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Abstract

Transformer-based pre-trained models, such as
BERT, have shown extraordinary success in
achieving state-of-the-art results in many natu-
ral language processing applications. However,
deploying these models can be prohibitively
costly, as the standard self-attention mechanism
of the Transformer suffers from quadratic com-
putational cost in the input sequence length.
To confront this, we propose FCA, a fine- and
coarse-granularity hybrid self-attention that re-
duces the computation cost through progres-
sively shortening the computational sequence
length in self-attention. Specifically, FCA con-
ducts an attention-based scoring strategy to de-
termine the informativeness of tokens at each
layer. Then, the informative tokens serve as
the fine-granularity computing units in self-
attention and the uninformative tokens are re-
placed with one or several clusters as the coarse-
granularity computing units in self-attention.
Experiments on GLUE and RACE datasets
show that BERT with FCA achieves 2x reduc-
tion in FLOPs over original BERT with <1%
loss in accuracy. We show that FCA offers
significantly better trade-off between accuracy
and FLOPs compared to prior methods1.

1 Introduction

Transformer-based large pre-trained language mod-
els with BERT (Devlin et al., 2018) as a typical
model routinely achieve state-of-the-art results on a
number of natural language processing tasks (Yang
et al., 2019; Liu et al., 2019; Clark et al., 2020),
such as sentence classification (Wang et al., 2018),
question answering (Rajpurkar et al., 2016, 2018),
and information extraction (Li et al., 2020b).

Despite notable gains in accuracy, the high com-
putational cost of these large models slows down
their inference speed, which severely impairs their

∗Corresponding author
1Code is available at https://github.com/

pierre-zhao/FCA-BERT

practicality, especially in the case of limited indus-
try time and resources, such as Mobile Phone and
AIoT. In addition, the excessive energy consump-
tion and environmental impact caused by the com-
putation of these models also raise the widespread
concern (Strubell et al., 2019; Schwartz et al.,
2020).

To improve the efficiency of BERT, the main-
stream techniques are knowledge distillation (Hin-
ton et al., 2015) and pruning. Knowledge distil-
lation aims to transfer the “knowledge" from a
large teacher model to a lightweight student model.
The student model is then used during inference,
such as DistilBERT (Sanh et al., 2019). Pruning
technique includes: (1) structured methods that
prune structured blocks of weights or even com-
plete architectural components in BERT, for ex-
ample encoder layers (Zhang and He, 2020), (2)
unstructured methods that dynamically drop redun-
dant units, for example, attention head (Voita et al.,
2019) and attention tokens (Goyal et al., 2020).
However, both types of methods encounter chal-
lenges. For the former, a great distillation effect
often requires an additional large teacher model and
very complicated training steps (Jiao et al., 2019;
Hou et al., 2020). For the latter, pruning methods
discard some computing units, which inevitably
causes information loss.

In contrast to the prior approaches, we propose a
self-motivated and information-retained technique,
namely FCA, a fine- and coarse-granularity hy-
brid self-attention that reduces the cost of BERT
through progressively shortening the computational
sequence length in self-attention. Specifically,
FCA first evolves an attention-based scoring strat-
egy to assign each token with the informativeness.
Through analyzing the informativeness distribution
at each layer, we conclude that maintaining full-
length token-level representations is progressive
redundant along with layers, especially for the clas-
sification tasks that only require single-vector repre-
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sentations of sequences. Consequently, the tokens
are divided into informative tokens and uninfor-
mative tokens according to their informativeness.
Then, they are updated through different computa-
tion paths. The informative tokens carry most of
the learned features and remain unchanged as the
fine-grained computing units in self-attention. The
uninformative tokens may not be as important as
informative ones but we will not completely dis-
card them to avoid information loss. Instead, We
replace them with more efficient computing units
to save memory consumption. Experiments on the
standard GLUE benchmark show that FCA accel-
erates BERT inference speed and maintains high
accuracy as well.

Our contributions are summarized as follows:

• We analyze the progressive redundancies in
maintaining full-length token-level represen-
tations for the classification tasks.

• We propose a fine- and coarse-granularity hy-
brid self-attention, which is able to reduce the
cost of BERT and maintain high accuracy.

• Experiments on the standard GLUE bench-
mark show that the FCA-based BERT
achieves 2x reduction in FLOPs over the stan-
dard BERT with < 1% loss in accuracy.

2 Related work

There has been much prior literature on improving
the efficiency of Transformers. The most common
technologies include:
Knowledge distillation refers to training a smaller
student model using outputs from various interme-
diate representations of larger pre-trained teacher
models. In the BERT model, there are multiple rep-
resentations that the student can learn from, such
as the logits in the final layer, the outputs of the
encoder units, and the attention maps. The distil-
lation on output logits is most commonly used to
train smaller BERT models (Sanh et al., 2019; Sun
et al., 2019; Jiao et al., 2019; Sun et al., 2020). The
output tensors of encoder units contain meaningful
semantic and contextual relationships between in-
put tokens. Some work creates a smaller model by
learning from the outputs of teacher’s encoder (Jiao
et al., 2019; Sun et al., 2020; Li et al., 2020a).
Attention map refers to the softmax distribution
output of the self-attention layers and indicates the
contextual dependence between the input tokens. A

common practice of distillation on attention maps
is to directly minimize the difference between the
self-attention outputs of the teacher and the stu-
dent (Jiao et al., 2019; Sun et al., 2020; Mao et al.,
2020). This line of work is orthogonal to our ap-
proach and our proposed FCA can be applied to
the distillate models to further accelerate their in-
ference speed.
Pruning refers to identifying and removing less
important weights or computation units. Pruning
methods for BERT broadly fall into two categories.
Unstructured pruning methods prune individual
weights by comparing their absolute values or gra-
dients with a pre-defined threshold (Mao et al.,
2020; Gordon et al., 2020; Chen et al., 2020). The
weights lower than the threshold are set to zero. Un-
like unstructured pruning, structured pruning aims
to prune structured blocks of weights or even com-
plete architectural components in the BERT model.
Voita et al. (2019) pruned attention heads using a
method based on stochastic gates and a differen-
tiable relaxation of the L0 penalty. Fan et al. (2019)
randomly dropped Transformer layers to sample
small sub-networks from the larger model during
training which are selected as the inference models.
Goyal et al. (2020) progressively reduced sequence
length by pruning word-vectors based on the at-
tention values. This work is partly similar to the
fine-grained computing units in our proposed FCA.
However they ignored the coarse-grained units that
may cause information loss.

In addition, there are some engineering tech-
niques to speed up the inference speed, such as
Mixed Precision (Micikevicius et al., 2017) and
Quantization (Zafrir et al., 2019; Fan et al., 2020).
Using half-precision or mixed-precision representa-
tions of floating points is popular in deep learning
to accelerate training and inference speed. Quanti-
zation refers to reducing the number of unique val-
ues required to represent the model weights, which
in turn allows to represent them using fewer bits.

3 Preliminary

BERT (Devlin et al., 2018) is a Transformer-
based language representation model, which can
be fine-tuned for many downstream NLP tasks,
including sequence-level and token-level classi-
fication. The Transformer architecture (Vaswani
et al., 2017) is a highly modularized neural network,
where each Transformer layer consists of two sub-
modules, namely the multi-head self-attention sub-
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Figure 1: The first sub-figure is the normalized variance and standard deviation of informativeness with respect to
BERT-base layers from 1 to 12. The last five sub-figures are the informativeness distributions on some layers.

layer (MHA) and the position-wise feed-forward
network sub-layer (FFN). Both sub-modules are
wrapped by a residual connection and layer normal-
ization.
MHA. The self-attention mechanism allows the
model to identify complex dependencies between
the elements of each input sequence. It can be
formulated as querying a dictionary with key-value
pairs. Formally,

MHA(Q,K, V ) = Concat(head1, ..., headh)WO

(1)
where Q,K, and V represent query, key, and value.
h is the number of heads. Each head is defined as:

headt = Attention(QWQ
t ,KWK

t , V W V
t )

= softmax(
QWQ

t (KWK
t )T√

dK
)︸ ︷︷ ︸

A

VW V
t

(2)

where WQ
t ∈ Rdh×dQ ,WK

t ∈ Rdh×dK ,W V
t ∈

Rdh×dV ,WO ∈ RhdV ×dh are learned parameters.
dK , dQ,and dV are dimensions of the hidden vec-
tors. The main cost of MHA layer is the calculation
of attention mapping matrix A ∈ Rn×n in Eq. 2
which is O(n2) in time and space complexity. This
quadratic dependency on the sequence length has
become a bottleneck for Transformers.
FFN. The self-attention sub-layer in each of the
layers is followed by a fully connected position-
wise feed-forward network, which consists of two
linear transformations with a GeLU (Hendrycks
and Gimpel, 2016) activation in between. Given

a vector xi in [x1, ..., xn] outputted by MHA sub-
layer, FFN is defined as:

FFN(xi) = GeLU(xiW1 + b1)W2 + b2, (3)

where W1,W2, b1, b2 are learned parameters.
Previous research (Ganesh et al., 2021) has

shown that in addition to MHA sub-layer, FFN
sub-layer also consumes large memory in terms of
model size and FLOPs. As a result, if we reduce
the computational sequence length of MHA, the
input and the consumption of FFN sub-layer will
become less accordingly.

4 Methodologies

To shorten the computational sequence length of
self-attention, our core motivation is to divide to-
kens into informative and uninformative ones and
replace the uninformative tokens with more effi-
cient units. This section introduces each module of
our model in detail.

4.1 Scoring Strategy

Our strategy of scoring the informativeness of to-
kens is based on the self-attention map. Con-
cretely, taking a single token vector xi as an ex-
ample, its attention head x

(t)
i is updated by: x(t)i =∑n

j=1 ai,jx
(t)
j (Eq. 2). ai,j is an element in atten-

tion map A. Therefore, ai,j represents the informa-
tion contribution from token vector xj to xi over
headt. Intuitively, we define the informativeness
of a token by accumulating along the columns of

4813



Granularity Hybrid Layer

…

Granularity Hybrid Layer

Multi-head Self-Attention

Multi-head Self-Attention 

Layer1

Layer2

!"

…
0.21 0.02 0.01 0.04 0.19 0.11 0.32

!"(") !%(")

Gather

…

…

!"(") !%(")

Fine Coarse

!% !& !' !( !)

!"(%) !%(%)

0.13 0.57 0.13 0.02 0.15

Gather

Fine Coarse

!"(") !%(")

!"(%) !%(%)

0.13 0.57 0.13 0.02 0.15

0.21 0.02 0.01 0.04 0.19 0.11 0.32

!*!+,-

Feed Forward Network

Feed Forward Network

!"(") !%(") !&(") !'(") !*
(") !((") !)(")!+,-

(")

!"(") !*(") !)(")!+,-
(") !((")

!"(") !%(") !&(") !'(") !*(") !((") !)(")!+,-
(")

!%(") !&(") !'(")
!"(") !*(") !)(")!+,-(")

!"(") !%(")!"(%) !*(%) !)(%)!+,-
(%)

!"(") !%(")!"(%) !*(%) !)(%)!+,-
(%)

!*(%)!+,-
(%) !"(%) !)(%)!*(%)!+,-

(%)

Figure 2: The architecture of FCA. The number marked above the tokens is its corresponding informativeness. The
blue tokens are fine units and the green are coarse units. In this figure, we fix the number of coarse units to 2.

attention map A:

I(x(t)j ) =
n∑

i=1,i ̸=j

ai,j (4)

The overall informativeness of xj is defined as
the average over the heads:

I(xj) =
1

h

h∑
t=1

I(x(t)j ) (5)

We next analyze some properties of defined in-
formativeness in BERT-base. The first sub-figure in
Figure 1 displays the normalized variance and stan-
dard deviation of informativeness of layers from 1
to 12 on RTE (classification dataset), which sup-
ports the phenomenon that the informativeness dis-
tributions at the bottom layers are relatively uni-
form and the top layers are volatile. The last five
sub-figures further present the informativeness dis-
tributions of some BERT-base layers, where the
first token is [CLS] and its representations are used
for the final prediction. We can see that as the
layers deepen, the informativeness is progressively
concentrated on two tokens. This means that main-
taining full-length token-level representations for
the classification tasks may be redundant.

A straightforward approach for reducing the se-
quence length of self-attention is to maintain the
informative tokens and prune the rest. We argue
that this approach is effortless but encounters the
risk of information loss, especially for lower layers.

4.2 FCA Layer

Instead of pruning, we propose to process the unin-
formative tokens with more efficient units. Figure 2
shows the architecture of FCA layer, which inserts
a granularity hybrid sub-layer after MHA. At each
layer, it first divides tokens into informative and
uninformative ones based on their assigned infor-
mativeness. The CLS token is always divided into
informative part as it is used to derive the final
prediction.

Let x(l)cls ⊕X(l) be the sequence of token vectors
input to l-th layer, where X(l) = [x

(l)
1 , ..., x

(l)
n ] and

n is the sequence length of X(l). We gather the
token vectors from X(l) with the top-k informa-
tiveness to form the informative sequence X(l)

in and
the rest vectors to form the uninformative sequence
X

(l)
un, where X

(l)
in ∈ Rk×dh and X

(l)
un ∈ R(n-k)×dh .

The length of the uninformative sequence is re-
duced by performing certain type of aggregating
operations along the sequence dimension, such as
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average pooling:

X ′(l)
un = Pooling(X(l)

un) (6)

or weighted average pooling with informativeness
as weights:

α
x
(l)
un

= softmax(I(x(l)un))

X ′(l)
un = Pooling(αX(l)

un)
(7)

where x
(l)
un is the token vector in X

(l)
un. The aggre-

gated sequence X
′(l)
un ∈ Rk′×dh and k′ is a fixed

parameter. After hybrid layer, token sequence is up-
dated to [x(l)cls ⊕X

(l)
in ⊕X

′(l)
un ] and sequence length

is shortened by n-k-k′. Therefore, in addition to
the following layers, the computation cost of FFN
in l-th layer is reduced as well. It should be noted
that the relative position of uninformative tokens
should be preserved, which contains their contex-
tual features to a certain extent and they can be
captured by aggregating operations.

The parameter k is learnable and progressively
shortened. Inspired by Goyal et al. (2020), we train
n learnable parameters to determine the configura-
tion of k, denoted R = [r1, ..., rn]. The parameters
are constrained to be in the range, i.e., ri ∈ [0; 1]
and added after MHA sub-layer. Given a token
vector xi output by MHA, it is modified by:

xi ← rpos(xi)xi (8)

where pos(xi) is the sorted position of xi over in-
formativeness. Intuitively, the parameter ri repre-
sents the extent to which the informativeness of the
token at i-th position is retained. Then, for the l-th
layer, we obtain the configuration of kl from the
sum of the above parameters, i.e.,

kl = ceil(sum(l;R))

s.t. kl+1 ≤ kl
(9)

5 Loss Function

Let Θ be the parameters of the baseline BERT
model and L(·) be cross entropy loss or mean-
squared error as defined in the original task. We
adopt the multi-task learning idea to jointly mini-
mize the loss in accuracy and total sequence length
over all layers.

Loss
Θ,R

= L(Θ, R) + λ
L∑
l=1

l · sum(l;R) (10)

Dataset Task Input Length
CoLA Acceptability 64
RTE NLI 256
QQP Similarity 128
SST-2 Sentiment 64
MNLI-m NLI 128
QNLI NLI 128

RACE QA 512

Table 1: Statistics of Datasets.

where L is the number of layers. L(Θ, R) controls
the accuracy and sum(l;R) controls the sequence
length of l-th layer. The hyper-parameter λ tunes
the trade-off.

The training schema of our model involves three
stages, which are given in Algorithm 1.

Algorithm 1 Training Process
Input: D = training set
Initialize: Θ← BERT parameters
Initialize: R← uniform distribution

1: fine-tune Θ on D with original loss L(·)
2: add R after MHA sub-layer and fine-tune Θ

and R with Eq. 10
3: obtain the configuration of k on each layer,

then re-train FCA-layer based BERT with L(·)

6 Experiments

6.1 Datasets

Our experiments are mainly conducted on GLUE
(General Language Understanding Evaluation) 2

(Wang et al., 2018) and RACE (Lai et al., 2017)
datasets. GLUE benchmark covers four tasks: Lin-
guistic Acceptability, Sentiment Classification, Nat-
ural Language Inference, and Paraphrase Similarity
Matching. RACE is the Machine Reading Compre-
hension dataset.

For experiments on RACE, we denote the in-
put passage as P , the question as q, and the four
answers as {a1, a2, a3, a4}. We concatenate pas-
sage, question and each answer as a input se-
quence [CLS]P [SEP]q[SEP]ai[SEP], where [CLS]
and [SEP] are the special tokens used in the origi-
nal BERT. The representation of [CLS] is treated as
the single logit value for each ai. Then, a softmax
layer is placed on top of these four logits to obtain

2https://gluebenchmark.com/
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the normalized probability of each answer, which
is used to compute the cross-entropy loss.

The input length of BERT is set to 512 by de-
fault. However, the instances in these datasets are
relatively short, rarely reaching 512. If we keep
the default length settings, most of the input tokens
are [PAD] tokens. In this way, our model can eas-
ily save computational resources by discriminating
[PAD] tokens as the uninformative ones, which is
meaningless. To avoid this, we constrained the
length of the datasets. The statistic information of
the datasets is summarized in Table 1.

6.2 Evaluation Metrics
For accuracy evaluation, we adopt Matthew’s Cor-
relation for CoLA, F1-score for QQP, and Accuracy
for the rest datasets. For efficiency evaluation, we
use the number of floating operations (FLOPs) to
measure the inference efficiency, as it is agnostic
to the choice of the underlying hardware.

6.3 Baselines
We compare our model with both distillation and
pruning methods. Distillation methods contain
four models DistilBERT (Sanh et al., 2019), BERT-
PKD (Sun et al., 2019), Tiny-BERT (Jiao et al.,
2019), and Mobile-BERT (Sun et al., 2020). All
four models are distillation from BERT-base and
have the same structure (6 transformer layers, 12
attention heads, dimension of the hidden vectors
is 768). Pruning methods contain FLOP (Wang
et al., 2020), SNIP (Lin et al., 2020), and PoWER-
BERT (Goyal et al., 2020). PoWER-BERT (Goyal
et al., 2020) is the state-of-the-art pruning method
which reduces sequence length by eliminating
word-vectors. To make fair comparisons, we set
the length of our informative tokens at each layer
same to the sequence length of PoWER-BERT.

6.4 Implementation Details
We deploy BERT-base as the standard model
in which transformer layers L=12, hidden size
dh=512, and number of heads h=12. All models
are trained with 3 epochs. The batch size is se-
lected in list 16,32,64. The model is optimized
using Adam (Kingma and Ba, 2014) with learning
rate in range [2e-5,6e-5] for the BERT parameters
Θ, [1e-3,3e-3] for R. Hyper-parameter λ that con-
trols the trade-off between accuracy and FLOPs is
set in range [1e-3,7e-3]. We conducted experiments
with a V100 GPU. The FLOPs for our model and
the baselines were calculated with Tensorflow and

batch size=1. The detailed hyper-parameters set-
ting for each dataset are provided in the Appendix.

6.5 Main Results

Table 3 and Table 2 display the accuracy and infer-
ence FLOPs of each model on GLUE benchmark
respectively. As the FLOPs of PoWER-BERT is
almost the same as that of FCA-BERT and the
number of coarse units has little affect on FLOPs,
Table 2 only lists the FLOPs of FCA-BERT.
Comparison to BERT. The results demonstrate
the high-efficiency of our model, which almost has
no performance gap with BERT-base (<%1 accu-
racy loss) while reduces the inference FLOPs by
half on majority datasets. Table 4 presents the
sequence length of FCA at each layer, which illus-
trates substantial reduction of computation length
for standard BERT. For example, the input se-
quence length for the dataset QQP is 128. Hence,
standard BERT needs to process 128*12=1536 to-
kens over the twelve layers. In contrast, FCA only
tackles [85, 78, 73, 69, 61, 57, 54, 52, 46, 41, 35,
35] summing to 686 tokens. Consequently, the
computational load of self-attention and the feed
forward network is economized significantly.

Among our models, the weighted average pool-
ing operation raises the better performance than the
average pooling operation. The number of coarse
units contributes the model accuracy for both two
operations, especially for pooling operation. This
is reasonable as when the number of coarse units
increases, the information stored in each FCA grad-
ually approaches the standard BERT. But overmuch
coarse units grow FLOPs. Therefore, it is neces-
sary to balance impact on FLOPS and performance
brought by the coarse units.
Comparison to Baselines. We first compare our
model to Distil-BERT. Our models dramatically
outperform Distil-BERT in accuracy by a margin
of at least 3 average score. As mentioned before,
the line of distillation framework is orthogonal
to our proposed method. We further investigate
whether FCA is compatible with distillation mod-
els. Table 5 shows the results of Distil-BERT with
FCA-Pool5, which verify that FCA could further
accelerate the inference speed on the basis of the
distillation model with <1% loss in accuracy. As
for the SOTA distillation models, Tiny-BERT and
Mobile-BERT, our models still outperform them on
average performance. Combined with the results
of Table 2 where our models have slightly fewer
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Dataset CoLA RTE QQP SST-2 MNLI-m QNLI RACE Avg.
BERT-base 1.3G 5.1G 2.6G 1.3G 2.6G 2.6G 10.2 G -
Distil-BERT6 0.7G 2.6G 1.3G 0.7G 1.3G 1.3G 5.1 G -
Speedup 2.0x 2.0x 2.0x 2.0x 2.0x 2.0x 2.0x 2.0x
FCA-BERT 0.6G 2.4 G 1.2G 0.7G 1.4G 1.4G 4.4G -
Speedup 2.2x 2.1x 2.2x 1.9x 1.9x 1.9x 2.3x 2.1x

Table 2: Inference FLOPs. The FLOPs of Distil-BERT6, BERT-PKD6, Tiny-BERT6, Mobile-BERT6 and SNIP
are the same and we only list Distil-BERT6’s FLOPs here. The FLOPs of PoWER-BERT is almost the same as
that of FCA-BERT as the length of our informative tokens at each layer is set same to the sequence length of
PoWER-BERT. The number of coarse units basically does not affect the calculation of FLOPs.

Dataset CoLA RTE QQP SST-2 MNLI-m QNLI RACE Avg.
BERT-base 55.2 67.0 71.7 93.0 84.8 91.1 66.4 75.6
Distil-BERT6 (Sanh et al., 2019) 48.8 64.2 70.2 89.9 80.6 88.9 57.9 71.5
BERT-PKD6 (Sun et al., 2019) 49.5 65.5 70.7 90.4 81.5 89.0 59.3 72.3
Tiny-BERT6 (Jiao et al., 2019) 49.2 70.2 71.1 91.6 83.5 90.5 59.2 73.6
Mobile-BERT6 (Sun et al., 2020) 51.1 70.4 70.5 92.6 84.3 91.6 58.1 74.0
FLOP (Wang et al., 2020) - - - 92.1 - 89.1 - -
SNIP (Lin et al., 2020) - - - 91.8 - 89.5 - -
PoWER-BERT (Goyal et al., 2020) 51.9 65.2 70.6 92.2 83.5 89.8 65.3 74.1
FCA-BERT-Pool1 53.0 65.2 71.1 92.4 83.5 90.9 65.5 74.5
FCA-BERT-Pool5 54.3 66.0 71.1 93.0 83.8 90.9 66.2 75.0
FCA-BERT-Weight1 54.6 66.2 71.1 92.6 83.8 90.4 65.8 74.9
FCA-BERT-Weight5 54.6 65.6 71.4 93.0 83.9 90.5 66.1 75.0

Table 3: Test results on GLUE and RACE. ‘Pool’ denotes average pooling operation to aggregate uninformative
tokens and ‘Weight’ denotes weighted operation. ∗1 and ∗5 mean the number of coarse units.

Dataset Sequence Length
CoLA 34, 33, 32, 32, 31, 30, 30, 30, 30, 29, 28, 28

QQP 85, 78, 73, 69, 61, 57, 54, 52, 46, 41, 35, 35

SST-2 49, 45, 43, 41, 37, 35, 34, 33, 30, 27, 24, 24

QNLI 107, 102, 91, 85, 83, 77, 66, 61, 55, 43, 35, 20

MNLI-m 114, 100, 94, 90, 78, 74,66, 62, 51, 40, 28, 24

RTE 174, 166, 157, 152, 124, 124,122, 122, 110, 107
97, 94

RACE 261, 244, 230 ,217, 217, 217, 211, 203, 203, 203
202, 202

Table 4: Sequence length at each layer.

inference FLOPs than the distillation methods, it
can be proved that FCA has better accuracy and
computational efficiency than them.

We next compare our model to the SOTA prun-
ing model PoWER-BERT. Their acceleration ef-
fects are comparable and we focus on comparing
their accuracy. The results on Table 3 show that
our models achieve better accuracy than PoWER-
BERT on all datasets. This is because PoWER-
BERT discards the computing units, which in-
evitably causes information loss. Instead of prun-

ing, FCA layer stockpiles the information of unin-
formative tokens in a coarse fashion (aggregating
operations). Moreover, we noticed that coarse units
are not always classified as uninformative. In other
words, they sometimes participate in the calcula-
tion of self-attention as informative tokens. This
shows the total informativeness contained in unin-
formative tokens can not be directly negligible and
can be automatically learned by self-attention.

In order to visually demonstrate the advantages
of our model, Figure 3 draws curves of trade-off
between accuracy and efficiency on three datasets.
The results of FCA-BERT and PoWER-BERT are
obtained by tuning the hyper-parameter λ. For
DistilBERT, the points correspond to the distilla-
tion version with 4 and 6 Transformer layers. It
can be seen that with the decrease of FLOPs, (1)
PoWER-BERT and our model outperform Distil-
BERT by a large margin; (2) our model exhibits the
superiority over all the prior methods consistently;
(3) more importantly, the advantage of our model
over PoWER-BERT gradually becomes apparent.
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Figure 3: Trade-off between accuracy and FLOPs.

Dataset CoLA RTE SST-2
BERT-large 60.4 (2.6G) 70.0 (10.2G) 94.1 (2.6G)
w/ FCA-Pool5 59.8 (1.1G) 66.3 (4.4G) 93.6 (1.2G)
Speed-up 2.4x 2.3x 2.2x

Distil-BERT6 48.8 (0.7G) 64.2 (2.6G) 89.9 (0.7G)
w/ FCA-Pool5 50.2 (0.4G) 63.9 (1.7G) 90.4 (0.5G)
Speed-up 1.8x 1.6x 1.4x

ELECTRA-base 62.7 (1.3G) 75.5 (5.1G) 95.6 (1.3G)
w/ FCA-Pool5 62.4 (0.6G) 75.2 (2.4G) 95.4 (0.7G)
Speed-up 2.2x 2.1x 1.9x

Table 5: Results on other pre-trained language models.

This is because PoWER-BERT prunes plenty of
computation units to save FLOPs, which results in
the dilemma of information loss. In contrast, our
model preserves all information to a certain extent.
Extensions to Other PLMs. To explore the gen-
eralization capabilities of FCA, we extend FCA
to other pre-trained language models (PLMs),
such as distil-BERT, BERT-large, and ELECTRA-
base (Clark et al., 2020). The test results are dis-
played in Table 5, which proves that FCA is appli-
cable to a variety of models, regardless of model
size and variety.

6.6 Pooling All Tokens

In this section, we explore that can we not differ-
entiate between tokens and perform the average
pooling on all tokens to reduce the computation
cost. To make fair comparisons, we set the length
of pooled sequence at each layer equal to the FCA-
BERT-Pool5. The results show that pooling all
tokens decreases the model accuracy from 75.0 to
73.8. This is because the pooling operation weak-
ens the semantic features learned by the informa-
tive tokens, which are often decisive for the final
prediction. On the contrary, our model does not
conduct pooling on informative tokens and instead
delegates the burden of saving computational over-
head to uninformative tokens. And this does not
cause serious damage to the representative features
learned by the model.
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Figure 4: Distance with standard BERT.

6.7 Distance with Standard BERT
In this section, we further investigate the extent
to which these compressed models can retain the
essential information of the original BERT. Con-
cretely, we adopt the Euclidean distance of the
CLS representation between BERT and the com-
pressed models as the evaluation metric, which
is proportional to the information loss caused by
model compression, formally:

Distance(A,B) =
M∑
k=1

√√√√ dh∑
i=1

(Acls
i,k − Bcls

i,k)

where M is the number of the instances in cor-
responding dataset. Table 4 shows the distance
of baselines and our models with standard BERT.
Combining the results in Table 3, it can be found
that the distance is consistent with the test accu-
racy. Large distance leads to low accuracy and vice
versa. This provides an inspiration, that is, we can
add a distance regulation term to the objective func-
tion to forcibly shorten the distance between the
compression model and the original BERT, i.e.,

Loss
Θ,R

= L(Θ, R)+λ
L∑
l=1

l·sum(l;R)+Distance(·)

However, the experimental results show that the
accuracy has not been significantly improved. This
may be because the information learned by the com-
pressed model has reached the limit of approaching
the BERT, and the regulation term can not further
improve the potential of the compressed model.

7 Discussion

Our proposed FCA is dedicated to the classifica-
tion tasks that only require single-vector representa-
tions, and it can not be directly applied to the tasks
of requiring to maintain the full input sequence in
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the output layer, such as NER and extractive MRC.
On these tasks, we need to make some modifica-
tions of only performing FCA operation over K
and V in self-attention and maintaining the full
length of Q. The Eq. 2 is modified to:

headt =

Attention(QWQ
t ,FCA(K)WK

t ,FCA(V )W V
t )
(11)

We also attempted to maintain the full length
of K and V and shorten Q, but the experimental
results are unsatisfactory.

8 Conclusion

In this paper, we propose FCA, a fine- and coarse-
granularity hybrid self-attention that reduces the
computation cost through progressively shortening
the computational sequence length in self-attention.
Experiments on GLUE and RACE datasets show
that BERT with FCA achieves 2x reduction in
FLOPs over original BERT with <1% loss in accu-
racy. Meanwhile, FCA offers significantly better
trade-off between accuracy and FLOPs compared
to prior methods.
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