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Abstract

Vision-language navigation (VLN) is a chal-
lenging task due to its large searching space
in the environment. To address this prob-
lem, previous works have proposed some
methods of fine-tuning a large model that
pretrained on large-scale datasets. How-
ever, the conventional fine-tuning methods
require extra human-labeled navigation data
and lack self-exploration capabilities in en-
vironments, which hinders their generaliza-
tion of unseen scenes. To improve the ability
of fast cross-domain adaptation, we propose
Prompt-based Environmental Self-exploration
(ProbES), which can self-explore the envi-
ronments by sampling trajectories and auto-
matically generates structured instructions via
a large-scale cross-modal pretrained model
(CLIP). Our method fully utilizes the knowl-
edge learned from CLIP to build an in-domain
dataset by self-exploration without human la-
beling. Unlike the conventional approach of
fine-tuning, we introduce prompt-based learn-
ing to achieve fast adaptation for language
embeddings, which substantially improves the
learning efficiency by leveraging prior knowl-
edge. By automatically synthesizing trajectory-
instruction pairs in any environment without
human supervision and efficient prompt-based
learning, our model can adapt to diverse vision-
language navigation tasks, including VLN and
REVERIE. Both qualitative and quantitative
results show that our ProbES significantly im-
proves the generalization ability of the naviga-
tion model*.

1 Introduction

Teaching a robot to navigate following a natural
language instruction has a broad impact in the field
of human-robotic interaction. Many related tasks
have been proposed to delve into this problem. The

†Corresponding author.
*Code will be released at https://github.com/

liangcici/Probes-VLN.

vision-language navigation (VLN) task (Anderson
et al., 2018) is proposed where an agent is required
to navigate in a photo-realistic environment step-
by-step following a natural language instruction.
Recent tasks (Qi et al., 2020; Zhu et al., 2021)
focus on target objects localization that asks an
agent to identify an object in an unseen room.

Solving these tasks requires an agent to obtain
a vision-text alignment ability that locates related
objects and executes corrective actions according
to the instruction. However, collecting a large-scale
VLN dataset is difficult and laborious since anno-
tating the semantic of a trajectory within a sentence
costs times of labor than annotating an image. Ex-
isting navigation datasets are relatively small-scale,
and learning on such datasets hinders the agent to
obtain a good generalization ability. To solve this
problem, EnvDrop (Tan et al., 2019) uses a speaker
model to generate instructions for sampled trajecto-
ries in unseen environments, but the generalization
ability is not strong with limited vision-language
understanding ability. Recently, VLN-BERT (Ma-
jumdar et al., 2020) introduces a visio-linguistic
model pretrained on Conceptual Captions (Sharma
et al., 2018) dataset to learn from image-caption
pairs, which are quite different from trajectory-
instruction pairs from VLN. To address this, Air-
bert (Guhur et al., 2021) constructs a large-scale
in-domain pretraining dataset with image-caption
pairs collected from online marketplaces such as
Airbnb to finetune ViLBERT. However, Airbert
collects image captioning data on websites, which
are still far from the scenario of vision-language
navigation. Different from previous methods that
collect human-labeled data to train a navigation
model, we suggest that automatically generating
instruction-trajectory pairs by self-exploration for
pretraining not only helps the model obtain better
generalization ability but also achieves fast adapta-
tion to downstream tasks.

In this paper, we propose a method named
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Figure 1: A demonstration of our prompt-based environmental self-exploration. In the left blue box, we sample
trajectories from the environment and generate candidate phrases by a pretrained CLIP model. Then we fill templates
by movements and the generated phrases during self-exploration. At last, we use the generated instruction-trajectory
samples for pretraining.

prompt-based environmental self-exploration
(ProbES) that generates navigation data with prior
knowledge automatically and adapts pretrained
model quickly to VLN tasks. An overview of our
proposed framework is shown in Figure 1. By
using this method, a pretrained visio-linguistic
model is able to adapt to the VLN task automat-
ically and efficiently. Specifically, we build an
in-domain dataset by self-exploration without
labeling or crawler. To build such a dataset. we
first generate templates by masking visual and
action words in labeled instructions. Then, we
sample trajectories in the training environment.
A pretrained CLIP (Radford et al., 2021) model
is used to recognize rooms and objects in the
sampled trajectories and match described phrases
with them. We construct instructions by filling
the matched phrases into sampled templates. By
leveraging the prior knowledge learned by CLIP,
we are able to build a dataset automatically with
rich semantic information. Meanwhile, finetuning
the whole pretrained model is time-consuming,
we adopt prompt tuning (Li and Liang, 2021;
Liu et al., 2021c,b), a lightweight alternative
to finetuning. Our prompt-based method can
distill task-relevant knowledge from pretrained
model and achieve fast adaption to downstream
tasks. We evaluate ProbES on R2R (Anderson
et al., 2018) and REVERIE (Qi et al., 2020)
datasets by discriminative and generative settings.
Results show that ProbES can match or surpass the
performance of finetuning with substantially less
training time.

To sum up, our main contributions are as follows:

(1) We propose ProbES, a novel self-exploration
method to automatically build an in-domain dataset
that reduces the domain gap between the pretrain-
ing dataset and VLN tasks without human label-
ing; (2) Compared with finetuning large pretrained
model, our proposed prompt tuning can achieve
fast adaptation; (3) Experiments are conducted on
R2R and REVERIE datasets with generative and
discriminative settings, and results indicate that our
proposed ProbES can achieve better or comparable
performance. Besides, our generated data can be
used as augmented data which improves the gener-
alization ability of the model.

2 Related Work

Vision-and-Language Navigation. Anderson et
al. (Anderson et al., 2018) proposed the first Vision-
Language Navigation (VLN) benchmark combin-
ing real imagery (Chang et al., 2017) and natural
language navigation instructions. To solve this task,
Wang et al. (Wang et al., 2020) proposed a novel
SERL model to learn reward functions from the
expert distribution. And combining imitation learn-
ing and reinforcement learning (Wang et al., 2019)
has been proved to be beneficial for VLN. Since
the VLN dataset is relatively small-scale, some
works propose augmentation approaches (Fried
et al., 2018; Tan et al., 2019; Liu et al., 2021a) to
improve robustness. Auxiliary losses (Majumdar
et al., 2020; Zhu et al., 2020; Liang et al., 2021) is
used to take advantage of the additional training sig-
nals derived from the semantic information. Some
pretraining methods (Huang et al., 2019; Hao et al.,
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2020) have been proposed to learn generic cross-
modal representations. This is further extended
to a recurrent model that significantly improves
sequential action prediction (Hong et al., 2021).
However, the limited number of environments in
pretraining constrain the generalization ability to
unseen scenarios. Most related to this work, VLN-
BERT (Majumdar et al., 2020) transfers knowledge
from abundant, but out-of-domain image-text data
to improve path-instruction matching. In contrast,
we not only propose an effective method to build an
in-domain dataset by sampling trajectory and gener-
ating instructions with templates, but also present a
prompt-based pretraining strategy to improve VLN.

Vision-and-Language Pretraining. Vision-and-
language pretraining has made great progress in
recent years. Inspired by BERT (Devlin et al.,
2019), much work has extended it to process vi-
sual tokens and pretrain on large-scale image-text
pairs for learning generic visio-linguistic represen-
tations. Previous research introduces one-stream
BERT models and two-stream BERT models. The
former directly perform inter-modal grounding (Li
et al., 2019; Su et al., 2019; Alberti et al., 2019; Li
et al., 2020a; Chen et al., 2020; Zhou et al., 2020;
Li et al., 2020b), while two-stream models process
both visual and textual inputs in separate streams,
and then fuse the two modalities in a later stage (Lu
et al., 2019; Tan and Bansal, 2019). These models
are often pretrained with self-supervised objectives
akin to those in BERT: masked language modeling,
masked object classification, and sentence-image
alignment. In this work, the architecture of the
ProbES model is structural similar to ViLBERT (Lu
et al., 2019). We make several VLN-specific adap-
tations to ViLBERT so that pretrained weights can
be transferred to initialize large portions of the
model. Different from VLN-BERT which fine-
tunes a ViLBERT on instruction-trajectory pairs to
measure their compatibility in beam search setting,
we introduce prompt tuning, which only tunes the
continuous prompts.

Prompting. Natural language prompting freezes
pretrained models and reformats the natural lan-
guage input with example prompts. GPT-3 (Brown
et al., 2020) introduces in-context learning, using
manually designed and discrete text prompts. Sun
et al. (Sun and Lai, 2020) also leverage prompts
as keywords to control the sentiment or topic of
the generated sentence. AutoPrompt (Shin et al.,
2020) searches for a sequence of discrete trigger

words and concatenates it with each input to elicit
sentiment or factual knowledge from a masked
LM. Different from the discrete text prompt, some
methods examine continuous prompts (a.k.a. soft
prompts) that perform prompting directly in the
embedding space of the model. Prefix-Tuning (Li
and Liang, 2021) prepends a sequence of contin-
uous task-specific vectors as virtual tokens to the
input. (Zhong et al., 2021; Qin and Eisner, 2021;
Hambardzumyan et al., 2021) introduce continuous
templates following manual prompt templates. P-
tuning (Liu et al., 2021c) uses continuous prompts
which are learned by inserting trainable variables
into the embedded input. Ptr (Han et al., 2021)
adopts manually crafted sub-templates and gener-
ates complete templates by logic rules. In ProbES,
we prepend continuous task-specific vectors to the
embedding of the input instruction and directly tune
the embeddings of these vectors. After prompt
tuning, the model can be adapted to VLN and
REVERIE tasks.

3 Prompt-based Environmental
Self-Exploration (ProbES)

3.1 Vision-Language Navigation

The Vision-and-Language Navigation (VLN) task
gives a global natural sentence I = {w0, ..., wl}
as an instruction, where wi is a word token while
the l is the length of the sentence. The instruc-
tion consists of step-by-step guidance toward the
goal. At step t, the agent observes a panoramic
view Ot = {ot,i}36i=1 as the vision input, which
is composed of 36 RGB image views. Each of
these views consists of image feature vi and an
orientation description (sin θt,i, cos θt,i, sin ϕt,i,
cos ϕt,i). Candidates in the panoramic action space
consist of k neighbours of the current node in the
navigation graph and a stop action.

3.2 Instruction Generation with Templates

We first generate templates from instructions in the
R2R dataset. Then we sample trajectories in the
training environment. We generate the candidate
noun phrases and actionable verbs for the sampled
trajectories and full-fill the templates by the above
words. A detailed demonstration of our instruction
generation module is shown in Fig. 2.
Generating Templates We collect phrases and re-
place these phrases in human-annotated navigation
instruction with blank masks to generate templates.
Different from the Airbert (Guhur et al., 2021) that
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Figure 2: A detailed demonstration of the prompt-based full-filling process. We first sample trajectories from the
environment, and generate templates by masking objects and actions. For each step of a trajectory, we generate
candidate tokens for objects by CLIP and actions by the environment. Then we full-fill the template with candidate
tokens by the rules as introduced in Sec. 3.2

only extracts noun phrases, we also mask action
words like ‘left’, ‘right’, ’forward’, and ‘around’.
We denote the Omask as the mask for an object
and Amask is the mask for an action. The gener-
ated templates are like ‘Turn Amask and walk past
Omask. Once out, walk Amask Omask. Stop once
you reach Omask’. More examples are shown in
Table 1.

Sampling Trajectories and Actions We first sam-
ple the trajectories in the Matterport (Chang et al.,
2017) Environment. We randomly sample the start-
ing and ending positions, and collect tracks with
lengths of less than 8 hops. Then we obtain the
corresponding actions of each trajectory by first-
person movement. If the agent chooses the front
navigable position to move, we generate a ‘forward’
action. If the agent chooses the back navigable posi-
tion to move, we generate an ‘around’ action. Oth-
erwise, if the agent selects the right front navigable
position to move for the next step, we generate an
action sequence like {‘right’, ‘forward’}, which
is used to fill actionable verbs during instruction
generation.

Full-filling Template with Prior Knowledge Prior
knowledge is the key to generating high-quality
data without human labeling. ProbES introduces
CLIP, a powerful vision-language alignment model
learned from a large-scale image-caption dataset.
To generate structured augmentation data, we full-
fill the templates with phrases that describe the sam-
pled trajectory and actions. A trajectory is denoted

as {v1, v2, ..., vn}, where vi represents an observa-
tion viewpoint. We introduce CLIP (Radford et al.,
2021) to select candidate phrases c and match them
to each view vi. We first embed the sentence ‘a
photo of [cnoun]’ by CLIP, where the cnoun repre-
sents the noun-phrase candidates (room or object
classes labeled in Matterport dataset). Then we
embed the view image by the vision encoder of
CLIP and calculate the similarity of the language
embedding and vision embedding. We select the
candidate with the highest matching score for the
view vi. Each view has two matched candidates,
one for the detected room and another for an object.
Then the description ci of this view is written in 3
formats randomly: ‘[room]’, ‘[object]’ or ‘[room]
with [object]’. Since trajectories are sampled in
the environment, we can obtain actionable verbs ai
between two viewpoints via comparing headings
and elevations.

We randomly select a template with the same
or a close number of Omask as the num-
ber of viewpoints in the sampled trajectory.
The template has a sequence of object masks
{Omask,1, Omask,2, ..., Omask,i} and a sequence
of action masks {Amask,1, Amask,2, ..., Amask,j}.
Lengths of object masks and action masks are de-
noted as l and n respectively. The number of ob-
ject masks and action masks is roughly balanced.
Let nv be the number of viewpoints in a sam-
pled trajectory. Then the generated captions of
this trajectory is written as {c1, c2, ..., cnv}. We
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Table 1: Examples of generated templates.

Templates

1 Walk Amask Omask and stop on Omask.
2 Head Amask until you pass Omask with Omask the turn Amask and wait by Omask.
3 Walk past Omask and to Omask. Walk in Omask and stop.
4 Turn Amask and walk through Omask. Exit Omask, turn Amask and walk Amask Omask. Stop in Omask.
5 Go Amask Omask, and go Amask. Take Amask into Omask. Stop behind Omask.
6 Leave Omask and go through Omask. Walk towards Omask to Omask. Stand in Omask.

full-fill the templates by the following rules: 1)
if nv ≥ l, we randomly sample l captions and
fill the Omask in the template sequentially; 2) if
nv < l, we randomly sample the Omask and use
all the caption phrases to fill them. After filling
phrases, we can identify which viewpoint Amask,i

may appear since viewpoints of Omask,j near it are
already known. For example, if the template is
like ‘Omask,1Amask,1Omask,2’ and captions of v1
and v2 are used to fill Omask,1 and Omask,2 respec-
tively, then Amask,1 is the sampled action between
v1 and v2. In this way, we use generated action-
able verbs to full-fill the templates and get final
instructions. By the above method, we can gener-
ate diverse instructions without human labeling.

3.3 Prompt-based Architecture
Prompt tuning has been found effective on many
natural language understanding (NLU) tasks. Mo-
tivated by this, we introduce a prompt-based ar-
chitecture to achieve fast adaptation on the self-
exploration dataset (e.g., Conceptual Captions) and
downstream tasks. The architecture is ViLBERT-
like and equipped with a prompt encoder for
prompt tuning.

Given an instruction-trajectory pair, the visual
and textual features can be extracted by the vi-
sual encoder Ev and textual encoder Ex in ViL-
BERT respectively. Especially, the textual input
has two parts: prompt sequence {p1, ..., pn} and
word sequence {x1, ..., xm}, where p and x indi-
cate a pseudo prompt token and a word token of
a generated instruction respectively. n and m rep-
resent lengths of the prompt sequence and word
sequence respectively.

We embed prompt sequence by the prompt en-
coder Ep and embed word sequence by the textual
encoder Ex as follows:

ep,1, ..., ep,n = Ep(p1, ..., pn)

ex,1, ..., ex,m = Ex(x1), ..., Ex(xm),
(1)

where Ep is composed of a LSTM head followed

by a MLP head. Then the textual embedding
is mapped to et = {ep,1, ..., ep,n, ex,1, ..., ex,m},
where ep,1, ..., ep,n are trainable embedding ten-
sors and enable us to find better continous prompts.
Let ev be denoted as visual embedding produced
by visual encoder Ev. et and ev are then passed to
the co-attention transformer similar to ViLBERT.
Then in the prompt tuning process, we only train
Ep and fix the parameters of Ex for the language
stream. For the vision stream, since the trajectory
is represented as a sequence of panoramic image
regions, which is different from VLMs pretrained
on image-caption pairs, we also update the visual
embedding during prompt tuning. The visual em-
bedding contains image embedding and location
embedding.

We sample hard negative paths based on distance
in the environment for an instruction-trajectory pair,
and the model is trained to choose the best path
among them.

3.4 Downstream Tasks Adaptation

Our model can adapt to diverse downstream navi-
gation tasks, including VLN, a step-by-step navi-
gation task, and REVERIE, an object-oriented nav-
igation task. In the step-by-step navigation task,
our model receives an instruction sentence and nav-
igates following the commands in the instruction
sequentially. In the object navigation task, our
model receives an object description and explores
the house to find an object.

Also, our model can be adapted to both discrim-
inative and generative navigation settings. In the
discriminative setting, our model receives both an
instruction and the observation sequence to rep-
resent a navigation trajectory and then output a
score. In the generative setting, our model receives
instruction and predicts actions sequentially.
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Table 2: Comparison with previous methods in the generative setting on the R2R dataset.

Val Seen Val Unseen Test Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

Seq2Seq-SF 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18
Speaker-Follower - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28
PRESS 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45
EnvDrop 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
PREVALENT 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
Rec (no init. OSCAR) 9.78 3.92 62 59 10.31 5.10 50 46 11.15 5.45 51 47
Rec (OSCAR) 10.79 3.11 71 67 11.86 4.29 59 53 12.34 4.59 57 53
Rec (PREVALENT) 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57

Rec (ViLBERT) 11.16 2.54 75 71 12.44 4.20 60 54 - - - -
Rec (VLN-BERT) 10.95 3.37 68 64 11.33 4.19 60 55 - - - -
Rec (ProbES) 10.75 2.95 73 69 11.58 4.03 61 55 12.43 4.20 62 56

Table 3: Comparison with previous methods on navigation and object localization on the REVERIE dataset.

Val Seen Val Unseen Test Unseen
Navigation RGS RGSPL Navigation RGS RGSPL Navigation RGS RGSPLSR OSR SPL TL SR OSR SPL TL SR OSR SPL TL

Seq2Seq-SF 29.59 35.70 24.01 12.88 18.97 14.96 4.20 8.07 2.84 11.07 2.16 1.63 3.99 6.88 3.09 10.89 2.00 1.58
RCM 23.33 29.44 21.82 10.70 16.23 15.36 9.29 14.23 6.97 11.98 4.89 3.89 7.84 11.68 6.67 10.60 3.67 3.14
SMNA 41.25 43.29 39.61 7.54 30.07 28.98 8.15 11.28 6.44 9.07 4.54 3.61 5.80 8.39 4.53 9.23 3.10 2.39
FAST-MATTN 50.53 55.17 45.50 16.35 31.97 29.66 14.40 28.20 7.19 45.28 7.84 4.67 19.88 30.63 11.61 39.05 11.28 6.08
Rec (OSCAR) 39.85 41.32 35.86 12.85 24.46 22.28 25.53 27.66 21.06 14.35 14.20 12.00 24.62 26.67 19.48 14.88 12.65 10.00
Rec (ViLBERT) 43.64 45.61 37.86 15.75 31.69 27.58 24.57 29.91 19.81 17.83 15.14 12.15 22.17 25.51 17.28 18.22 12.87 10.00
Rec (VLN-BERT) 41.11 42.87 35.55 15.62 28.39 24.99 25.53 29.42 20.51 16.94 16.42 13.29 23.57 26.83 18.73 17.63 14.24 11.63
Rec (ProbES) 46.52 48.49 42.44 13.59 33.66 30.86 27.63 33.23 22.75 18.00 16.84 13.94 24.97 28.23 20.12 17.43 15.11 12.32

4 Experiments

4.1 Experimental Setup

We experiment with our proposed ProbES on
two downstream tasks: goal-oriented navigation
task (R2R (Anderson et al., 2018)), and object-
oriented navigation task (REVERIE (Qi et al.,
2020)). ProbES can be easily applied to discrimi-
native and generative models for these two tasks.
Evaluation Metrics A large number of metrics
are used to evaluate models in VLN, such as Tra-
jectory Length (TL), the trajectory length in me-
ters, Navigation Error (NE), the navigation error
in meters, Oracle Success Rate (OR), the rate if
the agent successfully stops at the closest point,
Success Rate (SR), the success rate of reaching the
goal, and Success rate weighted by (normalized
inverse) Path Length (SPL) (Anderson et al., 2018).
VLN task regard SR and SPL as the primary metric,
and the REVERIE task regard RGS and RGSPL as
the primary metric.
Implementation Details Our training process is
divided into two steps: Firstly, we pretrain our
model on our generated self-exploration training
set with prompt tuning for only 10 epochs. After
that, we adapt our model to the downstream dis-
criminative VLN task with only ranking loss for 20
epochs. The batch size is set as 64 and the learn-

Table 4: Results by comparing ProbES with VLN-BERT
in discriminative setting.

Val Unseen
TL NE↓ OSR↑ SR↑ SPL↑

VLN-BERT 9.60 4.10 69.22 59.26 55
ProbES 9.50 4.05 68.24 60.28 56

ing rate is 4 × 10−5. The generative navigation
settings are the same as Recurrent VLN-BERT on
both R2R and REVERIE. During pretraining, we
use ProbES to 50k instruction-trajectory pairs. We
use 32 NVIDIA V100 GPUs for pretraining and 8
GPUs for adaptation. Experiments with generative
settings are conducted on a V100 GPU.

4.2 Comparison to state-of-the-art Methods

In this section, we compare our model with pre-
vious state-of-the-art methods. We compare the
ProbES with two baselines (ViLBERT and VLN-
BERT built on Recurrent VLN-Bert) and five
other methods. A brief description of previous
models is as followed: 1) Seq2Seq: A sequence
to sequence model reported in (Anderson et al.,
2018); 2) Speaker-Follower (Fried et al., 2018): a
method introduces a data augmentation approach
and panoramic action space; 3) PRESS (Li et al.,
2019): a conventional fine-tuning method with
stochastic instruction sampling; 4) EnvDrop (Tan
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et al., 2019): a method augment data with envi-
ronmental dropout; 5) Recurrent VLN-Bert (Hong
et al., 2021) on three different settings: OSCAR
and ViLBERT pretrained on out-of-domain data,
VLN-BERT pretrained on R2R. We compare the
models on three splits in the R2R dataset: vali-
dation seen house, validation unseen house, and
testing (where the houses are also unseen). We also
compare ProbES with Seq2Seq, RCM (Wang et al.,
2019), SMNA (Ma et al., 2019), FAST-MATTN (Qi
et al., 2020), Recurrent VLN-Bert (Hong et al.,
2021) on OSCAR on REVERIE dataset.
Results on R2R We compare ProbES with previ-
ous state-of-the-art methods on the R2R dataset
in the generative setting, which predicts actions
sequentially, as shown in Table 2. Rec indicates
using Recurrent VLN-Bert (Hong et al., 2021) with
different backbones or parameter initialization. In
the validation seen split, compared to VLN-BERT
under the same setting, our ProbES achieves 5% im-
provement on SR and 5% improvement on SPL. In
the validation unseen split, we achieve 1% improve-
ment on SR compared to VLN-BERT. In the test-
ing split, ProbES shows competitive results. Note
that the PREVALENT backbone is pretrained on
an in-domain R2R dataset with scene features and
fine-tuned with an additional action prediction task
in a generative setting while ProbES does not use
labeled R2R data or augmented data generated by
speaker (Fried et al., 2018).
Results in Discriminative Setting We compare
ProbES with VLN-BERT in the discriminative set-
ting, which outputs scores for instruction-trajectory
pairs, as in Table 4. In the validation unseen split,
our method outperforms VLN-BERT, which indi-
cates ProbES is able to improve the generalization
ability for unseen scenes.
Results on REVERIE We compare ProbES with
previous state-of-the-art methods on the REVERIE
dataset, as shown in Table 3. In the validation
unseen split, we achieve 0.42% improvement on
RGS and 0.65% improvement on RGSPL. In the
testing split, ProbES achieves 0.87% improvement
on RGS and 0.69% improvement on RGSPL. We
can see that ProbES benefits from prompt tuning
with our generated instruction-trajectory pairs.

4.3 Ablation Study

Ablation of Learning Strategies. In Table 5, we
ablate the performance gains from different learn-
ing strategies. PT and FT represent prompt tun-

Table 5: Ablation of different modules during pretrain-
ing and finetuning.

Our data R2R SR on Val
PT FT Mask Mask Rank Seen Unseen

1 - - - - ✓ 55.4 39.5
2 - - - ✓ ✓ 70.2 59.3
3 - - ✓ - ✓ 69.1 57.9
3 - ✓ - - ✓ 68.7 59.0
4 ✓ - - - ✓ 68.4 60.3

ing and fine-tuning respectively. Mask and Rank
stand for masked multi-modal modeling loss and
the ranking loss for path-selection task. We regard
the model finetuned by ranking loss as our baseline.

The masked multi-modal modeling loss on our
data and R2R data are able to improve the perfor-
mance. And finetuning on our data is able to im-
prove generalization ability since the success rate in
the validation unseen split gets 1.1% improvement
and achieves 59.0%. At last, we discover that pre-
training on our data with prompt tuning improves
the baseline performance by 20.8% in the valida-
tion unseen split, achieving the best performance.
Our model outperforms the model fine-tuned on
R2R dataset by 1.1% in unseen split, indicating
that ProbES improves the generalization ability of
the navigation model.
Ablation of Instruction Generation. Table 6 intro-
duces comprehensive ablation experiments show-
ing the impact of key steps in the strategy of gen-
erating instructions, and the experiments are per-
formed in the baseline model: IL+RL from En-
vDrop (Tan et al., 2019). Class indicates classes
we use to feed into CLIP. M and P/O represent
classes from Matterport and Place365/Objects365
datasets respectively. GTemplate denotes the strat-
egy used to generate templates. ‘ours’ denote the
strategy shown in Sec 3.2. For STemplate, ‘random’
and ‘match’ indicate sampling a template randomly
and choosing a template with the same number of
masks as the number of viewpoints.

As shown in Table 6, randomly selecting tem-
plate without considering the number of masked
tokens degrades the performance and introduces
more noise in the data. Results show that equipped
with our generated data (Row 3) improves the per-
formance by a large margin. The model of us-
ing the rooms and objects from Places365 (Zhou
et al., 2017) and Objects365 (Shao et al., 2019)
(Row 4) performs worse than which uses the rooms
and objects from Matterport. We infer from that
Places365 and Objects365 contain many outdoor
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Figure 3: Statistical analysis of generated instructions.

Caption: bedroom, bedroom with bed, lounge, 
bedroom with blinds
Template:  Turn aaaa and walk aaaa  aaaa alongside 
aaaa . You were beside to aaaa . Stop in aaaa .
Instruciton generation: Turn around and walk 
bedroom right alongside bedroom with bed. You 
were beside to lounge. Stop in bedroom with blinds.

Caption: fireplace, dining room, bedroom with toilet, 
bathroom
Template:  Walk past aaaa and aaaa  aaaa .  Walk 
aaaa at aaaa and stop in aaaa  .
Instruciton generation: Walk past fireplace and 
forward dining room.  Walk forward at bedroom with 
toilet and stop in bathroom.

Caption: bed, bedroom, family room with blinds, 
blinds, entry way with mirror, bathtub
Template: Exit aaaa on aaaa and pass  aaaa . Take  
aaaa and then stop on  aaaa .
Instruciton generation: Exit column on window and 
pass lounge with bathtub. Take left and then stop on 
entry way with furniture.

Caption: shelving, bathroom, shower, bedroom with 
door
Template: Go aaaa through aaaa and turn aaaa 
through aaaa . Then go aaaa towards aaaa and 
passed aaaa . Stop.
Instruciton generation: Go forward through 
shelving and turn left through bathroom. Then go 
forward towards shower and passed bedroom with 
door. Stop.

Figure 4: Visualization of instructions generated with templates.

Table 6: Comparison of different strategies during gen-
erating instructions.

Class GTemplate SInstruction SR on Val
M P/O ours random match Seen Unseen

1 - - - - - 55.3 46.5
2 ✓ - ✓ ✓ - 59.8 49.4
3 ✓ - ✓ - ✓ 60.5 50.7
4 - ✓ ✓ ✓ - 59.8 48.9

scenes and objects which are not suitable for VLN.

4.4 Qualititiva Analysis

Visualization of Data Distribution Figure 3
presents a statistical analysis of our generated in-
structions. We can see from the left figure that
the number of object masks are larger than that
of action masks, indicating that instructions con-

tain more rich information generated by CLIP from
sampled observations. The right figure shows the
distribution of the instruction lengths. The lengths
of most of the instructions range from 10 to 30,
which matches the R2R dataset. The easy samples
and hard samples in our generated instructions are
balanced.

Visualization of Trajectory-instruction pairs
Here we provide visualization of the data gener-
ated by ProbES. Figure 4 shows the instruction-
trajectory samples generated with our strategy. For
each sample, we visualize observations of the
trajectory, captions generated with CLIP, the se-
lected template, and the final instruction generated
by ProbES. Generated object classes fit observed
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scenes well, thus we can infer that CLIP is able
to extract key information from the observation.
Also, our method can select a suitable template and
generate diverse instructions that describe obser-
vations of trajectories correctly. The length of our
generated instruction ranges from 1 to 3 sentences,
which matches the data distribution of the R2R
dataset.

5 Conclusion

In this work, we first introduce an effective way to
generate in-domain data for pretraining the VLN
model: leveraging a large pretrained CLIP model to
generate captions for each viewpoint and sampling
actions in the environment. Experiments show that
the domain gap between pretraining data and VLN
tasks can be mitigated. We also propose a prompt-
based architecture, which introduces prompt tuning
to adapt the pretrained model fastly. Our proposed
ProbES achieves better results compared to base-
line on both R2R and REVERIE datasets, and ab-
lations show the contribution of each module and
the effectiveness of the generated data.
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Figure 5: Statistical analysis of generated instructions.

Figure 6: Statistical analysis of generated instructions.

A Appendix

In the Appendix, we present additional statistics
and examples of our generated data. Then we dis-
cuss implementation details of prompt-based archi-
tecture.

A.1 Dataset Details

Additional Statistics As shown in Figure 5 and
Figure 6, we summarise rooms and objects de-
tected by CLIP in viewpoints of sampled trajecto-
ries. These rooms and objects appear in the indoor
environment commonly, indicating the accuracy of
the CLIP model.
Visualization of Captions We visualize generated
captions for sampled viewpoints in Figure 7. We in-
fer from the figure that the CLIP can identify scenes
and prominent objects accurately. Our generated
captions contain rich visual information, which
improves the image-text alignment ability of the
model.
Visualization of More Examples More examples

of sampled trajectories and the corresponding gen-
erated instructions are shown in Figure 10 and Fig-
ure 11, which implies that our method can generate
scenario-specific instructions automatically.

A.2 Architecture Details
We present implementation details of our proposed
prompt-based architecture for both prompt tuning
in the discriminative setting and finetuning in the
generative setting, respectively.

A.2.1 Prompt-based Pretraining
As shown in Figure 8, the model is composed of a
prompt encoder and a ViLBERT-like architecture.
The prompt encoder consists of a bidirectional long-
short term memory network (LSTM) and a ReLU
activated two-layer multilayer perceptron (MLP).
The output of the prompt encoder is prepended to
the textual embedding. The ViLBERT-like archi-
tecture is similar to that of VLN-BERT. We choose
ranking loss for the prompt tuning.

A.2.2 Finetuning in Generative Setting
As shown in Figure 9, the generative setting is
similar to Recurrent VLN-BERT. Unlike Recur-
rent VLN-BERT, we introduce the prompt encoder,
whose architecture is the same as the pretraining
phase. During finetuning, the whole model is un-
fixed to achieve better results.
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lounge with seating lounge with furniture

lounge with blinds

bedroom with bed

bedroom with bed family room with window entry way with lighting bedroom with bed

entry way with curtain

entry way with stairs entry way with railing entry way with counter

family room with ceiling

bedroom with curtain

entry way with bathtub

Figure 7: Visualization of Captions.

𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑟𝑟!, 𝑟𝑟", … , 𝑟𝑟#

𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑥𝑥!, 𝑥𝑥", … , 𝑥𝑥$

𝑝𝑝! , 𝑝𝑝" , … , [𝑝𝑝%]

Figure 8: Prompt tuning in discriminative setting.

𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑟𝑟!, 𝑟𝑟", … , 𝑟𝑟#

𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑥𝑥!, 𝑥𝑥", … , 𝑥𝑥$ Lang Enc

Vis Enc

𝑝𝑝! , 𝑝𝑝" , … , [𝑝𝑝%] Prompt Enc

Lang TRM

Vis Co-TRM Vis TRM action

Figure 9: Finetuning in generative setting.
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Walk past family room with 
mirror on your left, walk to 
dining room with mirror, wait 
at dining room. 

Figure 10: Visualization of a trajectory-instruction sample generated by ProbES.
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Walk right, then turn right 
and exit entry way. Walk 
toward family room. Stop 
and wait by entry way. 

Figure 11: Visualization of a trajectory-instruction sample generated by ProbES.
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