KG-FiD: Infusing Knowledge Graph in Fusion-in-Decoder for
Open-Domain Question Answering

Donghan Yu'*, Chenguang Zhu?, Yuwei Fang?, Wenhao Yu?*, Shuohang Wang?,
Yichong Xu?, Xiang Ren*, Yiming Yang', Michael Zeng>
!Carnegie Mellon University 2Microsoft Cognitive Services Research Group
$University of Notre Dame “University of Southern California
ldyu2@cs.cmu.edu, >chezhu@microsoft.com

Abstract

Current Open-Domain Question Answering
(ODQA) models typically include a retriev-
ing module and a reading module, where the
retriever selects potentially relevant passages
from open-source documents for a given ques-
tion, and the reader produces an answer based
on the retrieved passages. The recently pro-
posed Fusion-in-Decoder (FiD) framework is
a representative example, which is built on
top of a dense passage retriever and a gener-
ative reader, achieving the state-of-the-art per-
formance. In this paper we further improve
the FiD approach by introducing a knowledge-
enhanced version, namely KG-FiD. Our new
model uses a knowledge graph to establish the
structural relationship among the retrieved pas-
sages, and a graph neural network (GNN) to
re-rank the passages and select only a top few
for further processing. Our experiments on
common ODQA benchmark datasets (Natural
Questions and TriviaQA) demonstrate that KG-
FiD can achieve comparable or better perfor-
mance in answer prediction than FiD, with less
than 40% of the computation cost.

1 Introduction

Open-Domain Question Answering (ODQA) is the
task of answering natural language questions in
open domains. A successful ODQA model relies
on effective acquisition of world knowledge. A
popular line of work treats a large collection of
open-domain documents (such as Wikipedia arti-
cles) as the knowledge source, and design a ODQA
system that consists of a retrieving module and a
reading module. The retriever pulls out a small
set of potentially relevant passages from the open-
source documents for a given question, and the
reader produces an answer based on the retrieved
passages (Karpukhin et al., 2020; Guu et al., 2020;
Izacard and Grave, 2020). An earlier example of
this kind is DrQA (Chen et al., 2017), which used

*Work done during internship at Microsoft.

an traditional search engine based on the bag of
words (BoW) document representation with TF-
IDF term weighting, and a neural reader for extract-
ing candidate answers for each query based on the
dense embedding of the retrieved passages. With
the successful development of Pre-trained Lan-
guage Models (PLMs) in neural network research,
dense embedding based passage retrieval (DPR)
models (Karpukhin et al., 2020; Qu et al., 2021)
have shown superior performance over BoW/TF-
IDF based retrieval models due to utilization of
contextualized word embedding in DPR, and gen-
erative QA readers (Lewis et al., 2020; Roberts
et al., 2020) usually outperform extraction based
readers (Devlin et al., 2019; Guu et al., 2020) due
to the capability of the former in capturing lexical
variants with a richer flexibility.

The recently proposed Fusion-in-Decoder (FiD)
model (Izacard and Grave, 2021) is representative
of those methods with a DPR retriever and a gen-
erative reader, achieving the state-of-the-art results
on ODQA evaluation benchmarks. FiD also signif-
icantly improved the scalability of the system over
previous generative methods by encoding the re-
trieved passages independently instead of encoding
the concatenation of all retrieved passages (which
was typical in previous methods).

Inspired by the success of FiD, this paper aims
further improvements of the state of the art of
ODQA in the paradigm with a DPR retriever and
a generative reader. Specifically, we point out two
potential weaknesses or limitations of FiD as the
rooms for improvements, and we propose a novel
solution namely KG-FiD to address these issues
with FiD. The two issues are:

Issue 1. The independent assumption among
passages is not justified. ~ Notice that both the
DPR retriever and the generative reader of FiD
perform independent encoding of the retrieved pas-
sages, which means that they cannot leverage the
semantic relationship among passages for passage

4961

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4961 - 4974
May 22-27, 2022 (©)2022 Association for Computational Linguistics

embedding and answer generation even if such re-
lational knowledge is available. But we know that
rich semantic connections between passages often
provide clues for better answering questions (Min
et al., 2019).

Issue 2. Efficiency Bottleneck. For each in-
put question, the FiD generative reader receives
about 100 passages from the DPR module, with a
relatively high computational cost. For example,
the inference per question takes more than 6 tril-
lion floating-point operations. Simply reducing the
number of retrieved passages sent to the reader will
not be a good solution as it will significantly de-
crease the model performance (Izacard and Grave,
2021). How to overcome such inefficient computa-
tion issue is a challenging question for the success
of FiD in realistic ODQA settings.

We propose to address both of the above is-
sues with FiD by leveraging an existing knowledge
graph (KG) to establish relational dependencies
among retrieved passages, and employing Graph
Neural Networks (GNNs) to re-rank and prune re-
trieved passages for each query. We name our new
approach as KG-FiD.

Specifically, KG-FiD employs a two-stage pas-
sage reranking by applying GNN to model struc-
tural and semantic information of passages. Both
stages rerank the input passages and only a few
top-reranked passages are fed into subsequent mod-
ules. The first stage reranks passages returned by
the retriever, where we use the passage embeddings
generated by DPR as the initial GNN node repre-
sentation. This allows reranking a much larger set
of initial candidate passages to enhance coverage
of answers. The second stage performs joint pas-
sage reranking and answer generation, where the
node embeddings are initialized by the embeddings
of passage-question pairs output from the reader
encoder. This stage operates on a smaller candi-
date set but aims for more accurate reranking and
passage pruning.

To improve the efficiency, in the second-stage
reranking, our GNN model adopts representations
from the intermediate layer in the reader encoder
instead of the final layer to initiate passage node em-
beddings. Then only a few top reranked passages
will be passed into the higher layers of encoder
and the decoder for answer generation, while other
passages will not be further processed. This is cou-
pled with a joint training of passage reranking and
answer generation. As shown in Section 4.3, these

strategies significantly reduce the computation cost
while still maintaining a good QA performance.

Our experiments on ODQA benchmark datasets
Natural Questions and TriviaQA demonstrate that
KG-FiD can achieve comparable or better perfor-
mance in answer prediction than FiD, with only
40% of the computation cost of FiD.

2 Related Work

ODQA with text corpus ODQA usually as-
sumes that a large external knowledge source is
accessible and can be leveraged to help answer
prediction. For example, previous works (Chen
et al., 2017; Karpukhin et al., 2020; Izacard and
Grave, 2021) mainly use Wikipedia as knowledge
source which contains millions of text passages.
In this case, current ODQA models mainly con-
tains a retriever to select related passages and a
reader to generate the answer. Thus, the follow-up
works mainly aim to: (1) Improve the retriever:
from sparse retrieval based on TF-IDF or BM25
(Chen et al., 2017; Yang et al., 2019) to dense re-
trieval (Karpukhin et al., 2020) based on contextual-
ized embeddings generated by pre-trained language
models (PLMs). Moreover, some further improve-
ment are also proposed such as better training strat-
egy (Qu et al., 2021), reranking based on retrieved
passages (Wang et al., 2018; Nogueira and Cho,
2019; Mao et al., 2021), and knowledge distilla-
tion from reader to retriever (Izacard and Grave,
2020); (2) Improve the reader: changing from
Recurrent Neural Network (Chen et al., 2017) to
PLMs such as extractive reader BERT (Karpukhin
et al., 2020; Iyer et al., 2021; Guu et al., 2020) and
generative reader BART and TS (Izacard and Grave,
2021; Lewis et al., 2020). Besides, some works
(Guu et al., 2020; Lewis et al., 2020; Sachan et al.,
2021) have shown that additional unsupervised
pre-training on retrieval-related language model-
ing tasks can further improve ODQA performance.
However, none of these methods modeled the rela-
tionships among different passages.

ODQA with knowledge graph Besides the un-
structured text corpus, world knowledge also exists
in knowledge graphs (KGs), which represent enti-
ties and relations in a structural way and have been
used in a variety of NLP tasks (Xu et al., 2021b; Yu
et al., 2020; Xu et al., 2021a). Some works (Berant
et al., 2013; Sun et al., 2018, 2019; Xiong et al.,
2019) restrict the answer to be entities in the knowl-
edge graph, while our work focus on more general

4962

ODQA setting where the answer can be any words
or phrases. Under this setting, some recent efforts
have been made to leverage knowledge graphs for
ODQA (Min et al., 2019; Asai et al., 2020; Zhou
et al., 2020). For example, UniK-QA (Oguz et al.,
2020) transforms KG triplets into text sentences
and combine them into text corpus, which loses
structure information of KG. Other works use KG
to build relationship among passages similar to
ours. KAQA (Zhou et al., 2020) use passage graph
to propagate passage retrieve scores and answer
span scores. Graph-Retriever (Min et al., 2019)
iteratively retrieve passages based on the relation-
ship between passages, and also use passage graph
to improve passage selection in an extractive reader.
However, applying KG to improve the recent ad-
vanced FiD framework remains unstudied.

3 Method

In the following sections, we first introduce how to
apply KG to build a graph structure among the re-
trieved passages (Section 3.1). Then we show how
we adopt the graph-based stage-1 reranking with
DPR retriever to improve passage retrieval (Section
3.2). Next we introduce joint stage-2 reranking and
answer generation in the reading module (Section
3.3). Finally we illustrate the improvement of effi-
ciency by using intermediate layer representation
for stage-2 reranking (Section 3.4). The overview
of our framework is illustrated in Figure 1.

3.1 Construct Passage Graph using KG

The intuition behind using KG is that there ex-
ists the structural relationship among the retrieved
passages which can be captured by the KG. Sim-
ilar to (Min et al., 2019), we construct the pas-
sage graph where vertices are passages of text and
the edges represent the relationships that are de-
rived from the external KGs as KG = {(ep,r,e1)},
where ey, 7, e; are the head entity, relation and tail
entity of a triplet respectively.

First, we formalize the definition of a passage.
Following previous works (Wang et al., 2019;
Karpukhin et al., 2020), each article in the text
corpus is split into multiple disjoint text blocks
of 100 words called passages, which serve as the
basic retrieval units. We assume there is a one-
one mapping between the KG entities and articles
in the text corpus. Specifically, we use English
Wikipedia as the text corpus and English Wiki-
data (Vrandeci¢ and Krotzsch, 2014) as the knowl-

edge graph, since there exists an alignment between
the two resources!. For example, for the article ti-
tled with “New York Yankees”, it contains passages
such as “The New York Yankees are an American
professional baseball team ...”. The article also
corresponds to a KG entity with the same name as
“New York Yankees”.

Then we define the mapping function e = f(p),
where the KG entity e corresponds to the article
which p belongs to. Note that one passage can only
be mapped to one entity, but multiple passages
could be mapped to the same entity. The final
passage graph is defined as G = {(p;, pj)}, where
passages p; and p; are connected if and only if their
mapped entities are directly connected in the KG,
ie., (f(pi),, f(p])) € Kg.

Since the total number of passages is very large,
e.g., more than 20M in Wikipedia, constructing
and maintaining a graph over all the passages is
inefficient and memory-consuming. Thus, we build
a passage graph on the fly for each question, based
on the retrieved passages.

3.2 Passage Retrieving & Stage-1 Reranking

DPR Retriever: Our framework applies DPR
(Karpukhin et al., 2020) as the retriever, which
uses a BERT based passage encoder to encode all
the IV passages in the text corpus {p1,p2, - , PN}
Suppose all the passage embeddings are fixed and
stored in memory as M € RV*P where D is the
hidden dimension:

M; = BERT(p;) fori € {1,2,---N} (1)

For an input question ¢, DPR applies another BERT-
based question encoder to obtain its representation
Q), then it builds on FAISS (Johnson et al., 2019) to
conduct fast dot-product similarity search between
Q@ and M, and returns N1 (N7 < N) passages
with the highest similarity scores.

Stage-1 Reranking: We see that the DPR re-
triever returns N7 passages which are indepen-
dently retrieved based on the similarity between
the question and each passage, without considering
inter-passage relationship. Thus instead of directly
retrieving N7 passages for the reader, we propose to
first retrieve Ny (Ng > Np) passages, then rerank
them and output top- N7 reranked passages into the
reader.

Following Section 3.1, we construct a graph
among the Ny retrieved passages denoted as Gy.

"Entity recognition and linking can be used if there is no
such alignment.

4963

When did the Yankees
move to New York?

Encoder
L, Layers

Encoder

L-L; Layers .

@
O
O

> L, Layers

Encoder

® N, Passages

Retrieved

Passages &
Yankee Qperator New York

Text .
uestion + P
Knowledge R ?PR @
Source || Retriever

Question + P3

Encoder 8
L, Layers o

Encoder
L-L; Layers

Embeddings

Stadium Yankees

Staten Island Parent New York [——
Yankees Club Yankees

-
No Passages

Yankee
Stadium

New York

Yankees P4

Yankees

'

% :

'

1Staten Island !
P6 !

'

'

Stage-1 Reranking

Question + P5

Question + P7

i

Encoder
L, Layers
Encoder
L, Layers
) A Concatenation
N1 Passages
Decoder

Figure 1: Overall Model Framework. Pi indicates the node of the passage originally ranked the ¢-th by the DPR
retriever, with the article title below it. The left part shows passage retrieval by DPR, passage graph construction
based on KG (Section 3.1) and stage-1 reranking (Section 3.2). The right part shows joint stage-2 reranking and
answer generation in the reading module (Section 3.3 and 3.4).

We aim to rerank the retrieved passages based on
both the structural information and the textual se-
mantic information of them.

To represent the semantic information of pas-
sages, one can use another pre-trained language
model to encode the passage texts, but this will not
only include lots of additional model parameters,
but also incur heavy computational cost as Ny can
be large. To avoid both additional memory and
computation cost, we propose to reuse the offline
passage embeddings M generated from the DPR
retriever in Equation 1 as the initial node representa-
tion: E\”) = M,, where {r;i € {1,2,---,No}}
is the set of retrieved passage indices.

Then we employ a graph attention network
(GAT) (Velickovic et al., 2018) with L, layers
as GNN model to update representations for each
node based on the passage graph and initial repre-
sentation. The [/-th layer of the GNN model updates
the embedding of node ¢ as follows:

! - =
EY =hETVAE Y i jea) @

where h is usually a non-linear learnable function
which aggregates the embeddings of the node it-
self and its neighbor nodes. The reranking score

for each passage pr, is calculated by ;"

QTEZ.(LQ), where () is the question embedding also
generated by the DPR retriever. Then we sort the re-
trieved passages by the reranking scores, and input
the top-N; passages into the reader. The training
loss of passage ranking for each question is:

No stage-1
_ exp(s;)
£itage | Z y; log No : stage-1
— ijl exp(Sj)

3

where ; = 1 if p,., is the gold passage?® that con-
tains the answer, and O otherwise.

As we only add a lightweight graph neural net-
work and reuse the pre-computed and static DPR
passage embeddings, our reranking module can
process a large number of candidate passages effi-
ciently for each question. In experiments, we set
Ny = 1000 and Ny = 100.

3.3 Joint Stage-2 Reranking and Answer
Generation

In this section, we briefly introduce the vanilla
FiD reading module before illustrating our joint

2We follow Karpukhin et al. (2020) on the definition of
gold passages.

4964

reranking method. We suppose the reader takes /Vy
retrieved passages {Pa;; Pags " * s paNl} as input.

Vanilla FiD Reading Module: We denote the
hidden dimension as H and number of encoder
layers and decoder layers as L, FiD reader first
separately encodes each passage p,, concatenated
with question ¢:

P = T5-Embed(q + pa,) € R, (4)
Pgl) = T5—Encoderl(P(l71)) e RT¥H — (5)

7

where T}, is the sequence length of a passage con-
catenated with the question. T5-Embed(-) is the
initial embedding layer of TS5 model (Raffel et al.,
2019) and T5-Encoder;(-) is the I-th layer of its
encoder module. Then the token embeddings of
all passages output from the last layer of the en-
coder are concatenated and sent to the decoder to
generate the answer tokens A:

L)

A = T5-Decoder ([PgL);Pg L)

;-~;P§V1]) (6)

Stage-2 Reranking: Note that vanilla FiD
reader neglect the cross information among pas-
sages, and the joint modeling in the decoding pro-
cess makes it vulnerable to the noisy irrelevant
passages. Thus, we propose to leverage the pas-
sage graph to rerank the input [N passages during
the encoding and only select top-Ny (N < N7)
reranked passages into the decoder, which is named
as stage-2 reranking.

Similar to stage-1 reranking, the reranking
model is based on both the structural information
and the textual semantic information of passages.
We denote the passage graph as Gy, which is a
subgraph of Gy. To avoid additional computation
and memory cost, we propose to reuse the encoder-
generated question-aware passage representation
from FiD reader for passage reranking as it is al-
ready computed in Equation 5. Specifically, the ini-
tial node embeddings ZZ-(O) for passage p,, comes
from the first token embedding of the final layer in
the FiD-Encoder, i.e., Zfo) = PEL) (0) € RP. Then
same as stage-1 reranking, we also employ a GAT
(Velickovic et al., 2018) with L, layers as the graph
neural network (GNN) model to update represen-
tations for each node based on the passage graph,
similar to Equation 2: Z(l9) = GAT(Z() G1).
The reranking score of passage pg, is calculated
by 5392 = WTz"9) where W is a trainable
model parameter. After reranking, only the final

top-Na (N2 < Njp) passages are sent for decoding.
Suppose their indices are {g1, g2, - ,gn,}, the
decoding process in Equation 6 becomes:

_ L).pL).. .pL
A = T5-Decoder ([P{F;P{L); - i PUD)) (7)
where A is the generated answer. Similar to stage-1

reranking, the training loss of passage ranking for
each question is:

N1
S
=1

exp(s; "))
2
it exp(s5)

®)

where y; = 1if p,, is the gold passage that contains
the answer, and O otherwise.

The passage reranking and answer generation are
jointly trained. We denote the answer generation
loss for each question is L, then the final training
loss of our reader module is £ = £, + /\Ef}age'z
where A is a hyper-parameter which controls the
weight of reranking task in the total loss.

Note that the first stage reranking is based on
DPR embeddings, which are are high-level (one
vector per passage) and not further trained. While
the second stage is based on reader-generated
passage-question embeddings, which are semantic-
level and trainable as part of the model output.
Thus the second stage can better capture semantic
information of passages and aims for more accu-
rate reranking over a smaller candidate set. In the
experiment, we set N1 = 100 and N2 = 20.

>

3.4 Improving Efficiency via Intermediate
Representation in Stage-2 Reranking

Recall that in the stage-2 reranking, we take the
passage representation from the last layer of reader
encoder for passage reranking. In this section, we
propose to further reduce the computation cost by
taking the intermediate layer representation rather
than the last layer. The intuition is that answer gen-
eration task is more difficult than passage reranking
which only needs to predict whether the passage
contains the answer or not. Thus we may not need
the representation from the whole encoder module
for passage reranking.

Suppose we take the representation from the L-
th layer (1 < Ly < L), ie., 2" = P%Y(0) for
i €{1,2,---, N1}, and the reranking method re-
mains the same. Then only the top N3 (N2 < Ny)
reranked passages will go through the rest lay-
ers of FiD-encoder. Suppose their indices are

4965

Ig = {915927"' agNz}’ for ! Z L1+1:

€))

i

Pl _ {TS—Encoderl(PZ(.l_l)) ifiel,
Stop-Computing else
Then ng),Pg), e 7P§]L\,)2 are sent into the de-
coder for answer generation as in Equation 7. In
Section 4.3, we demonstrate this can reduce 60%
computation cost than the original FiD while keep-
ing the on-par performance on two benchmark
datasets.

3.5 Analysis on Computational Complexity

Here we analyze the theoretical time complexity of
our proposed KG-FiD compared to vanilla FiD.
More practical computation cost comparison is
shown in Appendix A.5. Because both the compu-
tations of DPR retrieving and stage-1 reranking are
negligible compared to the reading part, we only
analyze the reading module here.

Suppose the length of answer sequence A is de-
noted as Ty and the average length of the passage
(concatenated with question) is 7. For vanilla
FiD reader, the time complexity of the encoder
module is O(L - Ny - Tg), where L, N1 denote
the number of encoder layers and the number of
passages for reading. The square comes from the
self-attention mechanism. The decoder time com-
plexity is O(L-(N1- T, Ty +12)), where N1-T,,- T,
comes from the cross-attention mechanism. For our
reading module, all the N; candidate passages are
processed by the first L, layers of encoder. But
only Ns passages are processed by the remain-
ing L — Ly encoder layers and sent into the de-
coder. Thus, the encoder computation complexity
becomes O((Ly- N1+ (L—Ly)-Na) -Tp?), and the
decoder computation takes O(L-(No-Tp- T, +T72)).
Because L; < L, Ny < Ny, both the encoding
and decoding of our method is more efficient than
vanilla FiD.

Furthermore, the answer is usually much shorter
than the passage (which is the case in our experi-
ments), i.e., T, < T},. Then the decoding compu-
tation can be negligible compared to the encoding.
In this case, the approximated ratio of saved com-
putation cost brought by our proposed method is:

SZl_(L1'N1—|-(L—L1)-N2)-TpQ

L-N; -T2
Ly Ny
—(1- -2
(1-F0-5)

This shows that we can reduce more computation
cost by decreasing L1 or No. For example, if set-
ting L1 = L/4, No = N;1/5, we can reduce about
60% of computation cost. More empirical results
and discussions will be presented in Section 4.3.

4 Experiment

In this section, we conduct extensive experiments
on two most commonly-used ODQA benchmark
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) which is based on Google Search
Queries, and TriviaQA (Joshi et al., 2017) which
contains questions from trivia and quiz-league web-
sites. We follow the same setting as (Izacard and
Grave, 2021) to preprocess these datasets, which is
introduced in Appendix A.1. All our experiments
are conducted on 8 Tesla A100 40GB GPUs.

4.1 Implementation Details

Knowledge Source: Following (Karpukhin et al.,
2020; Izacard and Grave, 2021), we use the English
Wikipedia as the text corpus, and apply the same
preprocessing to divide them into disjoint passages
with 100 words, which produces 21M passages in
total. For the knowledge graph, we use English
Wikidata. The number of aligned entities, relations
and triplets among these entities are 2.7M, 974 and
14M respectively.

Model Details: For the retrieving module, we
use the DPR retriever (Karpukhin et al., 2020)
which contains two BERT (base) models for encod-
ing question and passage separately. For the GNN
reranking models, we adopt 3-layer Graph Atten-
tion Networks (GAT) (Velickovic et al., 2018). For
the reading module, same as (Izacard and Grave,
2021), we initialize it with the pretrained T5-base
and T5-large models (Raffel et al., 2019), and we
name the former one as KG-FiD (base) and the
latter one as KG-FiD (large). Our implementa-
tion is based on the HuggingFace Transformers
library (Wolf et al., 2019). For number of passages,
we set Ng = 1000, Ny = 100, N; = 20. The
training process of our method is introduced in Ap-
pendix A.3. More results about model design and
hyper-parameter search is in Appendix A.4.

Evaluation: We follow the standard evaluation
metric of answer prediction in ODQA, which is the
exact match score (EM) (Rajpurkar et al., 2016). A
generated answer is considered correct if it matches
any answer in the list of acceptable answers after

4966

normalization®. For all the experiments, we con-
duct 5 runs with different random seeds and report
the averaged scores.

4.2 Baseline Methods

We mainly compare KG-FiD with the baseline
model FiD (Izacard and Grave, 2021). For other
baselines, we compare with representative meth-
ods from each category: (1) not using external
knowledge source: TS5 (Roberts et al., 2020) and
GPT-3 (Brown et al., 2020); (2) reranking-based
methods: RIDER (Mao et al., 2021) and RECON-
SIDER (Iyer et al., 2021); (3) leveraging knowl-
edge graphs or graph information between pas-
sages: Graph-Retriever (Min et al., 2019), Path-
Retriever (Asai et al., 2020), KAQA (Zhou et al.,
2020), and UniK-QA (Oguz et al., 2020). We also
compare with methods (4) with additional large-
scale pre-training: REALM (Guu et al., 2020),
RAG (Lewis et al., 2020) and Joint Top-K (Sachan
etal., 2021).

4.3 Main Results

Comparison with Baselines: Table 1 shows the
results of our method and all baselines. We see that
our proposed model KG-FiD consistently and sig-
nificantly improves FiD on both NQ and TriviaQA
datasets over both base and large model. Specifi-
cally, for large model, KG-FiD improves FiD by
1.5% and 1.1% on two datasets respectively, which
has larger improvement compared to base model.
We think the reason is that more expressive reader
will also benefit the stage-2 reranking since the
initial passage embeddings are generated by the
reader encoder module. We also see that our pro-
posed method outperforms all the baseline meth-
ods except UniK-QA (Oguz et al., 2020). How-
ever, UniK-QA uses additional knowledge source
Wikipedia-Table for retrieval, which is highly re-
lated with the NQ dataset and makes it unfair to
directly compare with our method.

Efficiency & Accuracy: Table 2 show the de-
tailed comparison between our method and FiD
in the large model version. The results of base
model version is shown in Appendix A.4. Be-
sides EM score, we also report the ratio of compu-
tation flops (#FLOPs) and inference latency (per
question). The detailed calculation of #FLOPs is
shown in Appendix A.5. From table 2, we see

3The normalization includes lowercasing and removing
articles, punctuation and duplicated whitespace.

Model #params NQ TriviaQA
T5 11B 36.6 -
GPT-3 (few-shot) 175B 29.9 -
RIDER 626M 48.3 -
RECONSIDER 670M 45.5 61.7
Graph-Retriever 110M 34.7 55.8
Path-Retriever 445M 31.7 -
KAQA 110M - 66.6
UniK-QA* 990M 54.00 64.1*
REALM 330M 404 -
RAG 626M 44.5 56.1
Joint Top-K 440M 49.2 64.8
FiD (base) 440M 482 65.0
FiD (large) 90M 514 67.6
Our Implementation

FiD (base) 440M 48.8 66.2
KG-FiD (base) 443M 49.6 66.7
FiD (large) 990M 51.9 68.7
KG-FiD (large) 994M 534 69.8

Table 1: Exact match score of different models over the
test sets of NQ and TriviaQA datasets. * means that
additional knowledge source Wikipedia-Tables is used
in this method.

that (1) for KG-FiD, decreasing L; can improve
the computation efficiency as analyzed in Section
3.4, while increasing L; can improve the model
performance. We think the performance improve-
ment comes from the noise reduction of passage
filtering. For a larger L1, the passage embeddings
for reranking will have a better quality so that the
gold passages are less likely to be filtered out. (2)
Simply reducing the number of passages /N7 into
vanilla FiD reader can reduce computation cost,
but the performance will also drop significantly
(from 51.9 to 50.3 on NQ dataset). (3) Our model
can achieve the performance on par with FiD with
only 38% of computation cost. When consum-
ing the same amount of computations (L1 = 24),
our model significantly outperforms FiD on both
NQ and TriviaQA datasets. These experiments
demonstrate that our model is very flexible and can
improve both the efficiency and effectiveness by
changing L.

4.4 Ablation Study

Effect of Each Reranking Stage: Since our pro-
posed graph-based reranking method are applied
in both retrieving stage (Section 3.2) and reading
stage (Section 3.3). We conduct ablation study

4967

Model #FLOPs NQ TriviaQA

EM Latency (s) EM Latency (s)
FiD (N1=40) 0.40x 50.3 0.74 (0.45x) 67.5 0.73 (0.44x)
FiD (N1=100) 1.00x 51.9 1.65(1.00x) 68.7 1.66 (1.00x)
KG-FiD (N;=100, L;=6) 0.38x 52.0 0.70 (0.42x) 68.9 0.68 (0.41x)
KG-FiD (N1=100, L;=12) 0.55x 52.3 0.96 (0.58x) 69.2 0.94 (0.57x)
KG-FiD (N1=100, L1=18) 0.72x 52.6 1.22(0.74x) 69.8 1.22(0.73x)
KG-FiD (N;=100,L;=24) 0.90x 534 1.49(0.90x) 69.8 1.48 (0.89x)

Table 2: Inference #FLOPs, Latency (second) and Exact match score of FiD (large) and KG-FiD (large). N; is
the number of passages into the reader and L is the number of intermediate layers used for stage-2 reranking as
introduced in Section 3.4. The details of flop computation is introduced in Appendix A.5.

Model NQ TriviaQA
base large base large
FiD 488 519 66.2 68.7
KG-FiD 49.6 534 66.7 69.8
w/o Stage-1 49.3 53.1 662 69.5
w/o Stage-2 494 523 665 692

Table 3: Ablation study of our graph-based reranking
method in two stages. EM scores are reported over
NQ and Trivia datasets with both base and large model
version.

to validate the effectiveness of each one. Table
3 shows the experiment results by removing each
module. We see the performance of KG-FiD drops
when removing any of the two reranking modules,
demonstrating both of them can improve model
performance. Another thing we observe is that
stage-1 reranking is more effective in base model
while stage-2 reranking is more effective in large
model. This is reasonable since stage-2 reranking
relies on the effectiveness of reader encoder mod-
ule, where the large model is usually better than
the base model.

Passage Ranking Results: We additionally
show that our proposed GNN reranking method
can improve the passage retrieval results. This is
demonstrated in Figure 2, where we report Hits@K
metric over NQ test set, measuring the percentage
of top-K retrieved passages that contain the gold
passages (passages that contain the answer). We
see that DPR+stage-1 reranking consistently out-
performs DPR for all the K € {10, 20, 50, 100}.
With two stages of reranking, the retrieval results
are further improved for K € {10,20} (We only
cares about K < 20 for stage-2 reranking since
Ny = 20). This shows that such reranking can
increase the rank of gold passages which are previ-

-%- DPR
/ DPR+stage-1

! —o— DPR+stage-1&2

10 20 50 100
K

Figure 2: Passage ranking results over NQ test set of
DPR retriever and our proposed two-stage rerankings
over base model.

ously ranked lower by DPR retriever and improve
the efficacy of passage pruning.

5 Conclusion

This work tackles the task of Open-Domain Ques-
tion Answering. We focus on the current best
performed framework FiD and propose a novel
KG-based reranking method to enhance the cross-
modeling between passages and improve compu-
tation efficiency. Our two-stage reranking meth-
ods reuses the passage representation generated
by DPR retriver and the reader encoder and ap-
ply graph neural networks to compute reranking
scores. We further propose to use the intermedi-
ate layer of encoder to reduce computation cost
while still maintaining good performance. Exper-
iments on Natural Questions and TriviaQA show
that our model can significantly improve original
FiD by 1.5% exact match score and achieve on-par
performance with FiD but reducing over 60% of
computation cost.

4968

6 Acknowledgements

We thank all the reviewers for their valuable com-
ments. We also thank Woojeong Jin, Dong-Ho
Lee, and Aaron Chan for useful discussions. Dong-
han Yu and Yiming Yang are supported in part by
the United States Department of Energy via the
Brookhaven National Laboratory under Contract
No. 384608.

References

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2020. Learn-
ing to retrieve reasoning paths over wikipedia graph
for question answering. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870-1879,
Vancouver, Canada. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Srinivasan Iyer, Sewon Min, Yashar Mehdad, and Wen-
tau Yih. 2021. RECONSIDER: Improved re-ranking
using span-focused cross-attention for open domain
question answering. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1280—1287, Online.
Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2020. Distilling
knowledge from reader to retriever for question an-
swering. arXiv preprint arXiv:2012.04584.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874-880, Online. Association for Computa-
tional Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman

4969

https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://doi.org/10.18653/v1/2021.naacl-main.100
https://doi.org/10.18653/v1/2021.naacl-main.100
https://doi.org/10.18653/v1/2021.naacl-main.100
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276

Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurlPS 2020, December 6-12, 2020, virtual.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Reader-guided passage reranking for open-
domain question answering. In Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP
2021, pages 344-350, Online. Association for Com-
putational Linguistics.

Sewon Min, Danqgi Chen, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Knowledge guided text re-
trieval and reading for open domain question answer-
ing. arXiv preprint arXiv:1911.03868.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2020.
Unified open-domain question answering with struc-
tured and unstructured knowledge. arXiv preprint
arXiv:2012.14610.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5835-5847, On-
line. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

Devendra Sachan, Mostofa Patwary, Mohammad
Shoeybi, Neel Kant, Wei Ping, William L. Hamil-
ton, and Bryan Catanzaro. 2021. End-to-end training
of neural retrievers for open-domain question answer-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6648-6662, Online. Association for Computational
Linguistics.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380—
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231-4242,
Brussels, Belgium. Association for Computational
Linguistics.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Petar Velickovic, William Fedus, William L. Hamil-
ton, Pietro Lio, Yoshua Bengio, and R. Devon Hjelm.
2019. Deep graph infomax. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Denny Vrandeci¢ and Markus Krétzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo
Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R 3:
Reinforced ranker-reader for open-domain question
answering. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallap-
ati, and Bing Xiang. 2019. Multi-passage BERT: A
globally normalized BERT model for open-domain
question answering. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language

4970

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.findings-acl.29
https://doi.org/10.18653/v1/2021.findings-acl.29
https://arxiv.org/abs/1911.03868
https://arxiv.org/abs/1911.03868
https://arxiv.org/abs/1911.03868
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2012.14610
https://arxiv.org/abs/2012.14610
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2021.acl-long.519
https://doi.org/10.18653/v1/2021.acl-long.519
https://doi.org/10.18653/v1/2021.acl-long.519
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D18-1455
https://doi.org/10.18653/v1/D18-1455
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://doi.org/10.18653/v1/D19-1599
https://doi.org/10.18653/v1/D19-1599
https://doi.org/10.18653/v1/D19-1599

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5878-5882, Hong Kong, China. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2019. Improving question
answering over incomplete KBs with knowledge-
aware reader. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4258-4264, Florence, Italy. Associa-
tion for Computational Linguistics.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Ruochen Xu, Yuwei Fang, Chenguang Zhu, and Michael
Zeng. 2021a. Does knowledge help general nlu? an
empirical study. arXiv preprint arXiv:2109.00563.

Yichong Xu, Chenguang Zhu, Ruochen Xu, Yang Liu,
Michael Zeng, and Xuedong Huang. 2021b. Fus-
ing context into knowledge graph for commonsense
question answering. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1201-1207, Online. Association for Computa-
tional Linguistics.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
BERTserini. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 72-77, Minneapolis, Minnesota. Association
for Computational Linguistics.

Donghan Yu, Chenguang Zhu, Yiming Yang, and
Michael Zeng. 2020. Jaket: Joint pre-training of
knowledge graph and language understanding. arXiv
preprint arXiv:2010.00796.

Mantong Zhou, Zhouxing Shi, Minlie Huang, and
Xiaoyan Zhu. 2020. Knowledge-aided open-
domain question answering. arXiv preprint
arXiv:2006.05244.

A Appendix
A.1 Dataset

The datasets we use are Natural Questions (NQ)
and TriviaQA. The open-domain version of NQ is
obtained by discarding answers with more than 5
tokens. For TriviaQA, its unfiltered version is used

for ODQA. We also convert all letters of answers
in lowercase except the first letter of each word on
TriviaQA. When training on NQ, we sample the an-
swer target among the given list of answers, while
for TriviaQA, we use the unique human-generated
answer as generation target. For both datasets, we
use the original validation data as test data, and
keep 10% of the training set for validation.

A.2 Preliminary Analysis

We conduct preliminary analysis on the graph con-
structed among passages. Note that for each ques-
tion, we first apply the retriever to retrieve a few
candidate passages, then build edge connection
only among the retrieved passages, which means
that the passage graph is question-specific. Since
the passage graph depends on the retrieved pas-
sages, before further utilizing the graph, we need
avoid two trivia situations: (1) all the retrieved
passages come from the same article; (2) The num-
ber of graph edges is very small. Thus we con-
duct statistics of the passage graphs on two ODQA
benchmark datasets, which is shown in Figure 3.
For each question, the number of retrieved passages
is 100. We see that the two trivia situations only
happen for a small portion of questions.

A.3 Training Process

For training our framework, we adopt the separate-
training strategy to avoid out-of-memory issue: we
first train the DPR model following its original
paper, then freeze the DPR model to train the stage-
1 reranking module, and finally jointly train stage-2
reranking and reader part. For the training of stage-
1 reranking, the optimizer is AdamW (Loshchilov
and Hutter, 2019) with learning rate as 1e-3 and
linear-decay scheduler. The weight decay rate is
0.01. Batch size is set as 64. The number of total
training steps is 15k, and the model is evaluated
every 500 steps and the model with best validation
results is saved as the final model. For the training
of reading part, we adopt the same training setting
except that the learning rate is le-4 for the base
model and Se-5 for the large model. We also adopt
learning rate warm up with 1000 steps.

A.4 Additional Experiment Results

We show additional experiment results in this sec-
tion, which includes the efficiency and performance
comparison between FiD (base) and KG-FiD (base)
shown in Table 4, and hyper-parameter search re-
sults listed below:

4971

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/P19-1417
https://doi.org/10.18653/v1/P19-1417
https://doi.org/10.18653/v1/P19-1417
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/2021.findings-acl.102
https://doi.org/10.18653/v1/N19-4013
https://doi.org/10.18653/v1/N19-4013
https://arxiv.org/abs/2006.05244
https://arxiv.org/abs/2006.05244

8% 15%
13%
6%
n n 11%
'§ % '5 8%
§ 4% § 6%
o
g 2% H#* 4%
1% 2%
0% 0% -
0 20 40 60 80 20 40 60 80 100
#Distinct Titles #Distinct Titles
(a) Results on NQ (b) Results on TriviaQA
30%
27% 26%
w 22% o 22%
é 16% % ke
g 3 13%
Q1% g 55,
3% 4%
0% Q Q Q Q Q \! 0% Q Q Q Q Q \!
AN o o o P B SN A W
Q A0 60’\' \00’6300 ,\0 \000 . Q A0 0 > ‘\00 6600,\0 -\QQQ :
#Passage Edges #Passage Edges
(c) Results on NQ (d) Results on TriviaQA
Figure 3: Preliminary Analysis on the retrieved passages by DPR.
Model #FLOPs NQ TriviaQA
EM Latency (s) EM Latency (s)
FiD (N1=40) 0.40x 472 027 (047x) 64.1 0.27 (0.46x)
FiD (N;=100) 1.00x 48.8 0.58 (1.00x) 66.2 0.59 (1.00x)
KG-FiD (N1=100, L1=3) 0.38x 484 0.27(047x) 65.6 0.26(0.44%)
KG-FiD (N1=100, L1=6) 0.56x 49.0 0.35(0.60x) 66.1 0.34(0.58x)
KG-FiD (N1=100, L1=9) 0.73x 493 043(0.74x) 66.3 0.43(0.73x)
KG-FiD (N1=100, L1=12) 0.91x 49.6 0.50(0.86x) 66.7 0.49 (0.83x)

Table 4: Inference #FLOPs, Latency (second) and Exact match score of FiD (base) and KG-FiD (base). V; is
the number of passages into the reader and L; is the number of intermediate layers used for stage-2 reranking as
introduced in Section 3.4. The details of flop computation is introduced in Appendix A.S.

4972

Model H@] H@S5 H@I0 H@20
GCN 49.1 69.7 757 79.9
GAT 50.1 70.1 76.1 80.2

#Layers
1 49.0 69.7 758 79.8
2 496 700 76.0 80.2
3 50.1 70.1 76.1 80.2
4 495 699 76.1 80.1

Table 5: Passage Retrieval Results on NQ dev data of
our model under different GNN types and number of
layers.

GNN Model Design: We conduct tuning on
the model type and number of layers of our GNN
based reranking model. For efficiency, we rerank
100 passages returned by DPR retriever and search
them based on the passage retrieval results. Table 5
shows the Hits scores for different choices. We see
that GAT outperforms vanilla GCN model (Kipf
and Welling, 2017) which is reasonable since GAT
leverage attention to reweight neighbor passages by
their embeddings. The best choice for the number
of GNN layers is 3. Note that other GNN models
such as GIN (Xu et al., 2019), DGI (Velickovic
et al., 2019) can also be applied here and we leave
the further exploration of GNN models as future
work.

Ny and \. For the stage-2 reranking part in Sec-
tion 3.3, we also conduct hyper-parameter search
on the number of passages after filtering: Ny €
{10, 20, 30} and the weight of reranking loss when
training the reading module: A € {0.01,0.1,1.0}.
As shown in Table 6, No = 20 achieves better re-
sults than Ny = 10, but further increasing Ny does
not bring performance gain while decreasing the
efficiency of model since the number of passages
to be processed by the decoder is increased. Thus
we choose Ny = 20. For the loss weight A\, we
found that with its increment, the performance first
increases then significantly drops. This shows that
it’s important to balance the weight of two training
losses, as we want the model to learn better pas-
sage reranking while not overwhelming the training
signal of answer generation.

A.5 FLOPs Computation

In this section we compute the FLOPs of each mod-
ule*. The results are shown in Table 7 and 8 for

4Our computation is based on https://github.com/google-
research/electra/blob/master/flops_computation.py

Model No=10 N2=20 N3=30

KG-FiD 47.6 48.0 48.0
A=0.01 A=0.1 A=1.0

KG-FiD 47.7 48.0 46.6

Table 6: EM scores on NQ dev data of our model un-
der different choices of filtered passage numbers and
weights of reranking loss.

base model and large model respectively. Before
the computation, we first show some basic statistics
on two benchmark datasets: the average question
length is 20, and the average answer length is 5.
For the reading part, the length of concatenated pas-
sage question pair is 250, number of input passages
is N1 = 100.

We first calculate the number of FLOPs of
vanilla FiD model. For the retrieving part, it con-
tains both question encoding and passage similarity
search. We only consider the former part as the
latter part depends on the corpus size and search
methods and is usually very efficient. The question
encoding flops by BERT-based model is about 4.4
Gigaflops (GFLOPs). For the reading part, the en-
coding of each question passage pair takes about
57/174 GFLOPs for base/large model, and the en-
coding of 100 passages takes 5772/17483 GFLOPs.
The decoder part only costs 714.2/2534.5 GFLOPs
for base/large model since the average length of
answer is very small. In summary, vanilla FiD
base/large model costs 6491.0/20022.0 GFLOPs.

For our model, the computation cost of retriev-
ing part is the same as vanilla FiD. Since we set
Ny = 1000 and Ny = 100, the GAT (Velickovic
et al., 2018) computation in stage-1 reranking takes
about 3.5 GFLOPs, and the stage-2 reranking takes
only 0.4/0.6 GFLOPs for base/large model. For the
reader encoding part, the computation cost depends
on L; and Ny, which is analyzed in Section 3.5.
For the reader decoding part, where cross attention
takes most of the computation, KG-FiD only takes
about Na/N; = 1/5 cost of vanilla FiD, which is
143.9/510.0 for base/large model respectively. The
detailed flops are shown in Table 7 and 8.

4973

Stage-1

Reader

Stage-2

Reader

Model Retrieving Reranking Encoding Reranking Decoding All

FiD 4.4 - 5772.3 - 714.2 6491.0 (1.00x)
KG-FiD (L1=3) 4.4 3.5 2308.9 0.4 143.9 2461.1 (0.38x)
KG-FiD (L1=6) 4.4 3.5 3463.4 0.4 143.9 3615.5 (0.56x)
KG-FiD (L1=9) 4.4 3.5 4617.9 0.4 143.9 4770.0 (0.73x)
KG-FiD (L1=12) 4.4 3.5 5772.3 0.4 143.9 5924.5 (0.91x)

Table 7: #GFLOPs of FiD (base) and KG-FiD (base) over different stages in the model.

. Stage-1 Reader Stage-2 Reader
Model Retrieving Reraiking Encoding Reraiking Decoding Al
FiD 4.4 - 17483.2 - 2534.5 20022.0 (1.00x)
KG-FiD (L;=6) 4.4 3.5 6993.3 0.6 510.0 7511.8 (0.38x)
KG-FiD (L;=12) 4.4 35 10489.9 0.6 510.0 11008.4 (0.55x)
KG-FiD (L;=18) 4.4 3.5 13986.5 0.6 510.0 14505.1 (0.72x)
KG-FiD (L;=24) 4.4 35 17483.2 0.6 510.0 18001.7 (0.90x)

Table 8: #GFLOPs of FiD (large) and KG-FiD (large) over different stages in the model.

4974

