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Abstract

There has been growing interest in parameter-
efficient methods to apply pre-trained lan-
guage models to downstream tasks. Build-
ing on the PROMPTTUNING approach of Lester
et al. (2021), which learns task-specific soft
prompts to condition a frozen pre-trained
model to perform different tasks, we propose a
novel prompt-based transfer learning approach
called SPOT: Soft Prompt Transfer. SPOT
first learns a prompt on one or more source
tasks and then uses it to initialize the prompt
for a target task. We show that SPOT sig-
nificantly boosts the performance of PROMPT-
TUNING across many tasks. More remarkably,
across all model sizes, SPOT matches or out-
performs standard MODELTUNING (which fine-
tunes all model parameters) on the SUPER-
GLUE benchmark, while using up to 27,000×
fewer task-specific parameters. To understand
where SPOT is most effective, we conduct a
large-scale study on task transferability with
26 NLP tasks in 160 combinations, and demon-
strate that many tasks can benefit each other
via prompt transfer. Finally, we propose an
efficient retrieval approach that interprets task
prompts as task embeddings to identify similar
tasks and predict the most transferable source
tasks for a novel target task.

1 Introduction

The past few years have seen the rapid develop-
ment of ever larger pre-trained language models,
where it has repeatedly been shown that scaling
up the model size is a key ingredient for achiev-
ing the best performance (Devlin et al., 2019; Raf-
fel et al., 2020; Brown et al., 2020). While this
trend has continued to push the boundaries of pos-
sibility across various NLP benchmarks, the sheer
size of these models presents a challenge for their
practical application. For 100B+ parameter mod-
els, fine-tuning and deploying a separate instance
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Figure 1: Our SPOT approach—which transfers a
prompt learned from a mixture of source tasks (here,
GLUE) onto target tasks—outperforms vanilla PROMT-
TUNING (Lester et al., 2021) and GPT-3 (Brown et al.,
2020) on SUPERGLUE by a large margin, matching or
outperforming MODELTUNING across all model sizes.
At the XXL model size, SPOT even outperforms MULTI-
TASKMODELTUNING, which fine-tunes the entire model
on the GLUE mixture before fine-tuning it on individ-
ual SUPERGLUE tasks. See Appendix A for full results.

of the model for each downstream task would be
prohibitively expensive. To get around the infeasi-
bility of fine-tuning, Brown et al. (2020) propose
PROMPTDESIGN, where every downstream task is
cast as a language modeling task and the frozen pre-
trained model performs different tasks by condition-
ing on manual text prompts provided at inference
time. They demonstrate impressive few-shot perfor-
mance with a single frozen GPT-3 model, although
its performance depends highly on the choice of the
prompt (Zhao et al., 2021) and still lags far behind
state-of-the-art fine-tuning results.

More recent work explores methods for learn-
ing soft prompts (Liu et al., 2021b; Qin and Eis-
ner, 2021; Li and Liang, 2021; Lester et al., 2021),
which can be seen as additional learnable parame-
ters injected into the language model. Lester et al.
(2021) propose PROMPTTUNING, a simple method
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Figure 2: An illustration of our generic (left) and targeted (right) SPOT approaches. Left: We learn a single
generic source prompt on one or more source tasks, which is then used to initialize the prompt for each target task.
Right: We learn separate prompts for various source tasks, saving early checkpoints as task embeddings and best
checkpoints as source prompts. These form the keys and values of our prompt library. Given a novel target task,
a user: (i) computes a task embedding, (ii) retrieves an optimal source prompt, and (iii) trains a target prompt,
initialized from the source prompt (see §3 for details).

that learns a small task-specific prompt (a sequence
of tunable tokens prepended to each example) for
each downstream task during adaptation to condi-
tion the frozen language model to perform the task.
Strikingly, as model capacity increases, PROMPT-

TUNING becomes competitive with MODELTUNING,
which fine-tunes the entire model on each down-
stream task. Nevertheless, at smaller model sizes
(below 11B parameters), there are still large gaps
between PROMPTTUNING and MODELTUNING.

In this paper, we propose SPOT: Soft Prompt
Transfer, a novel transfer learning approach in the
context of prompt tuning. SPOT first trains a prompt
on one or more source tasks, and then uses the re-
sulting prompt to initialize the prompt for a target
(downstream) task. Our experiments show that
SPOT offers significant improvements over PROMPT-

TUNING across tasks and model sizes. For instance,
on the SUPERGLUE benchmark (Wang et al., 2019b),
we obtain +10.1 and +2.4 point average accuracy
improvements using the T5 BASE (220M parame-
ter) and T5 XXL (11B parameter) models (Raffel
et al., 2020), respectively. More importantly, SPOT

is competitive with or outperforms MODELTUNING

across all model sizes (see Figure 1).

Motivated by these results, we investigate trans-
ferability between tasks, through the lens of soft
task prompts. Our goal is to answer two questions:
(a) For a given target task, when does initializing
the prompt from a source task boost performance?
(b) Can we use task prompts to efficiently predict
which source tasks will transfer well onto a novel
target task? To answer (a), we conduct a system-
atic study of the T5 model using 26 NLP tasks in
160 combinations of source and target tasks. Our
results indicate that many tasks can benefit each

other via prompt transfer. To address (b), we inter-
pret the learned task prompts as task embeddings to
construct a semantic space of tasks and formalize
the similarity between tasks. We design an efficient
retrieval algorithm that measures task embedding
similarity, allowing practitioners to identify source
tasks that will likely yield positive transfer.

To summarize, our main contributions are:
(1) We propose SPOT, a novel prompt-based trans-
fer learning approach, and show that scale is not
necessary for PROMPTTUNING to match the perfor-
mance of MODELTUNING; on SUPERGLUE, SPOT

matches or beats MODELTUNING across all model
sizes. (2) We conduct a large-scale and systematic
study on task transferability, demonstrating con-
ditions under which tasks can benefit each other
via prompt transfer. (3) We propose an efficient re-
trieval method that interprets task prompts as task
embeddings to construct a semantic space of tasks,
and measures task embedding similarity to identify
which tasks could benefit each other. (4) To fa-
cilitate future work on prompt-based learning, we
will release our library of task prompts and pre-
trained models, and provide practical recommenda-
tions for adapting our library to NLP practitioners
at https://github.com/google-research/

prompt-tuning/tree/main/prompt_tuning/

spot.

2 Improving PROMPTTUNING with SPOT

To improve performance of PROMPTTUNING on a
target task, SPOT introduces source prompt tuning,
an intermediate training stage between language
model pre-training and target prompt tuning (Fig-
ure 2, left), to learn a prompt on one or more source
tasks (while still keeping the base model frozen),
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which is then used to initialize the prompt for the
target task.1 Our approach retains all the compu-
tational benefits of PROMPTTUNING: for each target
task, it only requires storing a small task-specific
prompt, enabling the reuse of a single frozen pre-
trained model across all tasks. In this section, we
present a generic SPOT approach where a single
transferred prompt is reused for all target tasks.
In §3, we explore a targeted approach that retrieves
different source prompts for different target tasks.

2.1 Experimental setup

Our frozen models are built on top of the pre-
trained T5 checkpoints of all sizes: SMALL, BASE,
LARGE, XL, XXL with 60M, 220M, 770M, 3B, and
11B parameters, respectively. In our experiments
with SPOT, we leverage the LM adapted version of
T52, which was found to be easier to optimize for
PROMPTTUNING (Lester et al., 2021).

2.1.1 Baselines

We compare SPOT to the following baselines:

PROMPTTUNING: The vanilla prompt tuning ap-
proach of Lester et al. (2021), where an indepen-
dent prompt is directly trained on each target task.

MODELTUNING & MULTI-TASKMODELTUNING: We
compare prompt tuning approaches to MODELTUN-

ING, the standard fine-tuning approach (Devlin
et al., 2019; Raffel et al., 2020), where all model
parameters are fine-tuned on each target task sep-
arately. For an apples-to-apples comparison, we
include MULTI-TASKMODELTUNING, a more competi-
tive baseline that first fine-tunes the entire model
on the same mixture of source tasks used for SPOT

before fine-tuning it on individual target tasks.3

2.1.2 Evaluation datasets

We study downstream performance on a diverse set
of tasks from the GLUE (Wang et al., 2019c) and

1The target task can be treated as one of the source tasks
being mixed together.

2T5 1.1 checkpoints trained for an additional 100K steps
using the “prefix LM” objective (Raffel et al., 2020), avail-
able at https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md

3In preliminary experiments, we found that using the orig-
inal version of T5 1.1 (which was pre-trained exclusively on
span corruption) for model tuning approaches results in better
performance than using the LM adapted version. We therefore
report results corresponding to the original T5 1.1 for MODEL-
TUNING and MULTI-TASKMODELTUNING.

SUPERGLUE (Wang et al., 2019b) benchmarks.4 We
train for a fixed number of steps and report results
on the validation set associated with each dataset.5

2.1.3 Data for source prompt tuning
As with language model pre-training, the choice of
training data is crucial for successful prompt trans-
fer. To investigate the impact of source training
data on downstream performance, we compare a
diverse set of source tasks.

A single unsupervised learning task: We first
consider training the prompt on a fraction of the
C4 (Colossal Clean Crawled Corpus) dataset (Raf-
fel et al., 2020) using the “prefix LM” objective
discussed in Raffel et al. (2020). Although this
task was used to pre-train our frozen T5 models al-
ready, it could still be helpful for learning a general-
purpose prompt.

A single supervised learning task: Alterna-
tively, we can train the prompt using a supervised
task. We use either MNLI (Williams et al., 2018) or
SQUAD (Rajpurkar et al., 2016) as a single source
task. MNLI was shown to be helpful for many
sentence-level classification tasks (Phang et al.,
2019), while SQUAD was found to generalize well
to QA tasks (Talmor and Berant, 2019).

A multi-task mixture: So far, we have consid-
ered using a single source task. An alternative
approach is multi-task training. Within T5’s unified
text-to-text framework, this simply corresponds to
mixing different datasets together. We explore mix-
ing datasets from different NLP benchmarks or fam-
ilies of tasks, including GLUE, SUPERGLUE, natural
language inference (NLI), paraphrasing/semantic
similarity, sentiment analysis, question answering
(QA) on MRQA (Fisch et al., 2019), commonsense
reasoning on RAINBOW (Lourie et al., 2021), ma-
chine translation, summarization, and natural lan-

4These datasets include grammatical acceptability judg-
ments (COLA (Warstadt et al., 2019)), sentiment analysis
(SST-2 (Socher et al., 2013)), paraphrasing/semantic similar-
ity (MRPC (Dolan and Brockett, 2005), STS-B (Cer et al.,
2017), QQP (Iyer et al., 2017)), natural language inference
(MNLI (Williams et al., 2018), QNLI (Wang et al., 2019c),
RTE (Dagan et al., 2005, et seq.), CB (De Marneffe et al.,
2019)), coreference resolution (WSC (Levesque et al., 2012)),
sentence completion (COPA (Roemmele et al., 2011)), word
sense disambiguation (WIC (Pilehvar and Camacho-Collados,
2019)), and question answering (MULTIRC (Khashabi et al.,
2018), RECORD (Zhang et al., 2018), BOOLQ (Clark et al.,
2019)). We exclude the problematic WNLI (Levesque et al.,
2012) dataset from GLUE, following Devlin et al. (2019).

5For tasks with multiple metrics, we average the metrics.
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guage generation on GEM (Gehrmann et al., 2021).6

We create a mixture of source tasks from each of
the NLP benchmarks/families of tasks above, and a
mixture comprising all datasets (C4 + 55 labeled
datasets), using the examples-proportional mixing
strategy in Raffel et al. (2020) with an artificial
dataset size limit K = 219 examples.

2.1.4 Training details
We closely follow the training procedure in Lester
et al. (2021). Specifically, the only new parameters
introduced during both source and target prompt
tuning are a shared prompt ρ ∈ RL×E prepended
to each (embedded) input sequence, where L, E
are the prompt length and the embedding size, re-
spectively. In all cases, we set L = 100 tokens
and tune the prompt for a fixed number of steps
S.7 While S is set to 30K in Lester et al. (2021),
we find that additional tuning is helpful on large
datasets. As such, we set S to 218 = 262,144, fol-
lowing Raffel et al. (2020), with the exception of
ablation experiments (rows “− longer tuning”) in
Table 1 which use S = 30K. For source prompt
tuning, the prompt token embeddings are initial-
ized from sampled vocabulary (i.e., the 5,000 most
common tokens). During target prompt tuning, we
save a checkpoint every 500 steps and report re-
sults on the checkpoint with the highest validation
performance. Appendix C contains training details
for PROMPTTUNING and model tuning approaches.

2.2 Effect of SPOT

We compare the results of SPOT and other ap-
proaches in Table 1 and Figure 1. Below, we sum-
marize and analyze each of our findings in detail.

SPOT significantly improves performance and
stability of PROMPTTUNING: Our results on the
GLUE and SUPERGLUE benchmarks with T5 BASE

(Table 1) suggest that prompt transfer provides
an effective means of improving performance for
PROMPTTUNING. For example, the best-performing
variant of SPOT outperforms the vanilla PROMPTTUN-

ING approach on both GLUE and SUPERGLUE by a
substantial margin, obtaining +4.4 and +10.1 point
average accuracy improvements, respectively. Our

6See Appendix B for details about datasets.
7We use the Adafactor optimizer (Shazeer and Stern, 2018)

with default parameters except with a constant learning rate of
0.3, weight decay of 1e−5, and parameter scaling turned off.
We train with a batch size of 32. The dropout probability is
always kept at 0.1. All of our models are implemented using
JAX (Bradbury et al., 2018) and FLAX (Heek et al., 2020).

Method GLUE SUPERGLUE

BASELINE

PROMPTTUNING 81.20.4 66.60.2

− longer tuning 78.41.7 63.11.1

SPOT with different source mixtures
GLUE (8 tasks) 82.80.2 73.20.3

− longer tuning 82.00.2 70.70.4

C4 82.00.2 67.70.3

MNLI 82.50.0 72.60.8

SQUAD 82.20.1 72.00.4

SUPERGLUE (8 tasks) 82.00.1 66.60.2

NLI (7 tasks) 82.60.1 71.40.2

Paraphrasing/similarity (4 tasks) 82.20.1 69.70.5

Sentiment (5 tasks) 81.10.2 68.60.1

MRQA (6 tasks) 81.80.2 68.40.2

RAINBOW (6 tasks) 80.30.6 64.00.4

Translation (3 tasks) 82.40.2 65.30.1

Summarization (9 tasks) 80.90.3 67.11.0

GEM (8 tasks) 81.90.2 70.50.5

All (C4 + 55 supervised tasks) 81.80.2 67.90.9

Table 1: GLUE and SUPERGLUE results achieved by
applying T5 BASE with different prompt tuning ap-
proaches. We report the mean and standard deviation
(in the subscript) across three random seeds. SPOT
significantly improves performance and stability of
PROMPTTUNING across the two benchmarks.

ablation study indicates that longer tuning is also an
important ingredient for achieving the best perfor-
mance, and is complementary to prompt transfer.
Additionally, when longer tuning is omitted, we
observe that SPOT improves stability across runs.

Within SPOT, we can compare the effectiveness
of different source mixtures (see Table 1). Source
prompt tuning on GLUE performs best on both
GLUE and SUPERGLUE, obtaining average scores of
82.8 and 73.2, respectively.8 Interestingly, unsuper-
vised source prompt tuning on C4 (the same task
used to pre-train our frozen models) still yields con-
siderable improvements, even outperforming using
SUPERGLUE for SUPERGLUE tasks. Using MNLI or
SQUAD as a single source dataset is also particularly
helpful across target tasks. Other source mixtures
can lead to significant gains, with some families of
tasks (e.g., NLI and paraphrasing/semantic similar-
ity) showing more benefit than others. Mixing all
the datasets together does not yield the best results,
possibly due to task interference/negative transfer
issues, where achieving good performance on one
or more source tasks can hurt performance on a
target task.

8SUPERGLUE tasks benefit less from source prompt tuning
on SUPERGLUE likely due to the small size of these datasets.
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SPOT helps close the gap with MODELTUNING

across all model sizes: Figure 1 shows our
SUPERGLUE results across model sizes (see Ap-
pendix A for full results). As shown in Lester
et al. (2021), PROMPTTUNING becomes more com-
petitive with scale, and at the XXL size, it nearly
matches the performance of MODELTUNING. How-
ever, at smaller model sizes, there are still large
gaps between the two approaches. We show that
SPOT helps close these gaps and even exceeds MOD-

ELTUNING’s performance by a large margin at sev-
eral model sizes, while retaining all the computa-
tional benefits conferred by PROMPTTUNING. Finally,
at the XXL size, SPOT achieves the best average
score of 91.2, +1.1 points better than the strong
MULTI-TASKMODELTUNING baseline, despite having
27,000× fewer task-specific parameters.

As a final test of SPOT’s effectiveness, we submit-
ted our XXL model’s predictions to the SUPERGLUE

leaderboard, achieving a score of 89.2. This far
exceeds all previous submissions using parameter-
efficient adaptation, such as GPT-3 (71.8), and al-
most matches fully fine-tuned T5 XXL (89.3),9 de-
spite tuning 27,000× fewer parameters. To the
best of our knowledge, SPOT is the first parameter-
efficient adaptation approach that is competitive
with methods that tune billions of parameters. See
Appendix D for details.

3 Predicting task transferability

So far, we have seen that soft prompt transfer can
significantly boost the performance of prompt tun-
ing, but it is critical to pick the right source tasks for
transfer. For instance, through an extensive search,
we found that GLUE and MNLI provide excellent
source tasks for transferring to individual GLUE

and SUPERGLUE tasks. But what about a resource-
constrained scenario where a user is not able to
exhaustively search over a set of source tasks? Can
we predict which tasks will best transfer onto a
novel target task without testing them one by one?

To investigate this, we conduct a large-scale em-
pirical study with 26 NLP tasks. We first measure
transferability across all task combinations (§3.1).
Next, we show that by interpreting task prompts
as task embeddings, we can construct a seman-
tic space of tasks, wherein similar tasks cluster
together (§3.2). Based on this observation, we pro-

9Note that the T5 submission uses the original version of
T5 (which was pre-trained on a multi-task mixture of unsuper-
vised and supervised tasks) while we use T5 1.1 (which was
pre-trained on C4 only without mixing in supervised tasks).

Name Task type |Train|
16 source tasks
C4 language modeling 365M
DOCNLI NLI 942K
YELP-2 sentiment analysis 560K
MNLI NLI 393K
QQP paraphrase detection 364K
QNLI NLI 105K
RECORD QA 101K
CXC semantic similarity 88K
SQUAD QA 88K
DROP QA 77K
SST-2 sentiment analysis 67K
WINOGRANDE commonsense reasoning 40K
HELLASWAG commonsense reasoning 40K
MULTIRC QA 27K
COSMOSQA commonsense reasoning 25K
RACE QA 25K

10 target tasks
BOOLQ QA 9K
COLA grammatical acceptability 9K
STS-B semantic similarity 6K
WIC word sense disambiguation 5K
CR sentiment analysis 4K
MRPC paraphrase detection 4K
RTE NLI 2K
WSC coreference resolution 554
COPA QA 400
CB NLI 250

Table 2: Tasks used in our task transferability experi-
ments, sorted by training dataset size.

pose a retrieval algorithm (§3.3) that leverages task
embedding similarity to choose which source tasks
to use for a given novel target task (Figure 2, right).
Our proposed approach can eliminate 69% of the
source task search space while keeping 90% of the
best-case quality gain.

3.1 Measuring transferability

We study a diverse set of 16 source datasets and
10 target datasets (see Table 2).10 We consider
all 160 possible source-target pairs, and perform
transfer from each source task to each target task.
All source tasks are data-rich or have been shown
to yield positive transfer in prior work. To simulate
a realistic scenario, we use low-resource tasks (less
than 10K training examples) as target tasks.11

10Beyond the datasets from §2, we use DOCNLI (Yin et al.,
2021), YELP-2 (Zhang et al., 2015), CXC (Parekh et al., 2021),
DROP (Dua et al., 2019), WINOGRANDE (Sakaguchi et al., 2020),
HELLASWAG (Zellers et al., 2019), COSMOSQA (Huang et al.,
2019), RACE (Lai et al., 2017), and CR (Hu and Liu, 2004).

11The source tasks comprise one unsupervised task (C4)
and 15 supervised tasks covering natural language inference
(NLI), paraphrasing/semantic similarity, sentiment analysis,
question answering (QA), and commonsense reasoning. The
target tasks additionally include grammatical acceptability,
word sense disambiguation, and coreference resolution.
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Figure 3: A heatmap of our task transferability results.
Each cell shows the relative error reduction on the tar-
get task of the transferred prompt from the associated
source task (row) to the associated target task (column).

To limit computational costs, we use T5 BASE in
all of our task transferability experiments. We per-
form 262,144 prompt tuning steps on each source
task. The prompt checkpoint with the highest
source task validation performance is selected to
initialize prompts for target tasks. Since the target
datasets are small, we only perform 100K prompt
tuning steps on each target task. We repeat each
experiment three times with different random seeds.
Other training details match §2.1.4.

Tasks benefiting each other via prompt trans-
fer: Figure 3 shows a heatmap of our results (see
Appendix E for full results). In many cases, prompt
transfer provides a significant gain on the target
task. The transfer MNLI → CB yields the largest
relative error reduction of 58.9% (from an average
score of 92.7 to 97.0), followed by MNLI→ COPA

(29.1%) and RECORD→ WSC (20.0%). Using the
best source prompt (out of 48) for each target task
dramatically improves the average score across our
10 target tasks from 74.7 to 80.7. Overall, our re-
sults show effective transfer from large source tasks
that involve high-level reasoning about semantic re-
lationships among sentences (e.g., MNLI), or when
the source and target tasks are similar (e.g., CXC→
STS-B). Interestingly, positive transfer can occur
between relatively dissimilar tasks (e.g., RECORD

→ WSC, SQUAD→ MRPC, CXC→ WIC).12

3.2 Defining task similarity through prompts

Since only prompt parameters are updated dur-
ing prompt tuning on specific tasks, the learned
prompts likely encode task-specific knowledge.
This suggests that they could be used to reason
about the nature of tasks and their relationships. To

12Table 7 in Appendix E contains more cases.
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Figure 4: A clustered heatmap of cosine similarities
between the task embeddings of the 26 NLP tasks we
study. Our prompt-based task embeddings capture task
relationships: similar tasks cluster together.

test this idea, we interpret task prompts as task em-
beddings and construct a semantic space of tasks.
More concretely, we define a task’s embedding as
the prompt checkpoint after training for 10K steps
on that task.13 Note that using early checkpoints
allows for quick computation of task embeddings
for novel target tasks. We estimate the similarity
between two tasks t1, t2 by measuring the similar-
ity between their corresponding task embeddings
e1, e2, using the following metrics:

COSINE SIMILARITY OF AVERAGE TOKENS: We
compute the cosine similarity between the average
pooled representations of the prompt tokens:

sim(t1, t2) = cos(
1

L
∑
i

e1i ,
1

L
∑
j

e2j ),

where e1i , e
2
j denote the respective prompt tokens

of e1, e2, and cos denotes the cosine similarity.

PER-TOKEN AVERAGE COSINE SIMILARITY: We
compute the average cosine similarity between ev-
ery prompt token pair (e1i , e

2
j ):

sim(t1, t2) =
1

L2

∑
i

∑
j

cos(e1i , e
2
j ).

13Our preliminary experiments with other checkpoint al-
ternatives (in the range 1K to 100K) yielded worse perfor-
mance. We also found that measuring task similarity using
task embeddings derived from a fixed prompt checkpoint (10K
steps) gave better results than those derived from the best-
performing prompt checkpoint per task. This suggests that
prompts trained for a differing number of steps may be less
directly comparable than those trained for the same duration.
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Task embeddings capture task relationships:
Figure 4 shows a hierarchically-clustered heatmap
of cosine similarities between the task embed-
dings using the COSINE SIMILARITY OF AVERAGE TO-

KENS metric.14 We observe that our learned task
embeddings capture many intuitive task relation-
ships. Specifically, similar tasks group together
into clusters, including QA (SQUAD, RECORD, and
DROP; MULTIRC and BOOLQ), sentiment analysis
(YELP-2, SST-2, and CR), NLI (MNLI and CB; DOC-

NLI and RTE), semantic similarity (STS-B and CXC),
paraphrasing (MRPC and QQP), and commonsense
reasoning (WINOGRANDE, HELLASWAG, and COS-

MOSQA). We note that QNLI, which is an NLI task
built from the SQUAD dataset, is not closely linked
to SQUAD; this suggests that our task embeddings
are more sensitive to the type of task than domain
similarity. Interestingly, they also capture the un-
intuitive case of RECORD’s high transferability to
WSC. Additionally, task embeddings that are de-
rived from different prompts of the same task have
high similarity scores (see Appendix F).

3.3 Predicting transferability via similarity

We leverage our task embeddings to predict and
exploit task transferability. Specifically, we explore
methods to predict the most beneficial source tasks
for a given target task and then make use of the
source task prompts to improve performance on the
target task. To enlarge our set of source prompts,
we use the prompts from each of the three different
prompt tuning runs on each source task, resulting in
48 source prompts. Given a target task t with task
embedding et, we rank all the source prompts ρs

with associated embeddings es in descending order
by similarity, sim(es, et). We denote the ranked
list of source prompts as ρsr , where r denotes the
rank (r = 1, 2, . . . , 48). We experiment with three
methods for using the ranked source prompts:

BEST OF TOP-k: We select the top-k source
prompts and use each of them individually to ini-
tialize the target prompt. This procedure requires
prompt tuning k times on the target task t. The best
individual result is used for evaluating the effec-
tiveness of this method.

TOP-k WEIGHTED AVERAGE: We initialize the tar-
get prompt with a weighted average of the top-k

14To obtain the highest resolution of similarity between two
tasks, we use the average of cosine similarities between their
task embeddings obtained with all the three different prompt
tuning runs (9 combinations).

STS-B

(r = 0.708, p = 1.853e-08)

WiC

(r = 0.163, p = 0.270)

WSC

(r = 0.428, p = 0.002)

RTE

(r = 0.290, p = 0.046)
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Figure 5: Correlation between task similarity and task
transferability. Each point represents a source prompt.
The x-axis shows the cosine similarity between the as-
sociated source and target task embeddings, averaged
over three runs for the target task (orange title). The y-
axis measures the relative error reduction on the target
task achieved by each source prompt. We include the
Pearson correlation coefficient (r) and p-value.

source prompts
∑k

r=1 αrρ
sr so that we only per-

form prompt tuning on the target task t once. The
weights αr are computed as:

αr =
sim(esr , et)∑k
l=1 sim(esl , et)

,

where esr denotes the corresponding task embed-
ding of ρsr .

TOP-k MULTI-TASK MIXTURE: We first identify
the source tasks whose prompts are in the top-k
prompts and mix their datasets and the target
dataset together, using the examples-proportional
mixing strategy of Raffel et al. (2020). Then, we
perform source prompt tuning on this multi-task
mixture and use the final prompt checkpoint to ini-
tialize the target prompt.

We report the average score across all target
tasks achieved by each method. For comparison,
we measure the absolute and relative improvements
over BASELINE—prompt tuning on each target task
from scratch (i.e., without any prompt transfer).15

Additionally, we include ORACLE—the oracle re-
sults achieved by a brute-force search to identify

15For each target task t, we report the average and standard
deviation of performance across three prompt tuning runs.
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the best possible out of 48 source prompts for each
target task.

Correlation between task similarity and task
transferability: Figure 5 shows how the relative
error reduction on a target task changes as a func-
tion of the similarity between the source and target
task embeddings. Overall, we observe a signifi-
cant positive correlation between task embedding
similarity and task transferability on four (out of
10) target tasks, including STS-B (p < 0.001), CB

(p < 0.001), WSC (p < 0.01), and RTE (p < 0.05),
while it is less significant on the other tasks.16 In
some cases (e.g., on BOOLQ), we observe a large rel-
ative error reduction (19.0%, achieved by a source
prompt of MNLI) despite a low cosine similarity
(0.4). This suggests that factors other than task
similarity (data size, task difficulty, domain sim-
ilarity, etc.) may also play a role in determining
transferability.

Retrieving targeted source tasks via task em-
beddings is helpful: Table 3 compares differ-
ent methods for identifying which source prompts
could be beneficial for a given target task. Over-
all, our results show the effectiveness of BEST OF

TOP-k. Simply choosing the source prompt with
the highest task embedding similarity to the target
task using PER-TOKEN AVERAGE COSINE SIMILARITY

improves over the baseline by a large margin (from
an average score of 74.7 to 76.7, a 12.1% average
relative error reduction). Trying all the top-3 (out
of 48) source prompts for each target task yields an
average score of 77.5. With larger values of k, we
can retain most of the benefits of oracle selection
(80% of the gain in terms of average score with
k = 9 and 90% with k = 15), while still elimi-
nating over 2/3 of the candidate source prompts.
TOP-k WEIGHTED AVERAGE has similar average per-
formance to BEST OF TOP-k with k = 1, but achieves
lower variance. Thus, this may be an appealing al-
ternative to BEST OF TOP-k in scenarios where trying
multiple prompt tuning runs on the target task is
computationally prohibitive. Finally, TOP-k MULTI-

TASK MIXTURE also provides a means of obtaining
strong performance with an average score of 77.8,
even outperforming BEST OF TOP-k with k ≤ 3.

4 Related Work

Parameter-efficient transfer learning: Large-
scale pre-trained language models have been shown

16See Appendix G for full results.

Method Change Avg. score
Abs. Rel.

BASELINE - - 74.70.7

BRUTE-FORCE SEARCH (k = 48)
ORACLE 6.00.5 26.51.1 80.70.0

COSINE SIMILARITY OF AVERAGE TOKENS
BEST OF TOP-k

k = 1 1.50.5 11.71.1 76.20.1

k = 3 2.70.6 16.61.1 77.40.3

k = 6 3.80.1 20.01.1 78.50.5

k = 9 4.50.4 22.21.1 79.2 0.1

k = 12 5.00.9 23.62.2 79.7 0.4

k = 15 5.40.8 24.91.8 80.10.3

PER-TOKEN AVERAGE COSINE SIMILARITY
BEST OF TOP-k

k = 1 2.00.4 12.11.1 76.70.7

k = 3 2.90.6 17.00.6 77.50.4

k = 6 4.50.5 22.11.2 79.20.1

k = 9 4.60.5 22.60.9 79.50.2

k = 12 5.00.6 23.51.4 79.60.1

k = 15 5.30.9 24.52.2 80.00.4

TOP-k WEIGHTED AVERAGE
best k = 3 1.90.5 11.52.7 76.60.1

TOP-k MULTI-TASK MIXTURE
best k = 12 3.10.5 15.32.8 77.80.1

Table 3: Task embeddings provide an effective means
of predicting and exploiting task transferability. Us-
ing BEST OF TOP-k with k = 3 improves over BASE-
LINE (PROMPTTUNING on each task from scratch) by
+2.8 points. With larger values of k (≤ 15), we can
retain most of the benefits conferred by oracle selec-
tion. For TOP-k WEIGHTED AVERAGE and TOP-k MULTI-
TASK MIXTURE, we experiment with different values of
k ∈ {3, 6, 9, 12} and report the best results.

to exhibit remarkable performance on many NLP
tasks (Devlin et al., 2019; Liu et al., 2019b; Yang
et al., 2019; Lan et al., 2020; Raffel et al., 2020;
Brown et al., 2020; He et al., 2021). To improve
practical applicability of these models, early work
introduces compression techniques (Sanh et al.,
2019; Jiao et al., 2020; Fan et al., 2020; Sanh et al.,
2020) to obtain lightweight models. Other work ex-
plores updating only small parts of the model (Za-
ken et al., 2021) or task-specific modules, such as
adapters (Houlsby et al., 2019; Karimi Mahabadi
et al., 2021) or low-rank structures (Mahabadi et al.,
2021; Hu et al., 2021), while keeping the rest of
the model fixed.

Recently, Brown et al. (2020) demonstrate im-
pressive few-shot performance with PROMPTDESIGN,
where their model is conditioned on a manual
text prompt at inference time to perform differ-
ent tasks. Several efforts have since focused on
developing prompt-based learning approaches with
carefully handcrafted prompts (Schick and Schütze,
2021), prompt mining and paraphrasing (Jiang
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et al., 2020b), gradient-based search for improved
prompts (Shin et al., 2020), and automatic prompt
generation (Gao et al., 2021). The use of hard
prompts, however, was found to be sub-optimal and
sensitive to the choice of the prompt (Zhao et al.,
2021; Liu et al., 2021b). As such, more recent work
has shifted toward learning soft prompts (Liu et al.,
2021b; Qin and Eisner, 2021; Li and Liang, 2021;
Lester et al., 2021), which can be seen as learn-
able parameters injected into the model. We refer
readers to Liu et al. (2021a) for a recent survey on
prompt-based learning research.

In concurrent work, Gu et al. (2021) also explore
the effectiveness of prompt transfer. Their method
uses hand-crafted pre-training tasks tailored to spe-
cific types of downstream tasks, being less extensi-
ble to novel downstream tasks. In contrast, we use
existing tasks as source tasks and show that prompt
transfer can confer benefits even when there are
mismatches (e.g., in task type or input/output for-
mat) between the source and target.

Task transferability We also build on existing
work on task transferability (Wang et al., 2019a;
Liu et al., 2019a; Talmor and Berant, 2019; Pruk-
sachatkun et al., 2020; Vu et al., 2020, 2021). Prior
work shows effective transfer from data-rich source
tasks (Phang et al., 2019), those that require com-
plex reasoning and inference (Pruksachatkun et al.,
2020), or those that are similar to the target task (Vu
et al., 2020). There have also been efforts to predict
task transferability (Bingel and Søgaard, 2017; Vu
et al., 2020; Poth et al., 2021). Vu et al. (2020)
use task embeddings derived from either the input
text or the diagonal Fisher information matrix of
the model, while Poth et al. (2021) explore adapter-
based alternatives. Here, our use of the same model
(without task-specific components) with a unifying
text-to-text format allows us to more easily model
the space of tasks. Additionally, prompt-based task
embeddings are comparatively cheaper to obtain.

5 Limitations & Future work

As other parameter-efficient adaptation methods
(see §4) may outperform PROMPTTUNING in specific
situations, it would be interesting to test whether an
approach similar to SPOT could extend successfully
to these methods. At the same time, we believe that
PROMPTTUNING has its own merits. As pre-trained
language models become larger and larger, some
advantages of PROMPTTUNING over other methods
are: (1) Among current methods with learnable

parameters, PROMPTTUNING is the most parameter
efficient, requiring less than 0.01% task-specific pa-
rameters for most model sizes. (2) PROMPTTUNING

is simpler than other methods, as it does not mod-
ify the internal model architecture (cf. the PREFIX-

TUNING method of Li and Liang (2021), which
adds a prefix to each layer of both the Transformer
encoder and decoder); as such, PROMPTTUNING al-
lows mixed-task inference and facilitates transfer
learning between tasks. (3) As model capacity in-
creases, PROMPTTUNING becomes more competitive
with MODELTUNING; to the best of our knowledge,
this has not been shown for other methods. (4) Soft
prompts could possibly be interpreted as natural
language instructions.

Additionally, since our prompt-based task em-
bedding approach does not capture all of the factors
that influence task transferability, we leave further
exploration of other task embedding methods to
future work.

6 Conclusion

In this paper, we study transfer learning in the con-
text of prompt tuning. We show that scale is not
necessary for PROMPTTUNING to match the perfor-
mance of MODELTUNING. On SUPERGLUE, our SPOT

approach matches or even exceeds the performance
of MODELTUNING by a large margin across model
sizes while being more parameter-efficient. Our
large-scale study on task transferability indicates
that tasks can benefit each other via prompt transfer
in various scenarios. Finally, we demonstrate that
task prompts can be interpreted as task embeddings
to formalize the similarity between tasks. We pro-
pose a simple yet efficient retrieval approach that
measures task similarity to identify which source
tasks could confer benefits to a novel target task.
Taken as a whole, we hope that our work will spur
more research into prompt-based transfer learning.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation (WMT 2016),
pages 131–198.
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Appendices

A Full results for Figure 1

Table 4 shows the performance of different model
tuning and prompt tuning methods (described
in §2.1.1) on the SUPERGLUE benchmark.

B Source datasets used in our SPOT
experiments in §2

Figure 6 displays the datasets used in our SPOT

experiments in §2. In addition to the C4 unlabeled
dataset (Raffel et al., 2020), we use 55 labeled
datasets. These datasets come from common NLP

benchmarks/families of tasks, namely:

• GLUE (Wang et al., 2019c), including
COLA (Warstadt et al., 2019), SST-2 (Socher
et al., 2013), MRPC (Dolan and Brockett,
2005), QQP (Iyer et al., 2017), STS-B (Cer
et al., 2017), MNLI (Williams et al., 2018),
QNLI (Wang et al., 2019c), and RTE (Dagan
et al., 2005, et seq.).

• SUPERGLUE (Wang et al., 2019b), including
BOOLQ (Clark et al., 2019), CB (De Marn-
effe et al., 2019), COPA (Roemmele et al.,
2011), MULTIRC (Khashabi et al., 2018),
RECORD (Zhang et al., 2018), RTE, WIC (Pile-
hvar and Camacho-Collados, 2019), and
WSC (Levesque et al., 2012).

• Natural language inference (NLI), including
ANLI (Nie et al., 2020), CB, DOCNLI (Yin et al.,
2021), MNLI, QNLI, RTE, and SNLI (Bowman
et al., 2015).

• Paraphrasing/semantic similarity, including
CXC (Parekh et al., 2021), MRPC, QQP, and
STS-B.

• Sentiment analysis, including CR (Hu and Liu,
2004), GOEMOTIONS (Demszky et al., 2020),
SENTIMENT140 (Go et al., 2009), SST-2, and
YELP-2 (Zhang et al., 2015).

• Question answering (QA) on MRQA (Fisch
et al., 2019), including SQUAD (Ra-
jpurkar et al., 2016), NEWSQA (Trischler
et al., 2017), TRIVIAQA (Joshi et al.,
2017), SEARCHQA (Dunn et al., 2017),
HOTPOTQA (Yang et al., 2018), and NAT-

URALQUESTIONS (NQ (Kwiatkowski et al.,
2019)).

Method Model size

SMALL BASE LARGE XL XXL

PROMPTDESIGN (GPT-3) 40.6 43.4 45.1 47.8 52.8
MODELTUNING 62.80.8 73.70.6 81.30.6 83.10.2 89.90.2

PROMPTTUNING 59.80.8 63.11.1 74.52.2 79.20.9 88.80.2

MULTI-TASKMODELTUNING 64.60.2 79.20.3 84.50.1 88.00.5 90.10.2

SPOT (OURS) 64.50.3 73.20.3 82.70.2 88.70.3 91.20.1

Table 4: SUPERGLUE performance of different model
tuning and prompt tuning methods across model sizes.
We report the mean and standard deviation (in the sub-
script) across three random seeds. SPOT outperforms
vanilla PROMTTUNING and GPT-3 by a large margin,
matching or outperforming MODELTUNING across all
model sizes. At the XXL model size, SPOT even outper-
forms MULTI-TASKMODELTUNING, which fine-tunes the
entire model on the GLUE mixture before fine-tuning
it on individual SUPERGLUE tasks.

• Commonsense reasoning on RAIN-

BOW (Lourie et al., 2021) includ-
ing αNLI (Bhagavatula et al., 2020),
COSMOSQA (Huang et al., 2019), HEL-

LASWAG (Zellers et al., 2019), PIQA (Bisk
et al., 2020), SOCIALIQA (Sap et al., 2019),
and WINOGRANDE (Sakaguchi et al., 2020).

• Machine translation, including WMT

ENDE (Bojar et al., 2014), WMT ENFR (Bojar
et al., 2015), and WMT ENRO (Bojar et al.,
2016).

• Summarization, including AESLC (Zhang and
Tetreault, 2019), BILLSUM (Kornilova and Ei-
delman, 2019), CNN/DAILYMAIL (Hermann
et al., 2015; See et al., 2017), WIKILIN-

GUA (Ladhak et al., 2020), GIGAWORD (Graff
et al., 2003; Rush et al., 2015), MULTI-

NEWS (Fabbri et al., 2019), NEWSROOM (Grusky
et al., 2018), SAMSUM (Gliwa et al., 2019),
and XSUM (Narayan et al., 2018).

• Natural language generation on
GEM (Gehrmann et al., 2021), including
COMMONGEN (Lin et al., 2020), DART (Nan
et al., 2021), E2E (Dušek et al., 2019),
SGD (Rastogi et al., 2020), WEBNLG (Gardent
et al., 2017), WIKIAUTO (Jiang et al., 2020a),
XSUM, and WIKILINGUA.

C Additional training details

For PROMPTTUNING, following Lester et al. (2021),
we initialize the prompt tokens with embeddings
that represent an enumeration of the output classes
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Figure 6: Datasets used in our SPOT experiments in §2. C4, MNLI, and SQUAD were all used by themselves as
single source tasks in addition to being mixed in with other tasks.

Model Total Tuned
SCORE BOOLQ CB COPA MULTIRC RECORD RTE WIC WSCparameters parameters

Top-7
submissions

ST-MOE-32B 269B 269B 91.2 92.4 96.9/98.0 99.2 89.6/65.8 95.1/94.4 93.5 77.7 96.6
TURING NLR V5 5.4B 5.4B 90.9 92.0 95.9/97.6 98.2 88.4/63.0 96.4/95.9 94.1 77.1 97.3

ERNIE 3.0 12B 12B 90.6 91.0 98.6/99.2 97.4 88.6/63.2 94.7/94.2 92.6 77.4 97.3
T5 + UDG 11B 11B 90.4 91.4 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 77.9 96.6

DEBERTA / TURINGNLRV4 3.1B 3.1B 90.3 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9
HUMAN BASELINES - - 89.8 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0

T5 11B 11B 89.3 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8

Parameter-
efficient

adaptation

FROZEN T5 1.1 + SPOT 11B 410K 89.2 91.1 95.8/97.6 95.6 87.9/61.9 93.3/92.4 92.9 75.8 93.8
GPT-3 FEW-SHOT 175B 0 71.8 76.4 52.0/75.6 92.0 75.4/30.5 91.1/90.2 69.0 49.4 80.1
WARP FEW-SHOT 223M 25K 48.7 62.2 70.2/82.4 51.6 0.0/0.5 14.0/13.6 69.1 53.1 63.7

CBOW 15M 33K 44.5 62.2 49.0/71.2 51.6 0.0/0.5 14.0/13.6 49.7 53.1 65.1

Table 5: SUPERGLUE results of our SPOT XXL submission (in green) and competitors from the leaderboard as of
2022/02/09.

with a back off to sampled vocabulary to fill any
remaining prompt positions.

For model tuning approaches, we use the de-
fault hyperparameters for T5 (Raffel et al., 2020),
i.e., learning rate 0.001, Adafactor optimizer with
pre-training parameter states restored, and dropout
probability 0.1. To improve the model tuning base-
lines, we perform a sweep over the batch size hy-
perparameter and select 216 tokens per batch, fol-
lowing Lester et al. (2021).

D Details of our SUPERGLUE submission

Table 5 shows the performance of our SPOT XXL

SUPERGLUE submission, along with several strong
competitors from the public SUPERGLUE leader-
board. Apart from the human baseline, the top-7
submissions all tune >3B parameters directly on the
final tasks. Only three previous SUPERGLUE sub-
missions use parameter efficient adaptation, in the
sense of tuning <1M parameters on the final tasks;
all other submissions tune >50M parameters.17

17The “AILabs Team, Transformers” submission is listed
as tuning 3M parameters, but we suspect this is in error, as the

Our SPOT submission achieves a score of 89.2,
which far exceeds all other parameter-efficient
adaptation methods, including GPT-3, which ben-
efits from over 10× more frozen parameters (al-
though it uses no tuned parameters). Compared to
WARP (Hambardzumyan et al., 2021), our SPOT ap-
proach tunes 16×more parameters (410K vs. 25K),
and benefits from 50× more frozen parameters.

To the best of our knowledge, SPOT is the first
parameter-efficient adaptation approach that is com-
petitive with methods that tune billions of param-
eters. Most notably, SPOT’s performance almost
matches that of fully fine-tuned T5 XXL (89.3), de-
spite building on the same underlying model, and
tuning 27,000× fewer parameters. We note that
SPOT outperforms T5 on three of eight SUPERGLUE

tasks (namely, CB, COPA, RTE).

E Task transferability results

The full results of our task transferability exper-
iments can be found in Table 6. We show that
in many cases, initializing the prompt to that of a

submission mentions using the T5-3B and T5-LARGE models.
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source task can provide significant gain on a target
task. Table 7 displays positive transfers with more
than 10% relative error reduction on the target task.

F Task embedding similarity

In Figure 7, we show a clustered heatmap of cosine
similarities between the task embeddings of the
26 NLP tasks we study in our task transferability
experiments. For each task, we include the result-
ing task embeddings from all the three different
prompt tuning runs on the task. As can be seen, our
task embeddings capture task relationships: similar
tasks cluster together. Additionally, task embed-
dings that are derived from different prompts of the
same task are linked together.

G Correlation between task similarity
and task transferability

Figure 8 shows how the relative error reduction on
a target task changes as a function of the similarity
between the source and target task embeddings.
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BOOLQ COLA STS-B WIC CR MRPC RTE WSC COPA CB
BASELINE 73.01.2 52.91.2 88.10.6 63.61.6 93.50.2 86.10.7 68.71.2 71.51.7 56.71.7 92.71.9
C4 75.80.5 54.81.1 87.80.6 66.30.8 93.90.1 88.00.6 69.11.9 68.00.5 54.30.9 83.15.7
DOCNLI 72.71.4 52.70.9 87.30.9 64.70.3 93.60.4 86.20.8 67.42.6 71.13.6 56.05.9 87.21.7
YELP-2 74.80.7 53.90.2 88.10.3 64.70.5 93.80.3 86.60.8 69.21.1 70.81.2 55.00.0 87.81.6
MNLI 77.60.4 54.20.7 89.50.3 69.50.5 93.90.4 88.40.6 74.71.3 71.83.3 69.32.1 97.01.1
QQP 75.90.5 55.61.3 89.40.2 67.90.2 93.70.5 88.10.7 72.00.5 71.50.9 62.02.2 88.74.2
QNLI 75.60.5 55.52.0 89.20.2 69.61.3 93.80.2 87.80.1 71.10.8 71.52.5 59.73.9 92.51.1
RECORD 73.10.9 54.71.3 87.70.7 65.50.9 93.70.1 88.70.3 67.51.3 77.22.3 59.31.2 74.15.2
CXC 75.90.4 55.00.2 90.00.0 70.20.1 93.90.2 88.00.4 70.30.5 68.62.5 60.33.9 89.32.4
SQUAD 76.00.7 54.91.2 87.60.1 66.80.3 93.90.5 88.70.7 71.20.4 72.40.5 63.01.6 91.31.3
DROP 73.61.3 53.01.0 86.90.9 67.51.2 93.70.2 88.20.3 65.73.1 73.42.0 60.03.6 78.58.6
SST-2 73.30.5 52.30.3 87.90.3 63.81.7 93.80.5 85.60.9 66.91.1 68.60.4 57.02.2 92.91.3
WINOGRANDE 74.10.8 52.81.6 87.80.3 62.42.5 93.70.1 86.10.5 67.91.3 71.52.5 56.71.2 83.90.8
HELLASWAG 70.02.6 32.723.6 87.50.2 60.13.9 93.60.0 86.61.4 63.95.4 70.22.1 58.02.2 85.52.6
MULTIRC 74.00.5 50.04.6 88.20.2 66.40.5 93.40.1 86.41.3 67.61.0 69.24.1 56.04.1 80.08.6
COSMOSQA 73.41.3 52.12.3 87.70.5 65.91.0 93.60.3 87.90.8 68.71.6 69.63.2 62.35.0 83.98.8
RACE 73.60.5 52.52.8 87.50.5 63.15.3 93.40.2 86.50.8 66.52.0 68.91.2 57.31.2 84.83.4

Table 6: Many tasks can benefit each other via prompt transfer. The orange-colored row shows the results of
prompt tuning T5 BASE on the target tasks from scratch (i.e., without any prompt transfer). Each cell in the other
rows represents the target task performance when transferring the prompt from the associated source task (row) to
the associated target task (column). Positive transfers are shown in green and the best results are highlighted in
bold (green). Numbers in the subscript indicate the standard deviation across 3 random seeds.

Transfer Increase (relative)

MNLI→ CB 58.9
MNLI→ COPA 29.1
RECORD→WSC 20.0
MNLI→ RTE 19.2
RECORD→ MRPC 18.7
SQUAD→ MRPC 18.7
CXC→WIC 18.1
MNLI→ BOOLQ 17.0
MNLI→ MRPC 16.5
QNLI→WIC 16.5
MNLI→WIC 16.2
CXC→ STS-B 16.0
DROP→ MRPC 15.1
SQUAD→ COPA 14.5
QQP→ MRPC 14.4
CXC→ MRPC 13.7
C4→ MRPC 13.7
COSMOSQA→ MRPC 12.9
COSMOSQA→ COPA 12.9
QQP→ COPA 12.2
QNLI→ MRPC 12.2
QQP→WIC 11.8
MNLI→ STS-B 11.8
SQUAD→ BOOLQ 11.1
QQP→ STS-B 10.9
QQP→ BOOLQ 10.7
CXC→ BOOLQ 10.7
DROP→WIC 10.7
QQP→ RTE 10.5
C4→ BOOLQ 10.4

Table 7: Positive transfers with more than 10% relative error reduction on the target task. s → t denotes the
transfer from source task s to target task t.

5057



C4
_1

C4
_2

C4
_3

W
SC

_1
W

SC
_2

W
SC

_3
SQ

uA
D_

3
SQ

uA
D_

1
SQ

uA
D_

2
DR

OP
_1

DR
OP

_2
DR

OP
_3

Re
Co

RD
_2

Re
Co

RD
_1

Re
Co

RD
_3

Co
LA

_2
Co

LA
_1

Co
LA

_3
RT

E_
3

Do
cN

LI
_3

Do
cN

LI
_1

Do
cN

LI
_2

CB
_2

CB
_1

CB
_3

M
NL

I_2
M

NL
I_1

M
NL

I_3
Cx

C_
2

Cx
C_

1
Cx

C_
3

ST
S-

B_
1

ST
S-

B_
2

ST
S-

B_
3

RT
E_

1
RT

E_
2

M
RP

C_
2

M
RP

C_
1

M
RP

C_
3

QQ
P_

3
QQ

P_
1

QQ
P_

2
QN

LI
_1

QN
LI

_2
QN

LI
_3

CO
PA

_2
CO

PA
_1

CO
PA

_3
Ye

lp
-2

_2
Ye

lp
-2

_1
Ye

lp
-2

_3
SS

T-
2_

2
SS

T-
2_

1
SS

T-
2_

3
CR

_3
CR

_1
CR

_2
W

iC
_1

W
iC

_2
W

iC
_3

M
ul

tiR
C_

1
M

ul
tiR

C_
2

M
ul

tiR
C_

3
Bo

ol
Q_

1
Bo

ol
Q_

2
Bo

ol
Q_

3
RA

CE
_3

RA
CE

_1
RA

CE
_2

Co
sm

os
QA

_1
He

lla
SW

AG
_2

He
lla

SW
AG

_3
Co

sm
os

QA
_2

He
lla

SW
AG

_1
Co

sm
os

QA
_3

W
in

oG
ra

nd
e_

3
W

in
oG

ra
nd

e_
1

W
in

oG
ra

nd
e_

2

C4_1
C4_2
C4_3
WSC_1
WSC_2
WSC_3
SQuAD_3
SQuAD_1
SQuAD_2
DROP_1
DROP_2
DROP_3
ReCoRD_2
ReCoRD_1
ReCoRD_3
CoLA_2
CoLA_1
CoLA_3
RTE_3
DocNLI_3
DocNLI_1
DocNLI_2
CB_2
CB_1
CB_3
MNLI_2
MNLI_1
MNLI_3
CxC_2
CxC_1
CxC_3
STS-B_1
STS-B_2
STS-B_3
RTE_1
RTE_2
MRPC_2
MRPC_1
MRPC_3
QQP_3
QQP_1
QQP_2
QNLI_1
QNLI_2
QNLI_3
COPA_2
COPA_1
COPA_3
Yelp-2_2
Yelp-2_1
Yelp-2_3
SST-2_2
SST-2_1
SST-2_3
CR_3
CR_1
CR_2
WiC_1
WiC_2
WiC_3
MultiRC_1
MultiRC_2
MultiRC_3
BoolQ_1
BoolQ_2
BoolQ_3
RACE_3
RACE_1
RACE_2
CosmosQA_1
HellaSWAG_2
HellaSWAG_3
CosmosQA_2
HellaSWAG_1
CosmosQA_3
WinoGrande_3
WinoGrande_1
WinoGrande_2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Our prompt-based task embeddings capture task relationships: similar tasks group together into clusters.
Additionally, task embeddings that are derived from different prompts of the same task are linked together. t_1, t_2,
t_3 correspond to three different prompt tuning runs on task t.
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Figure 8: Correlation between task similarity and task transferability. Each point represents a source prompt. The
x-axis shows the cosine similarity between the associated source and target task embeddings, averaged over three
runs for the target task (orange title). The y-axis measures the relative error reduction on the target task achieved
by each source prompt. We include the Pearson correlation coefficient (r) and p-value.
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