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Abstract

Summarizing biomedical discovery from ge-
nomics data using natural languages is an
essential step in biomedical research but is
mostly done manually. Here, we introduce
Textomics, a novel dataset of genomics data
description, which contains 22,273 pairs of
genomics data matrices and their summaries.
Each summary is written by the researchers
who generated the data and associated with
a scientific paper. Based on this dataset, we
study two novel tasks: generating textual sum-
mary from a genomics data matrix and vice
versa. Inspired by the successful applications
of k nearest neighbors in modeling genomics
data, we propose a KNN-Vec2Text model to
address these tasks and observe substantial im-
provement on our dataset. We further illustrate
how Textomics can be used to advance other
applications, including evaluating scientific pa-
per embeddings and generating masked tem-
plates for scientific paper understanding. Tex-
tomics serves as the first benchmark for gen-
erating textual summaries for genomics data
and we envision it will be broadly applied to
other biomedical and natural language process-
ing applications.'

1 Introduction

Modern genomics research has become increas-
ingly automated through being roughly divided into
three sequential steps: next-generation sequenc-
ing technology produces a massive amount of ge-
nomics data, which are in turn processed by bioin-
formatics tools to identify key variants and genes,
and, ultimately, analyzed by biologists to summa-
rize the discovery (Goodwin et al., 2016; Kanehisa
and Bork, 2003). In contrast to the first two steps
that have been automated by new technologies and
~ *Equal Contribution
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software, the last step of summarizing discovery
is still largely performed manually, substantially
slowing down the progress of scientific discovery
(Hwang et al., 2018). A plausible solution is to
automatically summarize the discovery from ge-
nomics data using neural text generation, which
has been successfully applied to radiology report
generation (Wang et al., 2021; Yuan et al., 2019)
and clinical notes generation (Melamud and Shiv-
ade, 2019; Lee, 2018; Miura et al., 2021).

In this paper, we study this novel task of gen-
erating sentences to summarize a genomics data
matrix. Several excisting approaches demonstrate
encouraging results in generating short phrases to
describe functions of a set of genes (Wang et al.,
2018; Zhang et al., 2020; Kramer et al., 2014).
However, our task is fundamentally different from
these: the input of our task is a matrix that contains
tens of thousands of genes, which could be noisier
than a set of selected genes; the outputs of our task
are sentences instead of short phrases or controlled
vocabularies.

To study this task, we curate a novel dataset, Tex-
tomics, by integrating data from PMC, PubMed,
and Gene Expression Omnibus (GEO) (Edgar et al.,
2002) (Figure 1). GEO is the default database
repository for researchers to upload their genomics
data matrices, such as gene expression matrices
and mutation matrices. Each genomics data ma-
trix in GEO is a sample by feature matrices, where
samples are from often humans or mice that are
sequenced together to study a specific biological
problem, and features are genes or variants. Each
matrix is also associated with a few sentences that
are written by researchers to summarize this data
matrix. After pre-processing, we obtain 22,273 ma-
trix summary pairs, spanning 9 sequencing technol-
ogy platforms. Each matrix has on average 2,475
samples and 22,796 features. Each summary has
on average 46 words.
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Figure 1: Flow chart of Textomics. a. Genomics data matrices and summaries are collected from GEO. Scientific
papers are collected from PMC and PubMed. Each data matrix is associated with a unique summary and a unique
scientific paper in Textomics. b. Textomics is divided into 9 sequencing platforms, spanning over various species.
Data matrices in the same platforms share the same features and can therefore be used to train a machine learning
model. c. Textomics can be used as the benchmark for a variety of tasks, including Vec2Text, Text2Vec, measuring
paper similarity, and scientific paper understanding. d. KNN-Vec2Text is developed to address the task of Vec2Text,
by first constructing a reference summary using similar genomics data matrices and then unifying these summaries

to generate a new summary.

We further propose a novel approach to automati-
cally generate a summary from a genomics data ma-
trix, which is highly noisy and high-dimensional. %
nearest neighbor (KNN) approaches have obtained
great success in genomics data by capturing the hid-
den modules within it (Levine et al., 2015; Baran
etal.,2019). The key idea of our method is to find k&
nearest summaries according to the genomics data
similarity and then exploit the attention mechanism
to convert these & nearest summaries to a new sum-
mary. Our method obtained substantial improve-
ment in comparison to baseline approaches. We
further illustrated how we can generate a genomics
data matrix from a given summary, offering the
possibility to simulate genomics data from textual
description. We then introduced how Textomics
can be used as a novel benchmark for measuring
scientific paper similarity and evaluating scientific
paper understanding. To the best of our knowledge,
Textomics and kNN-Vec2Text together build up
the first large-scale benchmark for genomics data
summary generation, and can be broadly applied
to a variety of natural language processing tasks.

Our paper is written as follows: We first in-
troduce the Textomics dataset (section 2) and de-
scribe the Text2Vec and Vec2Text tasks (section
3). We then propose a baseline model and ANN-
Vec2Text model for Vec2Text task (section 4.1)
and the model for Text2Vec task. We then evaluate
our method (section 5) and provide two applica-
tions (section 6) based on Textomics dataset. We

then discussed the related works and the potential
direction of future works (section 7 and 8).

2 Textomics Dataset

We collected genomics data matrices from Gene
Expression Omnibus (GEO) (Edgar et al., 2002).
The feature of each data matrix represents the ex-
pression level of a gene or other genomic measure-
ments of a variant (typically real numbers). The
sample of each matrix is an experimental subject,
such as an experimental animal or a patient. Each
data matrix is associated with an expert-written
summary, describing this data matrix. We obtained
in total 164,667 matrix-summary pairs, spanning
12,219 sequencing platforms.

Samples in different platforms have different
features. However, data matrices belonging to
the same sequencing platform are from the same
species and share the same set of features, thus
can be used together for model training. To further
alleviate the missing feature problem, we kept the
top-20000 features with a lower missing rate and
filtered out the rest. We further selected 9 platforms
with the average lowest rate of missing value and
the largest amount of matrix-summary pairs to guar-
antee the quality and the scale of the dataset. After
all, we imputed the resulted data matrices using
averaging imputation across different features.

Data matrices belonging to the same platform
have distinct samples (e.g., patient samples col-
lected from two hospitals). To make them com-
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parable and provide fixed-size features for ma-
chine learning models, we empirically used a five-
number summary to represent each data matrix. In
particular, we calculated the smallest, the first quar-
tile, the median, the third quartile, and the largest
value of each feature across samples in a specific
data matrix. We then concatenated these values of
all features, resulting in a 100k-dimensional fea-
ture vector for each data matrix. Compared with
other statistics such as mean, median, and mode of
the features, the five number statistics maintain the
patterns hidden in the raw matrices better. This vec-
tor will be finally used as the input to the machine
learning model.

All genomics data summaries we collected were
written by the biologists who generate the corre-
sponding genomics data matrices. Therefore, these
summaries can properly reflect biologists’ descrip-
tions of their datasets. Since the summary is the
first piece of information that one can learn about
the dataset, authors often tend to clearly character-
ize their dataset in the summary. However, directly
leveraging raw data of these summaries is question-
able. On the syntactic level, the lengths of sum-
mary for each sample are different and comments
are often used in genomics descriptions. In order
to align our data and leverage the advanced Trans-
former model that requires fix-length sentences as
well as simplifies the structure of the summary, we
empirically removed the text in the brackets and
truncated the summaries length to 64 words (the
percentage of summaries with a length greater than
64 is 41%). On the semantic level, there could
be non-informative summaries such as a simple
sentence ‘Please see our data below’ and some
outliers that are substantially different from other
summaries. In order to increase the quality of these
genomics data summaries, we manually inspected
and removed the non-informative summary and ex-
cluded the outliers based on the pairwise BLEU
(Papineni et al., 2002) scores through a progres-
sive automated procedure. Specifically, for every
summary, we treated it as the query text and cal-
culated the pairwise BLEU-1 scores with all other
summaries, filtered out those median that is lower
than 0.09, and then re-applied the procedure with
a higher threshold of 0.13. Finally, each of the 9
platforms contains 471 matrix-summary pairs on
average, presenting a desirable number of train-
ing samples to develop data summary generation
models. We summarized the statistics of these 9

platforms in Supplementary Table S1.

Some of the data matrices are associated with a
scientific paper, which describes how the authors
generated and used the data. Therefore, the data
matrix and the summary can be used to help embed
these papers. We additionally retrieved these pa-
pers from PubMed and PMC databases according
to the paper titles enclosed in GEO. We obtained
the full text for those 7,691 freely accessible ones
(Supplementary Table S1). We will introduce
two applications that jointly use scientific papers
and matrix-summary pairs in section 6.

3 Task Description

We aim to accelerate genomics discovery by gen-
erating a textual summary given the five-number
summary-based vector of a genomics data matrix.
We refer to the five-number summary-based vector
as a gene feature vector for simplicity.
Specifically, consider textual summary domain
D and gene feature vector domain V, let D =
(Dp, Dy} = {(d;,v;)}Y, %" P(D,V) be a
dataset containing /N summary-vector pairs sam-
pled from the joint distribution of these two do-
mains, where d; 2 (d}, d?, ...,d, ") denotes a to-
ken sequence and v; € R!v denotes the gene fea-
ture vector. Here d/ € C, C'is the vocabulary.
We now formally define two cross-domain gener-
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Figure 2: Density plot showing the Spearman cor-
relation between text-based similarity (y-axis) and
vector-based similarity (x-axis) on sequencing platform
GPL6246. Each dot is a pair of data samples. A larger
Spearman correlation indicates this Enc, is more accu-
rate in embedding scientific papers.

ation tasks, Vec2Text and Text2Vec, based on our
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dataset. Given a gene feature vector v;, Vec2Text
aims to generate a summary d; that could best de-
scribe this vector v;; given a textual summary d;,
Text2Vec aims to generate the gene feature vector
v; that d; describes. Since we are studying a novel
task on a novel dataset, we first examined the fea-
sibility of this task. To this end, we obtained the
dense representation of each textual summary us-
ing the pre-trained SPECTER model (Cohan et al.,
2020) and use these representations to calculate
a summary-based similarity between each pair of
summaries. We also calculated a vector-based sim-
ilarity based on the gene feature vector using the
cosine similarity. We found that these two simi-
larity measurements show a substantial agreement
(Figure 2, Supplementary Table S2). After fil-
tering out the outliers, all 9 platforms achieved a
Spearman correlation greater than 0.2, suggesting
the possibility to generate textual summary from
the gene feature vector and vice versa.

4 Methods
4.1 Vec2Text

We first introduce a baseline model that tries to en-
code gene feature vectors into the semantic embed-
ding space and then decodes it to generate text. The
baseline model contains a word embedding func-
tion Emb(.), a gene feature vector encoder Enc,(.)
and a decoder Dec,(.). Given a gene feature vector
v;, the encoder will first embed the data into a se-
mantic representation space SEO) = Enc,(v;), and
then the decoder will start from this representation
for the text generation. The generation process is
autoregressive. It generates j-th word CZZ(] )
Ej ) as:

and its
embedding s
P(dDsi7) = Decy (), j = 1,....,nq.. (1)

Then we sample the next word and obtain its em-
bedding as:

s/'=Emb(d), &7 " P(d))s["). (@)
This model is trained using the following loss func-
tion:

sample
~Y

1 IDy| 74, » )
Do Z ZlogP(dl(.j)|sl(.<])).
Dyl = j=1
3)

Ebaseline =

4.1.1 KkNN-Vec2Text Model

The baseline model attempts to learn an encoder
that projects a gene feature vector to a semantic rep-
resentation. However, the substantial noise and the
high-dimensionality of the gene feature vector pose

great challenges to effectively learn that projection.
k-nearest neighbors models have been extensively
used as the solution to overcome such issues in
genomics data analysis (Levine et al., 2015; Baran
et al., 2019). Therefore, one plausible solution
is to explicitly leverage summaries from similar
gene feature vectors to improve the generation.
Inspired by the encouraging performance in us-
ing k-nearest neighbors (kKNN) in seq2seq models
(Khandelwal et al., 2020, 2021) and genomics data
analysis (Levine et al., 2015; Baran et al., 2019),
we propose to convert the Vec2Text problem to
a Text2Text problem according to the k-nearest
neighbor of each vector.

For a given gene feature vector g, we use e; € R
to denote its Euclidean distance to another gene
feature vectors v; in D. We then select the sum-
maries of k£ samples that have the minimum Eu-
clidean distances as the reference summary list
t = [d;,...,d;.], where j,, € {1,2,...,|D|} de-
notes the index of ordered summaries w.r.t the Eu-
clidean distance, i.e, ej, < €j, < ... < €.

In addition to alleviating the noise in genomics
data using the reference summary list (Levine et al.,
2015; Baran et al., 2019), our method explicitly
converts the Vec2Text problem to a Text2Text prob-
lem, and can thus seamlessly incorporate many
advanced pre-trained language models into our
framework. The resulted problem we need to solve
is a k sources to one target generation problem.
One naive solution is to concatenate the k ref-
erence summaries together. However, this con-
catenation will make the source text much longer
than the target text and how to order each sum-
mary during concatenation also remains unclear.
Instead, we propose to transform this problem
into k one-to-one generation problem and then
use attention-based strategy to fuse them. Con-
cretely, let n; = max{n;,,...,n;, } be the maxi-
mum length among all the reference summaries.
We first get the representation of each summary
x;,, = Emb(d;,,) <X§'11¢3’ ...,xg.:f)> for m =
1,.... k. Here xgji denotes the vector embedding of
the i-th word in m-th summary. We construct fixed-
length reference summaries by padding after the
end of each summary with length less than n;. We
then utilize self-attention module (SA) (Vaswani
et al., 2017) to get the aggregated embedding of
each reference with their embeddings as well as
the gene feature vector distance e;. Let Q,, K, V.
be the query, key, value matrices of embedding
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sequence r = (r(V . r(")) we have:
SA(r) = Attention(Q,, K, V). 4)
We then calculate the attention score as following:

— SA((D LX), 5)

8Cj = SA(<ej1 TAjyy e Gy 'ajk>)v (6)
where sc; = [scjy, ...,scj,] € R¥. Here we used
a 2-layer self attention scheme to first acquire the
aggregated feature of each summary and then cal-
culate the attention score based on that. The fi-
nal score is then calculated based on the attention
scores and temperature 7 as:

exp(7 - scj,,)

- .
> g exp(7 - scj,)
Then, we aggregate embedding sequences by tak-
ing weighted averages:

=N w =10 ®
m=1

Let Py .(d) = Py, ,,(dD]d<D x),0 < 1 < ng
be the probability distribution of d") output by the
language model 6,5, conditioned on the sequences
of the embedding vectors x and the first [ — 1 se-
quence tokens. We feed the aggregated embedding
sequences into the language model to reconstruct
the summary d using an autoregressive-based loss

function:
logP,
3D — Do “7 O
deDp I=1 D

w; (7N

m

LENN-Vec2Text = —

4.2 Text2Vec

We model the reverse problem of generating the
gene feature vector v from a textual summary
d as a regression problem. Our model is com-
posed with a semantic encoder Enc,(.) and a read-
out head MLP(.). Specifically, the encoder will
embed the textual summary into dense represen-
tation x = Encgy(d), and the readout head will
map the representation to the gene feature vector
v = MLP(x). Then we train this model by min-
imizing the rooted mean squared errors (RMSE):

1 .
v = \/‘DV| Z Vi — vil 3.

V'LGDV

(10)

5 Results

5.1 Vec2Text

To evaluate the performance of ANN-Vec2Text
on the task of Vec2Text, we compared it to the
baseline models in 4.1. For the baseline mod-

els, we used a one layer MLP network as its en-
coder, and tested with different decoder structure,
including canonical Transformer (decoder of T5)
(Vaswani et al., 2017), GPT-2 (Radford et al., 2019),
and Sent-VAE (Bowman et al., 2016). For kNN-
Vec2Text, we directly used both the encoder and
the decoder of T5 (Raffel et al., 2020), one of the
state-of-the-art Transformer style models. we set
k = 4 and 7 = 0.1 as this setting achieved the
best empirical performance, though it is worth not-
ing that our model is robust on the choices of k
(from 1 to 4) and 7 (from O to 1). For all 9 plat-
forms, we reported the average performance under
5-fold cross validation to evaluate the robustness
of our method. The results of BLEU-1 score (Pa-
pineni et al., 2002) are summarized in Figure 3a.
We found that kNN-Vec2Text substantially outper-
formed other methods by a large margin. Specif-
ically, kNN-Vec2Text obtained a 0.206 BLEU-1
score on average while none of the other three meth-
ods achieved an average BLEU-1 score greater than
0.150. The prominent performance of our method
demonstrates the effectiveness of using a k-nearest-
neighbor approach to convert the Vec2Text problem
to a Text2Text problem.

To further understand the superior performance
of the kNN-Vec2Text model, we presented a case
study in Table 1. In this case study, the generated
summary is highly accurate compared to the ground
truth summary. By examining the summaries of
the 4 nearest neighbors in the gene feature vec-
tor space, we found that the generated summary
is composed of short spans from each individual
neighbor, again indicating the advantage of using
a k-nearest neighbor for this task. Our method
leveraged an attention mechanism to unify these
four neighbors, thus offering an accurate genera-
tion. We also observed consistent improvement of
our method over comparison approaches on other
metrics and summarized the results in Supplemen-
tary Table S3.

5.2 Text2Vec

We next used the Text2 Vec task to illustrate how our
dataset can be used to compare the performance of
different pre-trained language models. In particular,
we compared a recently proposed scientific paper
embedding method SPECTER (Cohan et al., 2020),
which has demonstrated prominent performance
in a variety of scientific paper analysis tasks, with
SciBERT (Beltagy et al., 2019), BioBERT (Lee
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Figure 3: Performance on Vec2Text (a) and Text2Vec (b) using Textomics as the benchmark. a. Bar plot comparing
our method KNN-Vec2Text with existing approaches on the ask of Vec2Text across 9 platforms in Textomics.
b. Bar plot comparing the performance of different scientific paper embedding methods across 9 platforms in

Textomics.

Table 1: A case study of the generated text by KNN-Vec2Text. Summaries of the four nearest neighbors in the
input space are shown. The generated text is composed of short spans from the four different neighbors (colored

in red). The BLEU-1 score for this example is 1 (prefect).

Analysis of B16 tumor microenvironment at gene expression level. The hypothesis tested in the present

Neighbor I: study was that Tregs orchestrated the immune response triggered in presence of tumors.
. This study aims to look at gene expression profiles between wildtype and Bapx1 knockout cells of the gut
Neighbor 2: .
in a E12.5 mouse embryo.
. The role of bone morphogenetic protein 2 in regulating transformation of the uterine stroma during embryo
Neighbor 3: . SN . . o . . .
implantation in mice was investigated by the conditional ablation of Bmp2 in the uterus using the mouse.
Neighbor 4: Measurement of specific gene expression in clinical samples is a promising approach for monitoring the
& " recipient immune status to the graft in organ transplantation.
. Analysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study
Generated: . . .
was that Tregs orchestrated the immune response triggered in presence of embryo.
Truth: Analysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study

was that Tregs orchestrated the immune response triggered in presence of embryo.

et al., 2020) and SentBERT (Wang and Kuo, 2020)
and the vanilla BERT (Devlin et al., 2019). While
the other language models directly take the token
sequence as the input, SPECTER model needs to
take both the abstract and the title. To make a fair
comparison, we concatenated the title and the sum-
mary as the input for models other than SPECTER.
For all 9 platforms, we reported the average perfor-
mance under 5-fold cross validation. We further
implemented a simple averaging baseline approach
that predicts the vector for a test summary accord-
ing to the average vectors of training samples. This
baseline does not utilize any textual summary and
can thus help us assess the effect of using textual
summary information in this task. We used RMSE
to evaluate the performance of all methods. We
reported the RMSE improvement of each method
over the averaging baseline model in Figure 3b.
We found that all methods outperform the baseline
approaches by gaining at least 15% improvement,
indicating the importance of considering textual
summary in this task. SPECTER achieved the best

overall performance among all five methods, sug-
gesting the advantage of separately modeling the
title and the abstract when embedding scientific
papers.

6 Applications

6.1 Evaluate paper embedding via Textomics

Embedding scientific papers is crucial to effectively
identify emerging research topics and new knowl-
edge from scientific literature. To this end, many
machine learning models have been proposed to
embed scientific papers into dense embeddings
and then applied these embeddings for a variety
of downstream applications (Cohan et al., 2020;
Lee et al., 2020; Wang and Kuo, 2020; Beltagy
et al., 2019; Devlin et al., 2019). However, there
is currently limited golden standard that can mea-
sure the similarity between two papers. As a result,
existing approaches use surrogate metrics such as
citation relationship, keywords, and user activities
to evaluate their paper embeddings (Cohan et al.,
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Figure 4: Performance on using Textomics as the benchmark to evaluate scientific paper embeddings. (A). Bar plot
showing the comparison on embedding scientific papers using Textomics as the benchmark. (B). Bar plot showing
the comparison on SPECTER embedding of different paper sections using Textomics as the benchmark.

2020; Chen et al., 2019; Wang et al., 2019).

Textomics can be used to measure these paper
embedding approaches by examining the consis-
tency between the embedding-based paper similar-
ity and the embedding-based summary similarity
since both the paper and the summary are written
by the same authors. In particular, for a pair of
summaries d;,d; € Dy, let t;, t; be the text (e.g.,
abstracts) extracted from their corresponding scien-
tific papers. Let Ency be the encoder of the paper
embedding method we want to evaluate. We first
get their embeddings as:

Sd; » de = Encd(di), EnCd(d]‘)

St;»St; = Encq(t;), Ency(t))

€Rb, (11
eRrs. (12)
We then compute the pairwise Euclidean distance

between all pairs of summaries and all pairs of
paper text as:

ls

Sai, = (s =52 eRr (3
k=1
SR k

S, = 4| Do) s eR 4)
k=1

To evaluate the quality of the encoder Enc,, we
can calculate the Spearman correlation between the
pairwise summary similarity and the pairwise text
similarity. A larger Spearman correlation means
the summary / textual contents of two samples in
the pair are better aligned with each other, which
indicates this Encg is more accurate in embedding
scientific papers. As a proof-of-concept, we ob-
tained the full text of 7,691 papers in our dataset
from the freely accessible PubMed Central. We
segmented each paper into five sections, which in-
cluded abstract, introduction, method, result and

conclusion. We first compared different paper em-
bedding methods using the abstract of a paper. The
five embedding methods we considered are intro-
duced in section 5.1. Since SPECTER takes both
the title and paragraph as the input we used the first
sentence of the summary as a pseudo-title when
encoding the summary. The results are summa-
rized in Figure 4a. We found that SPECTER was
substantially better than other methods on 8 out
of the 9 platforms. SPECTER is specifically de-
veloped to embed scientific papers by processing
the title and the abstract separately, whereas other
pre-trained language models simply concatenated
the title and the abstract. The superior performance
of SPECTER suggests the importance of separately
modeling paper title and abstract when embedding
scientific papers. SentBERT obtained the best per-
formance among four pre-trained language mod-
els, partially due to its prominent performance in
sentence-level embedding. We further noticed that
the relative performance among different methods
is largely consistent with the previous work evalu-
ated on other metrics (Cohan et al., 2020), demon-
strating the high-quality of Textomics.

After observing the superior performance of
SPECTER, we next investigated which section of
the paper can be best used to assess paper similarity.
Although existing paper embedding approaches of-
ten leverage the abstract for embedding, other sec-
tions, such as introduction and results might also be
informative, especially for papers describing a spe-
cific dataset or method. We thus applied SPECTER
to embed five different sections of each scientific
paper and used Textomics to evaluate which section
can best reflect paper similarity. We observed a con-
sistent improvement of using the abstract section
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in comparison to other paper sections (Figure 4B),
which is consistent with the intuition that the ab-
stract represents a good summary of the scientific
paper, again indicating the reliability of using Tex-
tomics to evaluate paper embedding methods.

6.2 Scientific paper understanding

Creating masked sentences and then filling in these
masks can examine whether the machine learning
model has properly understood a scientific paper
(Yang et al., 2019; Guu et al., 2020; Ghazvininejad
et al., 2019; Bao et al., 2020; Salazar et al., 2020).
However, one challenge in such research is how
to generate masked sentences that are relevant to
a given paper while also ensuring the answer is
enclosed in the paper. Our dataset could be used
to automatically generate such masked sentences
using the summary, which is highly relevant to the
paper but also not overlapped with the paper. In
particular, we can mask out keywords from the
summary and then use this masked summary as
the question and let a machine learning model to
find the answer from the non-overlapping scientific
paper. Let Cypi, be a dictionary that contains bio-
logical keywords we want to mask out from the
summary, (d;, t;) be a pair of textual summary and
paragraph text extracted from its corresponding sci-
entific paper. If the j-th word w; = dz(»J ) € Chjp in
the summary belongs to Cl;,, our proposed task is
to predict which word in Cy, is the missing word
in dpasked given t;. The masked summary dpasked
is the same as d; except its j-th word is substi-
tuted with [PAD]. For simplicity, we only mask
at most one token in d;. We, therefore, form our
task as a multi-class classification problem. Sim-
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Figure 5: Bar plot showing the accuracy of filling the
masked sentences of ten biomedical categories across
9 platforms using Textomics as the benchmark.

ilar to section 6.1, we used the paper abstract as

the paragraph text t;. To generate Cl,;,, we lever-
aged a recently developed biological terminology
dataset Graphine (Liu et al., 2021), which provides
the biological phrases spanning 227 categories. We
selected 10 categories that can produce the largest
number of masked sentences in Textomics. We
manually filtered ambiguous words and stop words.
On average, each category contains 317 keywords.
We used a fully connected neural network to per-
form the multi-class classification task. The input
feature is the concatenation of the masked summary
embedding and the paragraph embedding. We used
SPECTER to derive these embeddings as it has
obtained the best performance in our previous anal-
ysis. The results are summarized in Figure 5. We
observed improved accuracy on all ten categories,
which are much better than the 0.4% accuracy by
random guessing, indicating the usefulness of our
benchmark in scientific paper understanding. Fi-
nally, we found that the performance of each cate-
gory varied across different platforms, suggesting
the possibility to further improve the performance
by jointly learning from all platforms.

7 Related work

Our task is related to existing works that take struc-
tured data as the input and then generate the un-
structured text. Different input data modalities and
related datasets have been considered in the litera-
ture, including text triplets in RDF graphs (Gardent
et al., 2017; Ribeiro et al., 2020; Song et al., 2020;
Chen et al., 2020)), text-data tables (Lebret et al.,
2016; Rebuffel et al., 2022; Dusek et al., 2020; Re-
buffel et al., 2020; Puduppully and Lapata, 2021;
Chen et al., 2020), electronic medical records (Lee,
2018; Guan et al., 2018), radiology reports (Wang
et al., 2021; Yuan et al., 2019; Miura et al., 2021),
and other continuous data modalities without ex-
plicit textual structures such as image (Lin et al.,
2014; Cornia et al., 2020; Ke et al., 2019; Radford
et al., 2021), audio (Drossos et al., 2020; Manco
et al., 2021; Wu et al., 2021; Mei et al., 2021),
and video (Li et al., 2021; Ging et al., 2020; Zhou
et al., 2018; Li et al., 2020). Different from these
structures, our dataset takes a high dimensional
genomics feature matrix as input, which doesn’t
exhibit structure and is thus substantially different
from other modalities. Moreover, our dataset is the
first dataset that aims to convert genomics feature
vector to textual summary. The substantial noise
and high-dimensionality of genomics data matrices
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further pose unique challenges in text generation.
Our kNN-Vec2Text model is inspired by the re-
cent success in applying KNN-based language mod-
els to machine translation (Khandelwal et al., 2021)
and language models (Khandelwal et al., 2020; He
et al., 2021; Ton et al., 2021). The main difference
between our methods and their approaches is that
while we try to leverage kNN in the genomics vec-
tor space to construct reference text, they use kNN
in the text embedding space during the autoregres-
sive generation process to help adjust the sample
distribution. Some other methods can be used to
generate text from vectors, such as (Bowman et al.,
2016; Song et al., 2019; Miao and Blunsom, 2016;
Montero et al., 2021; Zhang et al., 2019). Their
inputs are latent vectors that need to be inferred
from the data and do not have specific meanings,
which are different from our gene feature vectors.

8 Conclusion and future work

In this paper, we have proposed a novel dataset Tex-
tomics, containing 22,273 pairs of genomics ma-
trices and their corresponding textual summaries.
We then introduce a novel task of Vec2Text based
on our dataset. This task aims to generate the tex-
tual summary based on the gene feature vector.
To address this task, we propose a novel method
ENN-Vec2Text, which constructs the reference text
using nearest neighbors in the gene feature vector
space and then generates a new summary accord-
ing to this reference text. We further introduce
two applications that can be advanced using our
dataset. One application aims at evaluating sci-
entific paper similarity according to the similarity
of its corresponding data summary, and the other
application leverages our dataset to automatically
generate masked sentences for scientific paper un-
derstanding.

To the best of our knowledge, Textomics and
kNN-Vec2Text serve as the first large-scale ge-
nomics data description benchmark, and we en-
vision it will be broadly applied to other natural
language processing and biomedical tasks. On
the biomedical side, we provide the benchmark
to develop new NLP tools that can generate the
description for a genomics data. Since each pub-
lic genomics data needs a description, such tools
will substantially accelerate this process. Also, de-
scriptions generated from Textomics could contain
new knowledge. While humans write the descrip-
tion almost solely based on that single dataset, de-

scription generation models jointly consider thou-
sands of datasets, enabling the transfer of knowl-
edge from other datasets. The generated descrip-
tion can guide biologists to write more informative
descriptions, which ultimately leads to better and
larger genomics description data. When biologists
start to obtain the generated description from NLP
tools, they will be able to write more informative
descriptions with the assistance from these NLP
tools. On the NLP side, the relationship between
a summary and a dataset is analogous to the rela-
tionship between an abstract and a scientific paper.
A high-quality summary ideally contains all per-
spectives of a study, including problems, methods,
and discoveries. Moreover, our work will bridge
the NLP and the genomics community and moti-
vate people to analyze genomics data using NLP
methods based on the multi-modality dataset in-
troduced in this paper. Textomics could also be
used to help scientific paper analysis tasks, such as
paper recommendation (Bai et al., 2019), citation
text generation (Luu et al., 2020), and citation pre-
diction (Suzen et al., 2021).

Our method searches for the nearest neighbours
by calculating the Euclidean distance between five-
number summary vectors of the genomics feature
matrices. However, this might lose useful infor-
mation hidden in the original matrices. It’s chal-
lenging and worth exploring end-to-end approaches
that can learn embeddings from the genomics fea-
ture matrices instead of representing them as five-
number summary vectors. On the Text2Vec side,
one remaining challenge that could be the future di-
rection of our work is to directly generate the whole
genomics feature matrix instead of the five-number
summary vector. Also, it would be interesting yet
challenging to jointly learn the Text2Vec and the
Vec2Text tasks, and one potential solution is to fur-
ther decode the generated vector to reconstruct the
embedding of summaries in Text2Vec, and lever-
age the resulted decoder to predict the embedding
of text by using £NN method in the text embed-
ding space. Also, it is interesting to jointly model
data from multiple platforms, which might lead to
beneficial results by transferring biological insights
learned from different platforms.
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A Appendices

We provided more details here about our dataset
and related experimental results here. In Table S1,
we summarized the statistics information of 9 Tex-
tomics platforms. There are 3 different species
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#Matrix #Matrix # Matrix

Platform Species (Al (PMC)  (Vec2Text) #Feature Missing rates
GPL96 Homo Sapiens 1,371 353 240 100K 0.19
GPL198 Arabidopsis Thaliana 1,081 194 250 100K 0.03
GPL570 Homo Sapiens 5,822 1,879 1,004 100K 0.12
GPL1261 Mus Musculus 4,563 1,326 1,059 100K 0.09
GPL6244 Homo Sapiens 1,831 659 307 100K 0.10
GPL6246 Homo Sapiens 2,366 850 388 100K 0.08
GPL6887 Mus Musculus 1,150 407 240 100K 0.09
GPL10558 Homo Sapiens 2,580 1,261 519 100K 0.11
GPL13534 Homo Sapiens 1,509 762 234 100K 0.26

Table S1: Statistics of the Textomics data. Each row is a sequencing platform in Textomics. All, PMC, Vec2Text
represent number of samples without filtering, with associated PMC full text article, and after using automated
filtering, respectively.

Textomics GPL GPL GPL GPL GPL GPL GPL GPL GPL
platform 96 198 570 1261 6244 6246 6887 10558 13534
Spearman correlation 0.36 020 024 034 044 045 022 0.38 0.30

Table S2: The result of Spearman correlation between gene data matrices and text summaries on 9 platforms.

Platform BLEU-1 ROUGE-1 ROUGE-L METEOR NIST

GPL96 0.179 0.233 0.166 0.143 0.817
GPL198 0.198 0.257 0.192 0.168 0.889
GPL570 0.212 0.269 0.205 0.182 0.936
GPL1261 0.229 0.283 0.226 0.202 0.980
GPL6244 0.183 0.250 0.179 0.156 0.750
GPL6246 0.219 0.269 0.210 0.187 0.950
GPL6887 0.198 0.260 0.196 0.171 0.847
GPL10558  0.191 0.257 0.177 0.165 0.842
GPL13534  0.242 0.332 0.279 0.260 1.124

Table S3: More results on evaluating Vec2Text task on Textomics.
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across 9 platforms, including Homo sapiens, Ara-
bidopsis thailiana, and Mus musculus. #Sample
(All) represents the entire number of samples for 9
platforms, #Sample (Vec2Text) represents the num-
ber of samples in the subset after BLEU filtering,
and #Sample (PMC) represents the number of sam-
ples in the subset with full scientific articles.

We also represented the results of Spearman cor-
relations between text-based similarity and vector-
based simlarity across 9 platforms in Table S2. The
Spearman correlations are all higher than 0.2 in ev-
ery platform, which shows a substantial agreement
between text-based similarity and vector-based sim-
ilarity.

In Table S3, We represented the scores of
different widely-used automatic metrics for
word level sentence generation evaluation on
Vec2Text task, including BLEU-1(Papineni et al.,
2002), BLEU-2, ROUGE-1(Lin, 2004), ROUGE-
L, METEOR(Lavie and Agarwal, 2007) and
NIST(Doddington, 2002). The results indicated
consistent improvement of our method over com-
parison approaches on different automatic metrics.
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