, i.e., the system knew who
would speak next and which utterance should be
responded to following the graph structure. It
contained 311,725/5,000/5,000 dialogues in the
training/validation/testing sets respectively.

5.2 Baseline Models

We compared our proposed methods with as many
MPC models as possible. Considering that there
are only a few research papers in this field, sev-
eral recent advanced models were also adapted
to provide sufficient comparisons. Finally, we
compared with the following baseline models: (1)
RNN-based Seq2Seq (Sutskever et al., 2014) took
all utterances except the target utterance to generate
as input, which were sorted according to their
posting time and concatenated. Thus, structured
conversations were converted into sequential ones.
Seq2Seq modeling with attention was performed
as that in Sutskever et al. (2014); Bahdanau et al.
(2015) on the concatenated utterances. (2) Trans-
former (Vaswani et al., 2017) took the same input
utterances as those used for the Seq2Seq model. (3)
GPT-2 (Radford et al., 2019) was a uni-directional
pre-trained language model. Following its original
concatenation operation, all context utterances and
the response were concatenated with a special
[SEP] token as input for encoding. (4) BERT
(Devlin et al., 2019) concatenated all context
utterances and the response similarly as those for
GPT-2. To adapt BERT for response generation, a
special masking mechanism was designed to avoid
response information leakage during encoding.
Concretely, each token in the context utterances
attended to all tokens in the context utterances,
while each token in the response cannot attend to
future tokens in the utterance. (5) GSN (Hu et al.,
2019b) achieved the state-of-the-art performance
on MPCs. The core of GSN was an utterance-
level graph-structured encoder. (6) BART (Lewis
et al., 2020) was a denoising autoencoder using a
standard Tranformer-based architecture, trained by
corrupting text with an arbitrary noising function
and learning to reconstruct the original text. In
our experiments, a concatenated context started
with <s> and separated with </s> were fed into the
encoder, and a response were fed into the decoder.

5.3 Evaluation Metrics

To ensure all experimental results were comparable,
we used the same automated and human evaluation
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W BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE;
Models

Seq2Seq (LSTM) (Sutskever et al., 2014) 7.71 2.46 1.12 0.64 3.33 8.68
Transformer (Vaswani et al., 2017) 7.89 2.75 1.34 0.74 3.81 9.20
GSN (Hu et al., 2019b) 10.23 3.57 1.70 0.97 4.10 9.91
GPT-2 (Radford et al., 2019) 10.37 3.60 1.66 0.93 4.01 9.53
BERT (Devlin et al., 2019) 10.90 3.85 1.69 0.89 4.18 9.80
HeterMPCpggrr 12.61 4.55 2.25 141 4.79 11.20
HeterMPCpggrr w/o. node types 11.76 4.09 1.87 1.12 4.50 10.73
HeterMPCpggrr w/o. edge types 12.02 4.27 2.10 1.30 4.74 10.92
HeterMPCpggrr w/o. node and edge types  11.60 3.98 1.90 1.18 4.20 10.63
HeterMPCpggrr w/o0. interlocutor nodes 11.80 3.96 1.75 1.00 4.31 10.53
BART (Lewis et al., 2020) 11.25 4.02 1.78 0.95 4.46 9.90
HeterMPCpgagr 12.26 4.80 2.42 1.49 4.94 11.20
HeterMPCpgarr w/0. node types 11.22 4.06 1.87 1.04 4.57 10.63
HeterMPCpagr W/0. edge types 11.52 4.27 2.05 1.24 478 10.90
HeterMPCpsgr w/0. node and edge types 10.90 3.90 1.79 1.01 4.52 10.79
HeterMPCpgagr W/0. interlocutor nodes 11.68 4.24 1.91 1.03 4.79 10.65

Table 1: Performance of HeterMPC and ablations on the test set in terms of automated evaluation. Numbers in
bold denote that the improvement over the best performing baseline is statistically significant (t-test with p-value

< 0.05).
Metrics
m Score Kappa
Human 2.81 0.55
GSN (Hu et al., 2019b) 2.00 0.50
BERT (Devlin et al., 2019) 2.19 042
BART (Lewis et al., 2020) 224 0.44
HeterMPCpgrr 2.39 0.50
HeterMPCpgagr 2.41 0.45

Table 2: Human evaluation results of HeterMPC and
some selected systems on a randomly sampled test set.

metrics as those used in previous work (Hu et al.,
2019b). Hu et al. (2019b) used the evaluation pack-
age released by Chen et al. (2015) including BLEU-
1 to BLEU-4, METEOR and ROUGE/,, which was
also used in this paper.’ Human evaluation was
conducted to measure the quality of the generated
responses in terms of three independent aspects: 1)
relevance, 2) fluency and 3) informativeness. Each
judge was asked to give three binary scores for a
response, which were further summed up to derive
the final score ranging from O to 3.

5.4 Training Details

Model parameters were initialized with pre-trained
weights of bert-base-uncased released by Wolf
et al. (2020). The AdamW method (Loshchilov

Shitps://github.com/tylin/coco-caption

and Hutter, 2019) was employed for optimization.
The learning rate was initialized as 6.25e-5 and
was decayed linearly down to 0. The max gradient
norm was clipped down to 1.0. The batch size
was set to 16 with 8 gradient accumulation steps.
The maximum utterance length was set to 50.
The number of layers for initializing utterance
representations L; was set to 9, and the number
of layers for heterogeneous graph iteration Lo was
set to 3. L1 and Ly were validated on the validation
set. The number of decoder layers L3 was set to 6,
achieving the best performance out of {2, 4, 6, 8}
on the validation set. The strategy of greedy search
was performed for decoding. The maximum length
of responses for generation was also set to 50. All
experiments were run on a single GeForce RTX
2080 Ti GPU. The maximum number of epochs
was set to 15, taking about 40 hours. The validation
set was used to select the best model for testing. All
code was implemented in the PyTorch framework®
and are published to help replicate our results. ’

5.5 Evaluation Results

In our experiments, BERT and BART were selected
to initialize HeterMPC. HeterMPCpgrrr denoted
that the utterance encoder was initialized with
BERT and the decoder was randomly initialized.
HeterMPCpgyrr denoted the encoder and decoder

®https://pytorch.org/
"https://github.com/Ixchtan/HeterMPC
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were initialized by those of BART respectively.

Automated Evaluation Table 1 presents
the evaluation results of HeterMPCgggrr,
HeterMPCpgsrr and previous methods on the
test set. Each model ran four times with identical
architectures and different random initializations,
and the best out of them was reported. We ran the
code released by Hu et al. (2019b) to reproduce the
results of GSN for a fair comparison.® The results
show that both HeterMPCpggrr and HeterMPCpgarr
outperformed all baselines in terms of all metrics.
HeterMPCpgggr outperformed GSN by 2.38%
BLEU-1 and 0.44% BLEU-4, and outperformed
GPT-2 by 2.24% BLEU-1 and 0.48% BLEU-4.
HeterMPCpgsrr outperformed GSN by 2.03%
BLEU-1 and 0.52% BLEU-4, and outperformed
GPT-2 by 1.89% BLEU-1 and 0.56% BLEU-4.
Furthermore, HeterMPCpgggr outperformed BERT
by 1.71% BLEU-1 and 0.52% BLEU-4, and
HeterMPCpgrr outperformed BART by 1.01%
BLEU-1 and 0.54% BLEU-4, illustrating the
importance of modeling MPC structures.

To further verify the effectiveness of our pro-
posed methods, ablation tests were conducted as
shown in Table 1. First, all nodes or edges were
considered equivalently by employing the same
linear transformations in Egs. (3) to (9) for all node
or edge types without distinguishing them. The
drop in performance illustrates the effectiveness
of the node-edge-type-dependent parameters. On
the other hand, interlocutor nodes were removed
out of a graph and only the meta relations of reply
and replied-by were left. The drop in performance
illustrates the importance of modeling interactions
between utterances and interlocutors, and the
effectiveness of the heterogeneous architecture.

Human Evaluation Table 2 presents the human
evaluation results on a randomly sampled test
set. 200 samples were evaluated and the order of
evaluation systems were shuffled. Three graduate
students were asked to score from 0 to 3 (3 for
the best) and the average scores were reported.
The Fleiss’s kappa value (Fleiss, 1971) for each
model was also reported, indicating the inter-judge
moderate agreement during evaluation. It can
be seen that HeterMPCpgrrr and HeterMPCgarr
achieved higher subjective quality scores than the
baselines. Their kappa values were also higher than
the BERT and BART baselines, respectively.

8https://github.com/morning-dews/GSN-Dialogues

13

12
~ 11
-]
w
-
@ 10
9
8
1 2 3 4
Number of iterations (L)
Figure 5: Performance of HeterMPCpggrr under

different numbers of iterations (L) on the test set.

2.0
—e— HeterMPCggrr
—»— BERT
1.62
1.5
- 41 1.34
>
W 1.16
m
1.0 89
0.76
0.5
5 7 9

Maximum conversation length

Figure 6: Performance of BERT and HeterMPCpgggy on
test samples with different session lengths.

5.6 Analysis

The impact of numbers of iterations (Lo).
Figure 5 illustrates how the performance of
HeterMPCpgggr changed with respect to different
numbers of iterations (Lo) on the test set. It can
be seen that the performance of HeterMPCpggrr
was significantly improved as Lo increased at
the beginning, which shows the effectiveness of
incorporating the contextual information between
nodes. Then, the performance was stable and
dropped slightly. The reason might be that models
begin to overfit due to a larger set of parameters.

The impact of conversation length. ° Figure 6
illustrates how the performance of HeterMPCpggr
changed according to the test samples with differ-
ent session lengths. As the session length increased,
the performance of HeterMPCpggrr dropped less
than that of BERT, showing superiority of our
method on dealing with longer conversations.

°This experiment can also be considered as exploring the
impact of interlocutor number, since more context utterances
indicate that more interlocutors are involved implicitly.
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Utterance

Case 1

L1 geev: in gparted now? -
there is no such command in my
1.2 I.1
computer
open a terminal, type: sudo apt-get
install gparted
after: gparted aksks for your pw,
opens a gui
1.2 ok if found fail i will contact you L1
does it say “to install type sudo apt-
get install gparted”? (Human)
do you have remote access to remote
desktop? (GSN)
ok, i will try that. (BERT)
you can use the command “sudoapt-
get install gparted” to install the
gparted livecd. (HeterMPCpggrr)
1’m not sure what you mean by “in
gparted” (BART)
you need to install gparted, it is a
gui tool (HeterMPCpgarr)
Case 2

got a bit of a mount problem. fstab
11 is still the same but the secondary )
’ harddrive shows as busy when doing
mount
you can see what is mounted with :
mount
I.1 yes it is not mounted 1.2
how would i check what module the
L3 I.2
cam uses?
Ismod less will show you te loaded
modules
Imount - t ext3 filepath fails cause
already mounted or busy
then try to mount it at command line
(Human)
i’m not sure how to do that (GSN)
1’'m not sure what the problem is
(BERT)
1.2 you need to mount it as a mount I.1
pOiIlt (HeterMPCpggrr)
1’m not sure what the problem is
(BART)
you need to check the filepath file
(HeterMPCBART)

Speaker | | Addressee

I.1 1.2

I1 1.2

L3 1.2

1.2 I.1

L2 L3

I1 1.2

Table 3: The response generation results of two test
samples. “L." is the abbreviation of “interlocutor". We
kept original texts without manual corrections.

Case Study. Case studies were conducted by
randomly sampling two MPC instances as shown
in Table 3. Given the conversation graph of
the first case, the response to generate addresses
1.2. Thus, the information relevant to 1.2 should
be collected. We can see that “gparted” in the
first utterance is two hops away from 1.2 (the
first utterance is replied by the second utterance
which is spoken by 1.2), and this word in the
fourth utterance and “install gparted” in the third
utterance are both one hop away from 1.2 (these

two utterances directly address 1.2). The responses
generated by HeterMPCpgrr and HeterMPCpagr
both contain these keywords, showing that it
can capture the conversation graph information
accurately and generate a human-like response.
However, due to the lack of the interlocutor
information and the conversation structure, GSN
generated an irrelevant response. BERT generated
a response which seems replying to the third
utterance. Although BART captured “gparted”,
it failed to handle the action “install”. In the
second case, we can see that the responses gen-
erated by GSN, BERT and BART are general and
useless while HeterMPCpggrr and HeterMPCpgarr
can still generate a suitable response. Due to the
complicated interactions between utterances and
interlocutors, the conversation flow might be led
by some unnecessary information, which shows
the importance of making models aware of the
conversation structure.

Robustness. The addressee labels are important
for constructing a graph used in HeterMPC. This
kind of label is commonly available in real life
such as “A@B” labels in group chatting, Twitter,
Reddit and various forums that denote speaker A
talking to addressee B. However, addressee labels
of a part of utterances are missing in the existing
MPC datasets since a speaker may forget to specify
an addressee. HeterMPC is robust since utterances
without addressee labels can be assigned with a
general addressee label “To all interlocutors”. We
leave evaluation on other datasets in future work.

6 Conclusion

We present HeterMPC to model complicated in-
teractions between utterances and interlocutors in
MPCs with a heterogeneous graph. Two types of
graph nodes and six types of edges are designed.
Node-edge-type-dependent parameters are intro-
duced for better utilizing the structural knowledge
of conversations during node updating. Results
show that HeterMPC outperforms baselines by
significant margins, achieving a new state-of-the-
art performance for response generation in MPCs
on the Ubuntu IRC benchmark. In the future, we
will explore better ways of maximizing feature
distribution differences to model heterogeneity.
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