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Abstract
Knowledge probing is crucial for understand-
ing the knowledge transfer mechanism behind
the pre-trained language models (PLMs). De-
spite the growing progress of probing knowl-
edge for PLMs in the general domain, spe-
cialised areas such as biomedical domain are
vastly under-explored. To facilitate this, we
release a well-curated biomedical knowledge
probing benchmark, MedLAMA, constructed
based on the Unified Medical Language Sys-
tem (UMLS) Metathesaurus. We test a wide
spectrum of state-of-the-art PLMs and prob-
ing approaches on our benchmark, reaching at
most 3% of acc@10. While highlighting vari-
ous sources of domain-specific challenges that
amount to this underwhelming performance,
we illustrate that the underlying PLMs have a
higher potential for probing tasks. To achieve
this, we propose Contrastive-Probe, a novel
self-supervised contrastive probing approach,
that adjusts the underlying PLMs without us-
ing any probing data. While Contrastive-
Probe pushes the acc@10 to 24%, the perfor-
mance gap remains notable. Our human ex-
pert evaluation suggests that the probing per-
formance of our Contrastive-Probe is under-
estimated as UMLS does not comprehensively
cover all existing factual knowledge. We
hope MedLAMA and Contrastive-Probe facili-
tate further developments of more suited prob-
ing techniques for this domain.1

1 Introduction

Pre-trained language models (PLMs; Devlin et al.
2019; Liu et al. 2020) have orchestrated incredi-
ble progress on myriads of few- or zero-shot lan-
guage understanding tasks, by pre-training model
parameters in a task-agnostic way and transferring
knowledge to specific downstream tasks via fine-
tuning (Brown et al., 2020; Petroni et al., 2021).

1The data and code implementation are available at
https://github.com/cambridgeltl/medlama.

∗Equal contribution. This work was done at the Univer-
sity of Cambridge.
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Riociguat
has physiologic effect [Mask].

Vasodilation

Entecavir
may prevent [Mask].

Hepatitis B

Invasive Papillary Breast Carcinoma
disease mapped to gene [Mask].

[ERBB2 Gene, CCND1 Gene]
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Posttraumatic arteriovenous fistula
is associated morphology of [Mask].

Traumatic arteriovenous
fistula

Acute Myeloid Leukemia with Mutated RUNX1
disease mapped to gene [Mask].

RUNX1 Gene

Magnesium Chloride
may prevent [Mask].

Magnesium Deficiency

Table 1: Example probing queries from MedLAMA. Bold
font denotes UMLS relation.

To better understand the underlying knowledge
transfer mechanism behind these achievements,
many knowledge probing approaches and bench-
mark datasets have been proposed (Petroni et al.,
2019; Jiang et al., 2020a; Kassner et al., 2021;
Zhong et al., 2021). This is typically done by for-
mulating knowledge triples as cloze-style queries
with the objects being masked (see Table 1) and
using the PLM to fill the single (Petroni et al.,
2019) or multiple (Ghazvininejad et al., 2019)
[Mask] token(s) without further fine-tuning.

In parallel, it has been shown that specialised
PLMs (e.g., BioBERT; Lee et al. 2020, Blue-
BERT; Peng et al. 2019 and PubMedBERT; Gu
et al. 2020) substantially improve the performance
in several biomedical tasks (Gu et al., 2020). The
biomedical domain is an interesting testbed for in-
vestigating knowledge probing for its unique chal-
lenges (including vocabulary size, multi-token en-
tities), and the practical benefit of potentially dis-
posing the expensive knowledge base construction
process. However, research on knowledge probing
in this domain is largely under-explored.

To facilitate research in this direction, we
present a well-curated biomedical knowledge
probing benchmark, MedLAMA, that consists of
19 thoroughly selected relations. Each relation
contains 1k queries (19k queries in total with at
most 10 answers each), which are extracted from
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ID Relation Manual Prompt

1 disease may have associated disease The disease [X] might have the associated disease [Y] .
2 gene product plays role in biological process The gene product [X] plays role in biological process [Y] .
3 gene product encoded by gene The gene product [X] is encoded by gene [Y] .
4 gene product has associated anatomy The gene product [X] has the associated anatomy [Y] .
5 gene associated with disease The gene [X] is associatied with disease [Y] .
6 disease has abnormal cell [X] has the abnormal cell [Y] .
7 occurs after [X] occurs after [Y] .
8 gene product has biochemical function [X] has biochemical function [Y] .
9 disease may have molecular abnormality The disease [X] may have molecular abnormality [Y] .
10 disease has associated anatomic site The disease [X] can stem from the associated anatomic site [Y] .
11 associated morphology of [X] is associated morphology of [Y] .
12 disease has normal tissue origin The disease [X] stems from the normal tissue [Y] .
13 gene encodes gene product The gene [X] encodes gene product [Y] .
14 has physiologic effect [X] has physiologic effect of [Y] .
15 may treat [X] might treat [Y] .
16 disease mapped to gene The disease [X] is mapped to gene [Y] .
17 may prevent [X] may be able to prevent [Y] .
18 disease may have finding [X] may have [Y] .
19 disease has normal cell origin The disease [X] stems from the normal cell [Y] .

Table 2: The 19 relations and their corresponding manual prompts in MedLAMA.

the large UMLS (Bodenreider, 2004) biomedical
knowledge graph and verified by domain experts.
We use automatic metrics to identify the hard ex-
amples based on the hardness of exposing answers
from their query tokens. See Table 1 for a sample
of easy and hard examples from MedLAMA.

A considerable challenge in probing in biomed-
ical domain is handling multi-token encoding of
the answers (e.g. in MedLAMA only 2.6% of the
answers are single-token, while in the English set
of mLAMA; Kassner et al. 2021, 98% are single-
token), where all existing approaches (i.e., mask
predict; Petroni et al. 2019, retrieval-based; Dufter
et al. 2021, and generation-based; Gao et al.
2020) struggle to be effective.2 For example, the
mask predict approach (Jiang et al., 2020a) which
performs well in probing multilingual knowledge
achieves less than 1% accuracy on MedLAMA.

To address the aforementioned challenge, we
propose a new method, Contrastive-Probe, that
first adjusts the representation space of the under-
lying PLMs by using a retrieval-based contrastive
learning objective (like ‘rewiring’ the switchboard
to the target appliances Liu et al. 2021c) then re-
trieves answers based on their representation sim-
ilarities to the queries. Notably, our Contrastive-
Probe does not require using the MLM heads dur-
ing probing, which avoids the vocabulary bias
across different models. Additionally, retrieval-
based probe is effective for addressing the multi-
token challenge, as it avoids the need to gener-
ate multiple tokens from the MLM vocabulary.
We show that Contrastive-Probe facilitates abso-

2Prompt-based probing approaches such as Auto-
Prompt (Shin et al., 2020a), SoftPrompt (Qin and Eisner,
2021), and OptiPrompt (Zhong et al., 2021) need additional
labelled data for fine-tuning prompts, but we restrict the scope
of our investigation to methods that do not require task data.

lute improvements of up-to ∼5% and ∼21% on the
acc@1 and acc@10 probing performance com-
pared with the existing approaches.

We further highlight that the elicited knowl-
edge by Contrastive-Probe is not gained from the
additional random sentences, but from the origi-
nal pre-trained parameters, which echos the pre-
vious finding of Liu et al. (2021b); Glavaš and
Vulić (2021); Su et al. (2021, 2022). Addition-
ally, we demonstrate that different state-of-the-art
PLMs and transformer layers are suited for differ-
ent types of relational knowledge, and different re-
lations requires different depth of tuning, suggest-
ing that both the layers and tuning depth should
be considered when infusing knowledge over dif-
ferent relations. Furthermore, expert evaluation of
PLM responses on a subset of MedLAMA highlights
that expert-crafted resources such as UMLS still
do not include the full spectrum of factual knowl-
edge, indicating that the factual information en-
coded in PLMs is richer than what is reflected by
the automatic evaluation.

The findings of our work, along with the pro-
posed MedLAMA and Contrastive-Probe, highlight
both the unique challenges of the biomedical do-
main and the unexploited potential of PLMs. We
hope our research to shed light on what domain-
specialised PLMs capture and how it could be bet-
ter resurfaced, with minimum cost, for probing.

2 MedLAMA

To facilitate research of knowledge probing in
the biomedical domain, we create the MedLAMA
benchmark based on the largest biomedical knowl-
edge graph UMLS (Bodenreider, 2004). UMLS3

3Release version 2021AA: https://download.nlm.
nih.gov/umls/kss/2021AA/umls-2021AA-full.zip
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Figure 1: Left: Count over full and hard sets. Right:
Percentage of answers over number of tokens.

is a comprehensive metathesaurus containing 3.6
million entities and more than 35.2 million knowl-
edge triples over 818 relation types which are
integrated from various ontologies, including
SNOMED CT, MeSH and the NCBI taxonomy.

Creating a LAMA-style (Petroni et al., 2019)
probing benchmark from such a knowledge graph
poses its own challenges: (1) UMLS is a col-
lection of knowledge graphs with more than 150
ontologies constructed by different organisations
with very different schemata and emphasis; (2)
a significant amount of entity names (from cer-
tain vocabularies) are unnatural language (e.g.,
t(8;21)(q22;q22) denoting an observed karyotypic
abnormality) which can hardly be understood by
the existing PLMs, with tokenisation tailored for
natural language; (3) some queries (constructed
from knowledge triples) can have up to hundreds
of answers (i.e., 1-to-N relations), complicating
the interpretation of probing performance; and (4)
some queries may expose answers in themselves
(e.g., answer within queries), making it challeng-
ing to interpret relative accuracy scores.
Selection of Relationship Types. In order to
obtain high-quality knowledge queries, we con-
ducted multiple rounds of manual filtering on the
relation level to exclude uninformative relations or
relations that are only important in the ontolog-
ical context but do not contain interesting seman-
tics as a natural language (e.g, taxonomy and mea-
surement relations). We also excluded relations
with insufficient triples/entities. Then, we manu-
ally checked the knowledge triples for each rela-
tion to filter out those that contain unnatural lan-
guage entities and ensure that their queries are se-
mantically meaningful. Additionally, in the cases
of 1-to-N relations where there are multiple gold
answers for the same query, we constrained all the
queries to contain at most 10 gold answers. These
steps resulted in 19 relations with each containing
1k randomly sampled knowledge queries. Table 2
shows the detailed relation names and their corre-
sponding prompts.
Easy vs. Hard Queries. Recent works (Poerner
et al., 2020; Shwartz et al., 2020) have discovered

Approach Type Answer space MLM
Fill-mask (Petroni et al., 2019) MP PLM Vocab 3

X-FACTR (Jiang et al., 2020a) MP PLM Vocab 3

Generative PLMs (Lewis et al., 2020) GB PLM Vocab 7

Mask average (Kassner et al., 2021) RB KG Entities 3

Contrastive-Probe (Ours) RB KG Entities 7

Table 3: Comparison of different approaches. Types
of probing approaches: Mask predict (MP), Retrieval-
based (RB) and Generation-based (GB).

that PLMs are overly reliant on the surface form
of entities to guess the correct answer of a knowl-
edge query. The PLMs “cheat” by detecting lex-
ical overlaps between the query and answer sur-
face forms instead of exercising their abilities of
predicting factual knowledge. For instance, PLMs
can easily deal with the triple <Dengue virus live
antigen CYD serotype 1, may-prevent, Dengue>

since the answer is part of the query. To miti-
gate such bias, we also create a hard query set
for each relation by selecting a subset of their cor-
responding 1k queries using token and matching
metrics (i.e., exact matching and ROUGE-L (Lin
and Och, 2004)). For more details see the Ap-
pendix. We refer to the final filtered and original
queries as the hard sets and full sets, respectively.
Figure 1 (left) shows the count of hard vs. full sets.
The Multi-token Issue. One of the key chal-
lenges for probing MedLAMA is the multi-token de-
coding of its entity names. In MedLAMA there are
only 2.6% of the entity names that are single-
token4 while in the English set of mLAMA (Kass-
ner et al., 2021) and LAMA (Petroni et al., 2019)
the percentage of single-token answers are 98%
and 100%, respectively. Figure 1 (right) shows the
percentage of answers by different token numbers.

3 Existing Multi-token Knowledge
Probing Approaches

While the pioneer works in PLM knowledge prob-
ing mainly focused on the single-token entities,
many recent works have started exploring the so-
lutions for the multi-token scenario (Kassner et al.,
2021; Jiang et al., 2020a; De Cao et al., 2021).
These knowledge probing approaches can be cat-
egorised, based on answer search space and re-
liance on MLM head, into three categories: mask
predict, generation-based, and retrieval-based.
Table 3 summarises their key differences.
Mask Predict. Mask predict (Petroni et al., 2019;
Jiang et al., 2020a) is one of the most commonly

4Tokenized by Bert-base-uncased.
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Figure 2: Comparison of different probing approaches. (d) is our proposed Contrastive-Probe.

used approaches to probe knowledge for masked
PLMs (e.g. BERT). The mask predict approach
uses the MLM head to fill a single mask token
for a cloze-style query, and the output token is
subjected to the PLM vocabulary (Petroni et al.,
2019). Since many real-world entity names are
encoded with multiple tokens, the mask predict
approach has also been extended to predict multi-
token answers using the conditional masked lan-
guage model (Jiang et al., 2020a; Ghazvininejad
et al., 2019). Figure 2(a) shows the prediction pro-
cess. Specifically, given a query, the probing task
is formulated as: 1) filling masks in parallel in-
dependently (Independent); 2) filling masks from
left to right autoregressively (Order); 3) filling to-
kens sorted by the maximum confidence greed-
ily (Confidence). After all mask tokens are re-
placed with the initial predictions, the predictions
can be further refined by iteratively modifying one
token at a time until convergence or until the max-
imum number of iterations is reached (Jiang et al.,
2020a). For example, Order+Order represents
that the answers are initially predicted by Order
and then refined by Order. In this paper we exam-
ined two of these approaches, i.e. Independent and
Order+Order, based on our initial exploration.

Generation-based. Recently, many generation
based PLMs have been presented for text gener-
ation tasks, such as BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020). These generative PLMs
are trained with a de-noising objective to restore
its original form autoregressively (Lewis et al.,
2020; Raffel et al., 2020). Such an autoregressive
generation process is analogous to the Order prob-
ing approach, thus the generative PLMs can be
directly used to generate answers for each query.
Specifically, we utilize the cloze-style query with
a single [Mask] token as the model input. The
model then predicts the answer entities that cor-

respond to the [Mask] token in an autoregressive
manner. An illustration is provided in Figure 2(b).
Retrieval-based. Mask predict and Generation-
based approaches need to use the PLM vocabulary
as their search spaces for answer tokens, which
may generate answers that are not in the answer
set. In particular, when probing the masked PLMs
using their MLM heads, the predicted result might
not be a good indicator for measuring the amount
of knowledge captured by these PLMs. This is
mainly because the MLM head will be eventually
dropped during the downstream task fine-tuning
while the MLM head normally accounts for more
than 20% of the total PLM parameters. Alterna-
tively, the retrieval-based probing (Dufter et al.,
2021; Kassner et al., 2021) are applied to address
this issue. Instead of generating answers based on
the PLM vocabulary, the retrieval-based approach
finds answers by ranking the knowledge graph
candidate entities based on the query and entity
representations, or the entity generating scores.
To probe PLMs on MedLAMA, we use mask aver-
age (Kassner et al., 2021), an approach that takes
the average log probabilities of entity’s individual
tokens to rank the candidates. The retrieval-based
approaches address the multi-token issue by re-
stricting the output space to the valid answer set
and can be used to probe knowledge in different
types of PLMs (e.g. BERT vs. fastText; Dufter
et al. 2021). However, previous works (Kassner
et al., 2021; Dufter et al., 2021) only report results
based on the type-restricted candidate set (e.g. re-
lation) which we observed to decay drastically un-
der the full entity set.

4 Contrastive-Probe: Cloze-style Task as
a Self-retrieving Game

To better transform the PLM encoders for the
cloze-style probing task, we propose Contrastive-
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Probe which pre-trains on a small number
of sentences sampled from the PLM’s origi-
nal pre-training corpora with a contrastive self-
supervising objective, inspired by the Mirror-
BERT (Liu et al., 2021b). Our contrastive pre-
training does not require the MLM head or any ad-
ditional external knowledge, and can be completed
in less than one minute on 2 × 2080Ti GPUs.
Self-supervised Contrastive Rewiring. We ran-
domly sample a small set of sentences (e.g. 10k,
see §5.2 for stability analysis of Contrastive-
Probe on several randomly sampled sets), and re-
place their tail tokens (e.g. the last 50% exclud-
ing the full stop) with a [Mask] token. Then these
transformed sentences are taken as the queries of
the cloze-style self-retrieving game. In the follow-
ing we show an example of transforming a sen-
tence into a cloze-style query:

Sentence: Social-distancing largely reduces coron-
avirus infections.
Query: Social-distancing largely [Mask].

where “reduces coronavirus infections” is marked
as a positive answer of this query.

Given a batch, the cloze-style self-retrieving
game is to ask the PLMs to retrieve the positive an-
swer from all the queries and answers in the same
batch. Our Contrastive-Probe tackles this by op-
timising an InfoNCE objective (Oord et al., 2018),

L = −

N∑
i=1

log
exp(cos( f (xi), f (xp))/τ)∑

x j∈Ni

exp(cos( f (xi), f (x j))/τ)
, (1)

where f (·) is the PLM encoder (with the MLM
head chopped-off and [CLS] as the contextual rep-
resentation), N is batch size, xi and xp are from
a query-answer pair (i.e., xi and xp are from the
same sentence), Ni contains queries and answers
in the batch, and τ is the temperature. This objec-
tive function encourages f to create similar rep-
resentations for any query-answer pairs from the
same sentence and dissimilar representations for
queries/answers belonging to different sentences.
Retrieval-based Probing. For probing step, the
query is created based on the prompt-based tem-
plate for each knowledge triple , as shown in the
following:

Triple: <Elvitegravir, may-prevent, Epistaxis>
Query: Elvitegravir may prevent [Mask].

and we search for nearest neighbours from all the
entity representations encoded by the same model.

Approach PLM Full Set

acc@1 acc@10

Generative PLMs

BART-base 0.16 1.39
SciFive-base 0.53 2.02
SciFive-large 0.55 2.03
T5-small 0.70 1.72
T5-base 0.06 0.19

X-FACTR (Confidence)
BERT 0.05 -
BlueBERT 0.74 -
BioBERT 0.17 -

X-FACTR (Order+Order)
BERT 0.06 -
BlueBERT 0.50 -
BioBERT 0.11 -

Mask average
BERT 0.06 0.73
BlueBERT 0.05 1.39
BioBERT 0.28 3.03

Contrastive-Probe (Ours)

BERT 1.95 6.96
BlueBERT 4.87 19.87
BioBERT 3.28 15.46
PubMedBERT 5.71 24.31

Table 4: Performance of different probing approaches
on the full set of MedLAMA. Since the MLM head of
PubMedBERT is not available, the mask predict and
mask average approaches cannot be applied. Best re-
sults are in bold and the second bests are underlined.

5 Experiments

In this section we conduct extensive experiments
to verify whether Contrastive-Probe is effective
for probing biomedical PLMs. First, we experi-
ment with Contrastive-Probe and existing prob-
ing approaches on MedLAMA benchmark (§5.1).
Then, we conduct in-depth analysis of the stability
and applicability of Contrastive-Probe in prob-
ing biomedical PLMs (§5.2). Finally, we report an
evaluation of a biomedical expert on the probing
predictions and highlight our findings (§5.3).
Contrastive-Probe Rewiring. We train our
Contrastive-Probe based on 10k sentences which
are randomly sampled from the PubMed texts5 us-
ing a mask ratio of 0.5. The best hyperparameters
and their tuning options are provided in Appendix.
Probing Baselines. For the mask predict ap-
proach, we use the original implementation of X-
FACTR (Jiang et al., 2020a), and set the beam size
and the number of masks to 5. Both mask pre-
dict and retrieval-based approaches are tested un-
der both the general domain and biomedical do-
main BERT models, i.e. Bert-based-uncased (De-
vlin et al., 2019), BlueBERT (Peng et al., 2019),
BioBERT (Lee et al., 2020), PubMedBERT (Gu
et al., 2020).6 For generation-based baselines, we
test five PLMs, namely BART-base (Lewis et al.,

5We sampled the sentences from a PubMed corpus used
in the pre-training of BlueBERT (Peng et al., 2019).

6The MLM head of PubMedBERT is not publicly avail-
able and cannot be evaluated by X-FACTR and mask average.
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2020), T5-small and T5-base (Raffel et al., 2020)
that are general domain generation PLMs, and
SciFive-base & SciFive-large (Phan et al., 2021)
that are pre-trained on large biomedical corpora.

5.1 Benchmarking on MedLAMA

Comparing Various Probing Approaches. Ta-
ble 4 shows the overall results of various probing
baselines on MedLAMA. It can be seen that the per-
formances of all the existing probing approaches
(i.e. generative PLMs, X-FACTR and mask pre-
dict) are very low (<1% for acc@1 and <4% for
acc@10) regardless of the underlying PLM, which
are not effective indicators for measuring knowl-
edge captured. In contrast, our Contrastive-
Probe obtains absolute improvements by up-to ∼
5% and ∼ 21% on acc@1 and acc10 respectively
comparing with the three existing approaches,
which validates its effectiveness on measuring the
knowledge probing performance. In particular,
PubMedBERT model obtains the best probing per-
formance (5.71% in accuracy) for these biomedi-
cal queries, validating its effectiveness of captur-
ing biomedical knowledge comparing with other
PLMs (i.e. BERT, BlueBERT and BioBERT).
Benchmarking with Contrastive-Probe. To fur-
ther examine the effectiveness of PLMs in captur-
ing biomedical knowledge, we benchmarked sev-
eral state-of-the-art biomedical PLMs (including
pure pre-trained and knowledge-enhanced mod-
els) on MedLAMA through our Contrastive-Probe.
Table 5 shows the probing results over the full
and hard sets. In general, we can observe that
these biomedical PLMs always perform better
than general-domain PLMs (i.e., BERT). Also,
we observe the decay of performance of all these
models on the more challenging hard set queries.
While PubMedBERT performs the best among all
the pure pre-trained models, SapBERT (Liu et al.,
2021a) and CoderBERT (Yuan et al., 2020) (which
are the knowledge infused PubMedBERT) further
push performance to 8% and 30.41% on acc@1
and acc@10 metrics respectively, highlighting the
benefits of knowledge infusion pre-training.
Comparison per Answer Length. Since different
PLMs use different tokenizers, we use char length
of the query answers to split MedLAMA into dif-
ferent bins and test the probing performance over
various answer lengths. Figure 3 shows the re-
sult. We can see that the performance of retrieval-
based probing in Contrastive-Probe increases as

Model acc@1/acc@10

Full Set Hard Set

BERT (Devlin et al., 2019) 1.95±0.40/6.96 ±0.96 0.67±0.19/3.27±0.54
BlueBERT (Peng et al., 2019) 4.87±0.43/19.87±0.62 4.12±0.46/18.18±0.77
BioBERT (Lee et al., 2020) 3.28±0.20/15.46±0.93 2.14±0.23/12.59±1.19
ClinicalBERT (Alsentzer et al., 2019) 1.83±0.15/8.64±0.79 0.71±0.13/5.45±1.06
SciBERT (Beltagy et al., 2019) 3.64±0.33/18.11±1.95 2.14±0.30/14.64±2.01
PubMedBERT (Gu et al., 2020) 5.71±0.58/24.31±1.29 4.49±0.49/21.74±1.21

UmlsBERT (Yuan et al., 2020) 2.94±0.21/11.64±0.46 1.80±0.11/7.75±0.42
SapBERT (Liu et al., 2021a) 7.80±0.38/30.41±1.23 5.15±0.27/26.09±1.17
CoderBERT (Michalopoulos et al., 2021) 8.00±0.60/26.41±1.08 6.08±0.52/22.69±1.10

Table 5: Benchmarking biomedical PLMs on
MedLAMA (Full and Hard) via Contrastive-Probe. The
bottom panel are knowledge-enhanced PLMs. The av-
erage performance and their standard deviation are re-
ported based on rewiring over 10 different random sets.
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Figure 3: Performance over answer lengths.

the answer length increase while the performance
of mask predict dropped significantly. This result
validates that our Contrastive-Probe (retrieval-
based) are more reliable at predicting longer an-
swers than the mask predict approach since the lat-
ter heavily relies on the MLM head.7

5.2 In-depth Analysis of Contrastive-Probe
Since our Contrastive-Probe involves many hy-
perparameters and stochastic factors during self-
retrieving pre-training, it is critical to verify if it
behaves consistently under (1) different randomly
sampled sentence sets; (2) different types of rela-
tions; and (3) different pre-training steps.
Stability of Contrastive-Probe. To conduct this
verification, we sampled 10 different sets of 10k
sentences from the PubMed corpus8 and probed
the PubMedBERT model using our Contrastive-
Probe on the full set. Figure 4 shows the acc@1
performance over top 9 relations and the micro
average performance of all the 19 relations. We
can see that the standard deviations are small and
the performance over different sets of samples
shows the similar trend. This further highlights

7For the single-token answer probing scenario,
Contrastive-Probe does not outperform the mask pre-
dict approach, particularly in the general domain. This is
expected since most of the masked PLMs are pre-trained by
a single-token-filling objective.

8The tuning corpus itself is unimportant, since we can ob-
tain the similar results even using Wikipedia.
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Figure 4: Performance over training steps on full set.
The shaded regions are the standard deviations.

that the probing success of Contrastive-Probe is
not due the selected pre-training sentences. In-
tuitively, the contrastive self-retrieving game (§4)
is equivalent to the formulation of the cloze-style
filling task, hence tuning the underlying PLMs
makes them better suited for knowledge elicita-
tion needed during probing (like ‘rewiring’ the
switchboards). Additionally, from Figure 4 we
can also observe that different relations exhibit
very different trends during pre-training steps of
Contrastive-Probe and peak under different steps,
suggesting that we need to treat different types of
relational knowledge with different tuning depths
when infusing knowledge. We leave further explo-
ration of this to future work.
Probing by Relations. To further analyse the
probing variance over different relations, we also
plot the probing performance of various PLMs
over different relations of MedLAMA in Figure 5.
We can observe that different PLMs exhibit dif-
ferent performance rankings over different types
of relational knowledge (e.g. BlueBERT peaks at
relation 12 while PubMedBERT peaks at relation
3). This result demonstrates that different PLMs
are suited for different types of relational knowl-
edge. We speculate this to be reflective of their
training corpora.
Probing by Layer. To investigate how much
knowledge is stored in each Transformer layer,
we chopped the last layers of PLMs and applied
Contrastive-Probe to evaluate the probing perfor-
mance based on the first L ∈ {3, 5, 7, 9, 11, 12} lay-
ers on MedLAMA. In general, we can see in Fig-
ure 6 that the model performance drops signifi-
cantly after chopping the last 3 layers, while its
accuracy is still high when dropping only last one
layer. In Figure 7, we further plot the layer-wise
probing performance of PubMedBERT over dif-
ferent relations. Surprisingly, we find that differ-
ent relations do not show the same probing per-

formance trends over layers. For example, with
only the first 3 layers, PubMedBERT achieves the
best accuracy (>15%) on relation 11 queries. This
result demonstrates that both relation types and
PLM layers are confounding variables in captur-
ing factual knowledge, which helps to explain the
difference of training steps over relations in Fig-
ure 4. This result also suggests that layer-wise
and relation-wise training could be the key to ef-
fectively infuse factual knowledge for PLMs.

5.3 Expert Evaluation on Predictions
To assess whether the actual probing performance
could be possibly higher than what is reflected
by the commonly used automatic evaluation, we
conducted a human evaluation on the prediction
result. Specifically, we sample 15 queries and
predict their top-10 answers using Contrastive-
Probe based on PubMedBERT and ask the asses-
sor9 to rate the predictions on a scale of [1,5]. Fig-
ure 8 shows the confusion matrices.10 We observe
the followings: (1) There are 3 UMLS answers
that are annotated with score level 1-4 (precisely,
level 3), which indicates UMLS answers might not
always be the perfect answers. (2) There are 20
annotated perfect answers (score 5) in the top 10
predictions that are not marked as the gold an-
swers in the UMLS, which suggests the UMLS
does not include all the expected gold knowledge.
(3) In general, PubMedBERT achieves an 8.67%
(13/150) acc@10 under gold answers, but under
the expert annotation the acc@10 is 22% (33/150),
which means the probing performance is higher
than what evaluated using the automatically ex-
tracted answers.

Benchmark # Rel. # Queries Avg. # Answer % Single-Tokens

LAMA 41 41k 1 100%
BioLAMA 36 49k 1 2.2%
MedLAMA 19 19k 2.3 2.6%

Table 6: Statistics comparison among LAMA, Bio-
LAMA and our MedLAMA.

5.4 Comparing with BioLAMA
During the writing of this work, we noticed a con-
current work to ours that also released a biomed-
ical knowledge probing benchmark, called Bio-
LAMA Sung et al. (2021). In Table 6, we com-

9A senior Ph.D. graduate in Cell Biology.
10In the Appendix, we provide examples with their UMLS

gold answers, human annotated answers and probing predic-
tions of different probing approaches.
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pare MedLAMA with LAMA (Petroni et al., 2019)
and BioLAMA in terms of data statistics. We
found that there is only 1 overlapped relation (i.e.,
may treat) between BioLAMA and MedLAMA, and
no overlap exists on the queries. We can see
that, without additional training data from the
biomedical knowledge facts, Contrastive-Probe
reaches a promising performance compared with
OptiPrompt approach, which needs further train-
ing data. Additionally, since Mask Predict and
OptiPrompt require using the MLM head, it is im-
possible to compare a model without MLM head
being released (e.g. PubMedBERT). In contrast,
our Contrastive-Probe not only provides a good
indicator of comparing these models in terms of
their captured knowledge, but also makes layer-
wise knowledge probing possible.

5.5 Limitations of Contrastive-Probe

How to early stop? For fair comparison of differ-
ent PLMs, we currently use checkpoints after con-
trastive tuning for a fixed number of steps (200,
specifically). However, we have noticed that dif-
ferent models and different probing datasets have
different optimal training steps. To truly ‘rewire’
the most knowledge out of each PLMs, we need
a unified validation set for checkpoint selection.
What the validation set should be and how to guar-
antee its fairness require further investigation.
Performance not very stable. We have noticed
that using different contrastive tuning corpus as
well as different random seeds can lead to a certain
variance of their probing performances (see Table
5). To mitigate such issue, we use average perfor-

Probe Model CTD wikidata UMLS

acc@1 acc@5 acc@1 acc@5 acc@1 acc@5

Mask Predict
BERT 0.06 1.20 1.16 6.04 0.82 1.99

BioBERT 0.42 3.25 3.67 11.20 1.16 3.82
Bio-LM 1.17 7.30 11.97 25.92 3.44 8.88

OptiPrompt
BERT 3.56 6.97 3.29 8.13 1.44 3.65

BioBERT 4.82 9.74 4.21 12.91 5.08 13.28
Bio-LM 2.99 10.19 10.60 25.15 8.25 20.19

Contrastive-Probe
BlueBERT 1.62 5.84 6.64 25.97 2.63 11.46
BioBERT 0.20 0.99 1.04 4.51 0.89 3.89
Bio-LM 1.70 4.26 4.32 18.74 1.27 5.01

PubMedBERT 2.60 8.87 10.20 35.14 4.93 18.33

Table 7: Performance on BioLAMA benchmark. Note
that both the mask predict and opti-prompt require us-
ing the MLM head and opti-prompt needs further train-
ing data, so it is impossible to compare a model with-
out MLM head being released (e.g. PubMedBERT). In
contrast, our Contrastive-Probemake all these models
comparable in terms of their captured knowledge.

mance of 10 runs on 10 randomly sampled corpus.
Improving the stability of Contrastive-Probe and
investigating its nature is a future challenge.

6 Related Work and Discussion

Knowledge Probing Benchmarks for PLMs.
LAMA (Petroni et al., 2019), which starts this line
of work, is a collection of single-token knowledge
triples extracted from sources including Wikidata
and ConceptNet (Speer et al., 2017). To miti-
gate the problem of information leakage from the
head entity, Poerner et al. (2019) propose LAMA-
UHN, which is a hard subset of LAMA that has
less token overlaps in head and tail entities. X-
FACTR (Jiang et al., 2020a) and mLAMA (Kass-
ner et al., 2021) extend knowledge probing to the
multilingual scenario and introduce multi-token
answers. They each propose decoding methods
that generate multi-token answers, which we have
shown to work poorly on MedLAMA. BioLAMA
(Sung et al., 2021) is a concurrent work that also
releases a benchmark for biomedical knowledge
probing.
Probing via Prompt Engineering. Knowledge
probing is sensitive to what prompt is used (Jiang
et al., 2020b). To bootstrap the probing perfor-
mance, Jiang et al. (2020b) mine more prompts
and ensemble them during inference. Later works
parameterised the prompts and made them train-
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able (Shin et al., 2020b; Fichtel et al., 2021; Qin
and Eisner, 2021). We have opted out prompt-
engineering methods that require training data in
this work, as tuning the prompts are essentially
tuning an additional (parameterised) model on top
of PLMs. As pointed out by Fichtel et al. (2021),
prompt tuning requires large amounts of training
data from the task. Since task training data is used,
the additional model parameters are exposed to the
target data distribution and can solve the set set by
overfitting to such biases (Cao et al., 2021). In
our work, by adaptively finetuning the model with
a small set of raw sentences, we elicit the knowl-
edge out from PLMs but do not expose the data
biases from the benchmark (MedLAMA).

Biomedical Knowledge Probing. Nadkarni et al.
(2021) train PLMs as KB completion models and
test on the same task to understand how much
knowledge is in biomedical PLMs. BioLAMA fo-
cuses on the continuous prompt learning method
OptiPrompt (Zhong et al., 2021), which also re-
quires ground-truth training data from the task.
Overall, compared to BioLAMA, we have pro-
vided a more comprehensive set of probing exper-
iments and analysis, including proposing a novel
probing technique and providing human evalua-
tions of model predictions.

7 Conclusion

In this work, we created a carefully curated
biomedical probing benchmark, MedLAMA, from
the UMLS knowledge graph. We illustrated that
state-of-the-art probing techniques and biomedi-
cal pre-trained languages models (PLMs) struggle
to cope with the challenging nature (e.g. multi-
token answers) of this specialised domain, reach-
ing only an underwhelming 3% of acc@10. To
reduce the gap, we further proposed a novel con-
trastive recipe which rewires the underlying PLMs
without using any probing-specific data and illus-
trated that with a lightweight pre-training their ac-
curacies could be pushed to 24%.

Our experiments also revealed that different lay-
ers of transformers encode different types of in-
formation, reflected by their individual success at
handling certain types of prompts. Additionally,
using a human expert, we showed that the existing
evaluation criteria could overpenalise the models
as many valid responses that PLMs produce are
not in the ground truth UMLS knowledge graph.
This further highlights the importance of having a
human in the loop to better understand the poten-
tials and limitations of PLMs in encoding domain
specific factual knowledge.

Our findings indicate that the real lower bound
on the amount of factual knowledge encoded by
PLMs is higher than we estimated, since such
bound can be continuously improved by optimis-
ing both the encoding space (e.g. using our self-
supervised contrastive learning technique) and the
input space (e.g. using the prompt optimising
techniques (Shin et al., 2020a; Qin and Eisner,
2021)). We leave further exploration of integrat-
ing the two possibilities to future work.
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A Appendix

A.1 Details of the Hardness Metrics
In this paper, we use two automatic metrics to dis-
tinguish hard and easy queries. In particular, we
first filter out easy queries by an exact matching
metric (i.e. the exactly matching all the words of
answer from queries). Since our MedLAMA con-
tains multiple answers for queries, we use a thresh-
old on the average exact matching score, i.e. avg-
match>0.1, to filter out easy examples, where
avg-match is calculated by:

avg-match =
Count(matched answers)

Count(total answers)
.

This metric can remove all the queries that match
the whole string of answers. However, some
common sub-strings between queries and answers
also prone to reveal answers, particularly ben-
efiting those retrieval-based probing approaches.
E.g. <Magnesium Chloride, may-prevent, Mag-
nesium Deficiency>. Therefore, we further cal-
culate the ROUGE-L score (Lin and Och, 2004)
for all the queries by regarding <query, answers>
pairs as the <hypothesis, reference> pairs, and fur-
ther filter out the ROUGE-L>0.1 queries.

A.2 Hyperparameters Tuning
We train our Contrastive-Probe based on 10k
sentences which are randomly sampled from the
original pre-training corpora of the correspond-
ing PLMs. Since most of the biomedical BERTs
use PubMed texts as their pre-training corpora,
for all biomedical PLMs we sampled random sen-
tences from a version of PubMed corpus used
by BlueBERT model (Peng et al., 2019), while
for BERT we sampled sentences from its original
Wikitext corpora. For the hyperparamters of our
Contrastive-Probe, Table 8 lists our search op-
tions and the best parameters used in our paper.

A.3 The Impact of Mask Ratios
To further investigate the impact of the mask ra-
tio to the probing performance, we also test our
Contrastive-Probe based on PubMedBERT over
different mask ratios ({0.1, 0.2, 0.3, 0.4, 0.5})
under the 10 random sentence sets, the result of
which is shown in Figure 9. We can see that over
different mask ratios the Contrastive-Probe al-
ways reaches their best performance under certain
pre-training steps. And the performance curves
of mask ratios are different over the full and hard

sets, but they all achieves a generally good per-
formance when the mask ratio is 0.5, which val-
idates that different mask ratios favour different
types queries.
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Figure 9: Performance of Contrastive-Probe based on
PubMedBERT over different mask ratios. The shaded
regions are the standard deviations under 10 different
random sentence sets sampled from the PubMed cor-
pus.
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Hyperparameters Search space

rewire training learning rate {1e-5, 2e-5∗, 5e-5}
rewire training steps 500
rewire training mask ratio {0.1, 0.2, 0.3, 0.4∗, 0.5∗}
τ in InfoNCE of rewire training {0.02,0.03∗,0.04,0.05}
rewire training data size {1k, 10k∗, 20k,100k}
step of checkpoint for probing {50, 150, 200∗, 250, 300, 350}
max_seq_length of tokeniser for queries 50
max_seq_length of tokeniser for answers 25

Table 8: Hyperparameters along with their search grid. ∗ marks the values used to obtain the reported results.

Query 1: The gene product HLA Class II Histocompatibility Antigen, DP(W4) Beta Chain is encoded by gene [Y] .
UMLS Answers: MHC Class II Gene, HLA-DPB1 Gene, Immunoprotein Gene
Human Answers: MHC Class II Gene, HLA-DPB1 Gene

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

MHC Class II Gene b HLA-DRB1
MHC Class I Gene hla encoding HLA
HLA-A Gene dqb1 DP(W)
HLA-DPB1 Gene locus dqb1 HLA-B
HLA-F Gene 2 , dq beta 2 HLA-DQ

Query 2: The gene product Tuberin is encoded by gene [Y] .
UMLS Answers: TSC2 Gene, Signaling Pathway Gene
Human Answers: TSC2 Gene, Tuberin

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

TSC2 Gene family of tuberins “”
SKA2 Gene ##t1 TUB
TSPY1 Gene symbol tuber Tuberin
Tuberin ( tuber ) TUBE
TSC1 Gene a TUBB

Query 3: Refractory Monomorphic Post-Transplant Lymphoproliferative Disorder may have [Y] .
UMLS Answers: Lymphadenopathy, Aggressive Clinical Course, Extranodal Disease
Human Answers: Early post-transplant lymphoproliferative disorder, Lymphoproliferative disorder following transplantation ,
Refractory Polymorphic Post-Transplant Lymphoproliferative Disorder, Aggressive Clinical Course, Post transplant lymphoproliferative disorder
Neoplastic Post-Transplant Lymphoproliferative Disorder, Refractory Monomorphic Post-Transplant Lymphoproliferative Disorder

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

Early post-transplant lymphoproliferative disorder manifestations similar to this
Lymphoproliferative disorder following transplantation relapses in this study
Refractory Polymorphic Post-Transplant Lymphoproliferative Disorder phenotype similar to our case
Aggressive Clinical Course - specific phenotype similar to ours
Post transplant lymphoproliferative disorder features similar to this case

Query 4: moexipril might treat [Y] .
UMLS Answers: Diabetic Nephropathies, Heart Failure, Hypertension, Ventricular Dysfunction, Left
Human Answers: Essential Hypertension, Hypertension

Model Contrastive-Probe (PubMedBERT) X-FACTR (BlueBERT) Generative PLMs (SciFive-large)

Top-5

Essential Hypertension hypertension “”
Posttransplant hyperlipidemia diabetes mellitus this
Hypertension essential hypertension them
Atherosclerotic Cardiovascular Disease diabetes migraine
Type 1 Diabetes Mellitus in patients with hypertension patients

Table 9: Example predictions of different probing approaches. The human answers are annotated based on the
Contrastive-Probe predictions.
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