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Abstract

The impression section of a radiology report
summarizes the most prominent observation
from the findings section and is the most im-
portant section for radiologists to communicate
to physicians. Summarizing findings is time-
consuming and can be prone to error for inex-
perienced radiologists, and thus automatic im-
pression generation has attracted substantial at-
tention. With the encoder-decoder framework,
most previous studies explore incorporating ex-
tra knowledge (e.g., static pre-defined clinical
ontologies or extra background information).
Yet, they encode such knowledge by a sepa-
rate encoder to treat it as an extra input to their
models, which is limited in leveraging their re-
lations with the original findings. To address
the limitation, we propose a unified framework
for exploiting both extra knowledge and the
original findings in an integrated way so that
the critical information (i.e., key words and
their relations) can be extracted in an appro-
priate way to facilitate impression generation.
In detail, for each input findings, it is encoded
by a text encoder, and a graph is constructed
through its entities and dependency tree. Then,
a graph encoder (e.g., graph neural networks
(GNNp)) is adopted to model relation informa-
tion in the constructed graph. Finally, to empha-
size the key words in the findings, contrastive
learning is introduced to map positive samples
(constructed by masking non-key words) closer
and push apart negative ones (constructed by
masking key words). The experimental results
on Openl and MIMIC-CXR confirm the effec-
tiveness of our proposed method.'

1 Introduction

Radiology reports document critical observation in
a radiology study and play a vital role in commu-
nication between radiologists and physicians. A
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Findings
PA and lateral views of the chest. The previously seen pericardial
and pleural effusions have resolved. There is no pneumothorax.
There is no consolidation. The cardiac, mediastinal, and hilar

contours are normal.
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Impression
Resolved|pleural effusions and pericardial effusion. No new abn-
ormalities noted.

Figure 1: An example of the findings and corresponding
impression, where the relation information, as well as
positive and negative examples, are also shown in the
figure. Note that A represents the removed word.

radiology report usually consists of a findings sec-
tion describing the details of medical observation
and an impression section summarizing the most
prominent observation. The impression is the most
critical part of a radiology report, but the process of
summarizing findings is normally time-consuming
and could be prone to errors for inexperienced radi-
ologists. Therefore, automatic impression genera-
tion (AIG) has drawn substantial attention in recent
years, and there are many methods proposed in this
area (Zhang et al., 2018; Gharebagh et al., 2020;
MacAuvaney et al., 2019; Shieh et al., 2019).

Most existing studies focus on incorporating
extra knowledge on the general encoder-decoder
framework. For example, Zhang et al. (2018) uti-
lized the background section in the radiology report
through a separate encoder and then used it to guide
the decoding process to enhance impression gen-
eration. Similarly, MacAvaney et al. (2019) and
Gharebagh et al. (2020) proposed to extract the
ontology information from findings and used an
encoder to encode such information to promote the
decoding process. Although these approaches have
brought significant improvements, they only lever-
age extra knowledge and findings separately (i.e.,
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Figure 2: The overall architecture of our proposed method with graph and contrastive learning. An example input
and output at ¢ — 1 and ¢ step are shown in the figure, where the top is the backbone sequence-to-sequence paradigm
with a graph to store relation information between critical words and the bottom is the contrastive learning module
with specific positive and negative examples. m refer to a mask vector.

through an extra encoder). Thus, their performance
relies heavily on the quality of extra knowledge,
and the further relationships between extra knowl-
edge and findings are not explored. In this paper,
we propose a unified framework to exploit both
findings and extra knowledge in an integrated way
so that the critical information (i.e., key words and
their relations in our paper) can be leveraged in
an appropriate way. In detail, for each input find-
ings, we construct a word graph through the auto-
matically extracted entities and dependency tree,
with its embeddings, which are from a text encoder.
Then, we model the relation information among key
words through a graph encoder (e.g., graph neural
networks (GNNs)). Finally, contrastive learning
is introduced to emphasize key words in findings
to map positive samples (constructed by masking
non-key words) closer and push apart negative ones
(constructed by masking key words), as shown in
Figure 1. In such a way, key words and their rela-
tions are leveraged in an integrated way through the
above two modules (i.e., contrastive learning and
the graph encoder) to promote AIG. Experimental
results on two prevailing datasets (i.e., Openl and
MIMIC-CXR) show that our proposed approach
achieves state-of-the-art results compared to exist-
ing studies.

2 Method

We follow the standard sequence-to-sequence
paradigm for AIG. First, we utilize WordPiece (Wu

etal., 2016) to tokenize original findings and obtain
the source input sequence X = z1,z2, - , TN,
where N is the number of tokens in X. The goal is
to find a sequence Y = {y1,...4i, ..., yr } that sum-
marizes the most critical observations in findings,
where L is the length of impression and y; € V
are the generated tokens and V is the vocabulary
of all possible tokens. The generation process can
be formalized as:
L

p(Y [ X)=]]pwlw,...
t=1

-1, X) (1)

The model is then trained to maximize the negative
conditional log-likelihood of ) given the X’

L
0" = argmaXZIng(yt ’ Y1, "'7yt—17X7A;0)
0

t=1

2

where 6 is the parameters of the model, and A rep-

resents edges in the relation graph. An overview of

our proposed method is presented in Figure 2. Our

model contains three main components, i.e., the

graph enhanced encoder, the contrastive learning

module, and the decoder. The details are described
in the following sub-sections.

2.1 Relation Graph

The impression usually describes critical abnor-
malities with more concise descriptions summa-
rized from the corresponding findings and some-
times uses key phrases to express observations. For
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example, a sentence in findings texts “There is
a left pleural effusion which is small in size.”, is
simplified as a key phrase “Small left pleural ef-
fusion” in the impression, where the relation be-
tween “small” and “effusion” is vital for describ-
ing the corresponding observation. Thus, the rela-
tion information in findings plays an essential role
in accurate key phrase generation. Four types of
medical entities, anatomy, observation, anatomy
modifier, and observation modifier, are recognized
from findings, which compose a majority of im-
portant medical knowledge in impression (Hassan-
pour and Langlotz, 2016). With WordPiece to-
kenization, we represent each entity by frequent
subwords and connect any two subwords if they
are adjacent in the same entity to enhance internal
relations for keeping the entity complete. For ex-
ample, the entity “opacity” is represented as “op
##acity” and then these two subwords connect to
each other with both from “op” to “##acity” and
from “##acity” to “op”. Besides, we need to con-
sider the semantic relation between entities and
other words, such as words used to describe the
location and degree of symptoms, which is neces-
sary for accurately recording abnormalities. For
example, in a text span “bilateral small pleural
effusions”, relations in < “bilateral”, “effusions”>,
<“small”,“effusions”> are also important to de-
scribe the observation “effusions” and they can be
extracted from the dependency tree. Therefore, we
construct a dependency tree to extract the semantic
relations between entities and other words, with
the direction from their head words to themselves.
We also employ the WordPiece to split these words
as subwords and connect all the source subwords
to the corresponding target words with the original
direction. The constructed subword graph is then
used to extract relation information, with edges
represented by A.

2.2 Graph Enhanced Encoder

In recent years, pre-trained models have domi-
nated not only general summarization tasks but
also multi-modal tasks because of their strong abil-
ity in feature representation (Wu et al., 2021; Zhang
et al., 2020a; Yuan et al., 2021, 2022). Thus, in our
method, we utilize the pre-trained model BioBERT
(Lee et al., 2020) trained on a large biomedical cor-
pus as our text encoder. The hidden state h; for
each token x; is generated by the text encoder

[h17h27' T 7hn] = fte(th?)' t 73377,) (3)

Algorithm 1: Generation of Examples
Input: s: graph enhanced token representation
A: edges in relation graph
Output: s” Positive example
s" Negative example
Initialization: sP < s,s™ < s
m = [le — 6] € R¢
1: N, d = size(s)
2: Viey = Extract_subword_index(A)
3:for j =0to N do

4 if j in V., then
5 s? <~ m

6 else:

7: s? +—m

8 end if

9: end for

Herein, f.(-) refers to the pre-trained Transformer-
based text encoder (i.e., BioBERT (Lee et al.,
2020)), and h; is a d-dimensional feature vector for
representing corresponding tokens x;. Since GNNs
are well known for extracting features from graph
structure and have been shown promising in text
generation tasks (Jia et al., 2020; Hu et al., 2021),
we employ a GNN-based encoder to capture rela-
tion information from the corresponding subword
graph. This process can be formulated as:

z = fge(ha A)7 (4)

where fy(-) is the graph encoder, and z is the
feature vector extracted from the graph. Next, to
incorporate relation information into token repre-
sentation, we concatenate z and h and utilize a fully
connected layer to reduce it to the same dimensions
as z and h:

s =MLP(|h; ®2z1,hy ®zy,--- ,h, Dz,)), (5

where s is the final token representation.

2.3 Contrastive Learning

Only relying on a GNN encoder to capture rela-
tion information still lacks the capability to fully
grasp important word information from findings
since the graph is pre-defined before training or
testing. Recently, contrastive learning has shown
strong power in learning and distinguishing signifi-
cant knowledge by concentrating positive samples
and contrasting with negative samples, and brought
significant improvements in many tasks, such as
improving the faithfulness of summarization and
discriminating vital information to enhance repre-
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sentation (Cao and Wang, 2021; Zeng et al., 2021).
We expect our model to be more sensitive to critical
words contained in findings. For this purpose, we
apply a contrastive learning module to concentrate
positive pairs and push negative ones apart, which
aims to help the model differentiate essential in-
formation from secondary information. We regard
tokens with edges in the relation graph as critical
tokens since they contain important information
for describing key observations, as discussed in
2.1. To construct a positive example, we mask each
non-key token representation in s as the constant
vectors m € R?, with all elements le — 6, so that
this instance can consolidate the critical informa-
tion and remove unimportant words. Meanwhile,
we utilize a similar way to mask important token
representations in s as m to obtain a negative ex-
ample s™. The details of generating positive and
negative examples are shown in Algorithm 1. Note
that in our model, we do not consider the other
instances in the same mini-batch as the negative
examples, which is different from many existing
approaches (Kim et al., 2021; Giorgi et al., 2020)
since we aim to identify the critical content in X
instead of expanding differences between various
findings in one mini-batch. In addition, radiology
reports are not as diverse as ordinary texts, and they
are mainly composed of fixed medical terms and
some attributive words, where the former is used to
record critical information and the latter is to keep
sentences fluent and grammatically correct.

Afterward, we employ a randomly initialized
Transformer-based encoder to model s, s, s”, re-
spectively, which can be formulated as:

b = fCE(S)7 (6)
b? = fce(sp)7 @)
b" = fce(sn)a (8)

where f..(-) represents the contrastive encoder.
b, b? and b" are intermediate states extracted
from the encoder, which are also d-dimensional

vectors. Then, we calculate cosine similarity
) blb ..
sim(b!,b?) = m for positive and nega-

tive pairs, denoted as sim(b, b?) and sim(b, b").

‘We follow Robinson et al. (2020) to formulate the

training objective of contrastive module:
esim(b;,b?) /7

lcon =1 - -
08 ZN 1 ( sim(b;,bP)/T + esun(bi,b”)/T)

J:
(&)
where 7 is a temperature hyperparameter, which is

DATA | TYPE | TRAIN | DEV | TEST
REPORT # 2400 292 576
AVG. WF 37.89 | 37.77 | 37.98
OPENI AVG. SF 5.75 5.68 5.77
AVG. WI 1043 | 11.22 10.61
AVG. SI 2.86 2.94 2.82
REPORT # | 122,014 957 1,606
AVG. WF 55.78 | 56.57 | 70.67
%%IC AVG. SF 650 | 651 | 728
AVG. WI 1698 | 17.18 | 21.71
AVG. SI 3.02 3.04 3.49

Table 1: The statistics of the two benchmark datasets
with random split for OPENI and official split for
MIMIC-CXR, including the numbers of report, the
averaged sentence-based length (AVG. SF, AVG. SI),
the averaged word-based length (AVG. WF, AVG. WI)
of both IMPRESSTION and FINDINGS.

set to 1 in this paper.

2.4 Decoder

The decoder in our model is built upon a standard
Transformer (Vaswani et al., 2017), where the rep-
resentation s is functionalized as the input of the
decoder so as to improve the generation process.
In detail, s is sent to the decoder at each decoding
step, jointly with the generated tokens from pre-
vious steps, and thus the current output y; can be
computed by

yt:fe(517827”' ySny Y1, 7yt—1)7 (10)

where f.(-) refers to the Transformer-based de-
coder and this process is repeated until the com-
plete impression is obtained.

Besides, to effectively incorporate the critical
word information into the decoding process, we
sum the losses from the impression generation and
contrastive objectives as

(11)

where [ is the basic sequence-to-sequence loss,
and X is the weight to control the contrastive loss.

L= lge + Meon,

3 Experimental Setting

3.1 Dataset

Our experiments are conducted on two following
datasets: OPENI (Demner-Fushman et al., 2016)
and MIMIC-CXR (Johnson et al., 2019) respec-
tively, where the former contains 3268 reports col-
lected by Indiana University and the latter is a
larger dataset containing 124577 reports. Note that
the number of reports we introduced is counted
after pre-processing. We follow (Hu et al., 2021;
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ROUGE FC

DATA MODEL R1 R2 RL | P R F-1
BASE 6274 5332 6286 | - i

OPENI BASE+CL 6353 5458 6313 | - ] ]
BASE+GRAPH 63.29 54.12 63.03 - - -
BASE+GRAPH+CL 6497 5559 6445 | - ] ]
BASE 4792 3243 4583 | 5805 5090 53.01
BASE+CL 48.15 3325 4624 | 5834 5158 53.70

MIMIC-CXR | 5 cE+GRAPH 4829 3330 4636 | 57.80 5170  53.50
BASE+GRAPH+CL 4913 3376 47.12 | 58.85 5233 54.52

Table 2: Comparisons of baselines and our method on OPENI and MIMIC-CXR datasets. R-1, R-2 and R-L refer
to ROUGE-1, ROUGE-2 and ROUGE-L, respectively. P, R and F-1 represent precision, recall, and F1 score.

Zhang et al., 2018) to filter the reports by deleting
the reports in the following cases: (1) no findings or
no impression sections; (2) the findings have fewer
than ten words, or the impression has fewer than
two words. For OPENI, we follow (Hu et al., 2021)
to randomly divide it into train/validation/test set
by 2400:292:576 in our experiments. For MIMIC-
CXR, we apply two types of splits, including an
official split and a random split with a ratio of 8:1:1
similar to (Gharebagh et al., 2020). We report the
statistics of these two datasets in Table 1.

3.2 Baseline and Evaluation Metrics

To explore the performance of our method, we use

the following ones as our main baselines:

* BASE (Liu and Lapata, 2019): this is a backbone
sequence-to-sequence model, i.e., a pre-trained
encoder and a randomly initialized Transformer-
based decoder.

* BASE+GRAPH and BASE+CL: these have the
same architecture as BASE, where the former
incorporates an extra graph encoder to enhance
relation information, and the latter introduces a
contrastive learning module to help the model
distinguish critical words.

Besides, we also compare our method with those

existing studies, including both extractive sum-

marization methods, e.g., LEXRANK (Erkan and

Radev, 2004), TRANSFORMEREXT (Liu and La-

pata, 2019), and the ones proposed for abstractive

models. e.g., TRANSFORMERABS (Liu and La-
pata, 2019), ONTOLOGYABS (Gharebagh et al.,

2020), WGSUM (TRANS+GAT), and WGSUM

(LSTM+GAT) (Hu et al., 2021).

Actually, factual consistency (FC) is critical in
radiology report generation (Liu et al., 2019; Chen
et al., 2020). Following Zhang et al. (2020c); Hu
et al. (2021), we evaluate our model and three base-
lines by two types of metrics: summarization and

FC metrics. For summarization metrics, we report
F; scores of ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-L (R-L). Besides, for FC metrics, we
utilize CheXbert (Smit et al., 2020)? to detect 14
observations related to diseases from reference im-
pressions and generated impressions and then cal-
culate the precision, recall, and F1 score between
these two identified results.

3.3 Implementation Details

In our experiments, we utilize biobert-base-cased-
v1.13 as our text encoder and follow its default
model settings: we use 12 layers of self-attention
with 768-dimensional embeddings. Besides, we
employ stanza (Zhang et al., 2020d) to extract med-
ical entities and the dependence tree, which is used
to construct the graph and generate positive and
negative examples. Our method is implemented
based on the code of BertSum (Liu and Lapata,
2019)*. In addition, we use a 2-layer graph atten-
tion networks (GAT) (Veli¢kovié et al., 2017)° with
the hidden size of 768 as our graph encoder and
a 6-layer Transformer with 768 hidden sizes and
2048 feed-forward filter sizes for the contrastive
encoder. The decoder is also a 6-layer Transformer
with 768 dimensions, 8 attention heads, and 2048
feed-forward filter sizes. Note that A is set 1 in
all experiments, and more detailed hyperparame-
ters are reported in A.1. During the training, we
use Adam (Kingma and Ba, 2014) to optimize the
trainable parameters in our model.

2EC is only applied to MIMIC-CXR since the CheXbert
is designed for MIMIC-CXR. We obtain it from https://
github.com/stanfordmlgroup/CheXbert

3We obtain BioBERT from https://github.com/
dmis-lab/biobert

*We obtain the code of BertSum from https://
github.com/nlpyang/PreSumm

3Since previous study (Hu et al., 2021) has shown that
GAT (Velickovié et al., 2017) is more effective in impression
generation, we select GAT as our graph encoder.
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OPENI

MIMIC-CXR

MODEL RANDOM SPLIT OFFICIAL SPLIT RANDOM SPLIT
Rl R2 RL| RI R2 RL | R1 R2 R-L
LEXRANK (Erkan and Radev, 2004) 1463 442 1406 | 1811 747 16.87 - - -
TRANSEXT (Liu and Lapata, 2019) 1558 528 1442 | 31.00 1655 27.49 - - -
PGN (LSTM) (See et al., 2017) 63.71 5423 6338 | 4641 3233 4476 - - -
TRANSABS (Liu and Lapata, 2019) 59.66 49.41 59.18 | 47.16 3231 4547 - - -
ONTOLOGYABS' (Gharebagh et al., 2020) - - - - - - | 5357 4078 5181
WGSUM (LSTM)' (Hu et al., 2021) 6432 5548 6397 | 4748 3303 4543 | 5497 43.64 5381
WGSUM (TRANS)' (Hu et al., 2021) 61.63 5098 61.73 | 4837 3334 46.68 | 5638 4475 5532
OURS | 64.97 5559 6445 | 49.13 3376 47.12 | 57.38 4552 56.13

Table 3: Comparisons of our proposed models with previous study on the OPENI and MIMIC-CXR with respect to

ROUGE metric. t refers to that the results is directly cited from the original paper.

4 Results and Analyses

4.1 Effect of Graph and Contrastive learning

To explore the effectiveness of our proposed
method, we conduct experiments on two bench-
mark datasets, with the results reported in Table 2,
where BASE+GRAPH+CL represents our complete
model. We can obtain several observations from the
results. First, both BASE+GRAPH and BASE+CL
achieve better results than BASE with respect to
R-1, R-2, and R-L, which indicates that graph and
contrastive learning can respectively promote im-
pression generation. Second, BASE+GRAPH+CL
outperforms all baselines with significant improve-
ment on two datasets, confirming the effectiveness
of our proposed method in combining graph and
contrastive learning. This might be because graphs
and contrastive learning can provide valuable infor-
mation from different aspects, the former mainly
record relation information, and the latter brings
critical words knowledge, so that an elaborate com-
bination of them can bring more improvements.
Third, when comparing these two datasets, the per-
formance gains from our full model over three base-
lines on Openl are more prominent than that on
MIMIC-CXR. This is perhaps because compared
to MIMIC-CXR, Openl dataset is relatively smaller
and has a shorter averaged word-based length, such
that it is easier for the graph to record relation and
more accessible for contrastive learning to recog-
nize key words by comparing positive and negative
examples. Fourth, we can find a similar trend on
the FC metric on the MIMIC-CXR dataset, where
a higher F1 score means that our complete model
can generate more accurate impressions thanks to
its more substantial power in key words discrimi-
nation and relationship information extraction.

4.2 Comparison with Previous Studies

In this subsection, we further compare our mod-
els with existing models on the aforementioned
datasets, and the results are reported in Table 3.
There are several observations. First, the com-
parison between our model and ONTOLOGYABS
shows the effectiveness of our design in this task,
where our model achieves better performance,
though both of them enhance impression gener-
ation by incorporating crucial medical information.
This might be because by comparing positive and
negative examples for each findings, our model
is more sensitive to critical information and more
intelligent in distinguishing between essential in-
formation and secondary information, contributing
to more accurate and valuable information embed-
ded in the model. Second, we can observe that our
model outperforms all existing models in terms
of R-1, R-2, and R-L. On the one hand, effec-
tively combining contrastive learning and graph
into the sequence to sequence model is a better
solution to improve feature extraction and thus pro-
mote the decoding process robustly. On the other
hand, the pre-trained model (i.e., BioBERT) used
in our model is a more powerful feature extrac-
tor in modeling biomedical text than those exist-
ing studies, e.g., TRANSFORMERABS, ONTOL-
OGYABS, and PGN, which utilize randomly ini-
tialized encoders. Third, when compared to those
complicated models, e.g., WGSUM utilize stanza
to extract entities and construct two extra graph en-
coders to extract features from a word graph, which
are then regarded as background information and
dynamic guiding information to enhance the decod-
ing process for improving impression generation,
our model can achieve better performance through
a somewhat more straightforward method.
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Figure 3: The results of human evaluation, where for-
ward and backslash represent that BASE+GRAPH+CL
versus the reference and BASE, respectively. Yellow,
green and blue represent that our model loses, equal to
competitors and wins.

4.3 Human Evaluation

We further conduct a human evaluation to under-
stand the quality of the generated impression better
and alleviate the limitation of the ROUGE metric.
One hundred generated impressions on MIMIC-
CXR from BASE and BASE+GRAPH+CL, along
with their corresponding reference impressions, are
randomly selected for expert evaluation (Ghare-
bagh et al., 2020). Besides, we follow Hu et al.
(2021) to utilize four metrics: Key, Readability,
Accuracy, and Completeness, respectively. We in-
vite three medical experts to score these generated
impressions based on these four metrics, with the
results shown in Figure 3. On the one hand, com-
pared to BASE, we can find that our model out-
performs it on all four metrics, where 16%, 25%,
18%, and 8% of impressions from our model obtain
higher quality than BASE. On the other hand, com-
paring our model against reference impressions,
our model obtains close results on key, accuracy,
and completeness, with 86%, 78%, and 92% of our
model outputs being at least as good as radiologists,
while our model is less preferred for readability
with a 10% gap. The main reason might be that
many words removed in positive examples are used
to keep sequence fluently, and our model tends to
identify them as secondary information, leading
that our model obtains relatively worse results on
the readability metric.

4.4 Analyses

We conduct further analyses on Findings Length
and Case Study.

75

[ BASE [ OURS Increment

— h Improved R-1

70

654

60 59.21

ROUGE - 1

551 54.01
52.87

5099
504 EE 49.54
48.05

46.10
45.47

m R

[0,25) [25.45) [45,65) [65,85) [85,105) [105, 125)[125, max]
Findings Length

454

Figure 4: R-1 score of generated impressions from
BASE and our model on the MIMIC-CXR test set, where
OURS represent the BASE+GRAPH+CL.

Findings Length To test the effectiveness of the
word-based length of findings, we categorize the
findings on the MIMIC-CXR test set into seven
groups and present the R-1 score for each group
in Figure 4. We have the following observations.
First, as the findings length becomes long, the per-
formance of BASE and our model tend to decrease,
except for the second group, i.e., [25, 45], since
short text are more accessible for the encoder to
capture valid features, which is consistent with pre-
vious studies (Dai et al., 2019). Second, our model
outperforms BASE in all the groups, further illus-
trating the effectiveness of our model regardless
of the findings length. Third, we can observe a
grey line with a downward trend from the incre-
mental chart in the upper right corner of Figure 4,
indicating that our model (i.e., BASE+GRAPH+CL)
tends to gain better improvements over BASE on
shorter findings than that on longer ones. This is
because longer findings usually contain relatively
more secondary information such that it is more
challenging for contrastive learning to distinguish
critical knowledge.

Case study To further demonstrate how our ap-
proach with graph and contrastive learning helps
the generation of findings, we perform qualitative
analysis on two cases, and the results are shown
in Figure 5, where different colors on the texts in-
dicate different critical information. Compared to
BASE model, our model can generate more com-
plete impressions which cover almost all the crucial
abnormalities. In contrast, the BASE model fails to
identify all the key information, e.g., (“moderate
cardiomegaly” in the left example and “possible
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Findings: Frontal and lateral views of the chest demonstrate low
lung volumes. Moderate pulmonary edema is present. Costophrenic
angles are obscured, suggestive of small pleural effusions. Hilar and
mediastinal silhouettes are unremarkable. Moderate cardiomegaly is
noted. Aortic arch calcifications are seen with tortuosity of the
descending aorta. There is no pneumothorax.

Base

Moderate pulmonary edema and pleural effusions. moderate

edema
cardiomegaly

. ulmonary
effusions. » "

moderate

Reference

Moderate pulmonary edema and cardiomegaly, may Frontal and lateral

with associated small bilateral pleural effusions. )
Suggestive of

Findings: Retrocardiac opacification could be due to atelectasis,
although an infectious process can not be excluded. There is minimal
right basilar atelectasis. Pulmonary vascular congestion is seen without
evidence of interstitial pulmonary edema. A small left pleural effusion
is possible. There is no right pleural effusion. No pneumothorax is seen.

1. Retrocardiac opacification could be due to atelectasis.
2. Pulmonary vascular congestion without pulmonary edema.

3. Retrocardiac opacification could be due to atelectasis ,

Base

Ours

The mediastinal contours are normal .
possible
effusion

pleural

1. Pulmonary vascular congestion without interstitial edema.

although an infectious process can not be excluded. ]

,,,,,,,,,,,, frmmmmmmmme
Reference

small left

1.Left retrocardiac opacification could be atelectasis or
infection. 2. Pulmonary vascular congestion without
evidence of interstitial edema. 3. Possible small left pleural
effusion.

Not excluded

Infectious process

Figure 5: Examples of the generated impressions from BASE and BASE+GRAPH+CL as well as reference impres-
sions. The yellow nodes in the graph indicate that these words are contained in entities.

small left pleural effusion” in the right case). Be-
sides, our model can generate more accurate im-
pressions with an appropriate word to represent
possibility and a better modifier to describe the
observation. On the one hand, in Figure 5, “sug-
gestive of ” in the left example and “may” in the
right example imply a type of uncertainty, which
means that doctors wonder whether the abnormal
observation exists when writing findings, so that
the corresponding word (i.e., “likely”) is used to de-
scribe this sensitive information. On the other hand,
in the left case, according to the phrase “Frontal
and lateral” in its original findings, our model
can generate the synonym “bilateral” to depict the
symptom “pleural effusions” more specifically.

5 Related Work

Recently, NLP technology has broadly applied in
the medical domain, such as medical entity recog-
nition (Liu et al., 2021b; Zhao et al., 2019), radi-
ology report generation (Chen et al., 2021; Zhang
et al., 2020b; Liu et al., 2021a), AIG, etc. Im-
pression generation can be regarded as a type of
summarization task that has drawn substantial at-
tention in recent years, and there are many studies
for addressing general abstractive summarization
(See et al., 2017; Li et al., 2020; You et al., 2019;
Huang et al., 2020). You et al. (2019) designed
a novel focus-attention mechanism and saliency-
selection network, equipped in the encoder and
decoder to enhance summary generation. Li et al.
(2020) proposed an abstractive sentence summa-
rization method guided by the key words, which
utilized a dual-attention and a dual-copy mecha-
nism to integrate the semantics of both original
sequence and key words. Many methods propose

to introduce specific designs on the general summa-
rization model to address radiology impression gen-
eration (Zhang et al., 2018; Gharebagh et al., 2020;
MacAvaney et al., 2019; Hu et al., 2021; Abacha
et al., 2021). MacAvaney et al. (2019); Gharebagh
et al. (2020) extracted the salient clinical ontology
terms from findings and then incorporated them
into the summarizer through a separate encoder for
enhancing AIG. Hu et al. (2021) further introduced
pre-defined word graphs to record salient words as
well as their internal relation and then employed
two separate graph encoders to leverage graphs
for guiding the decoding process. Most of these
approaches exploit separate encoders to encode pre-
defined knowledge (e.g., ontology terms and word
graph), which are then utilized to enhance impres-
sion generation. However, they tend to over-rely
on the quality of pre-extracted ontologies and word
graphs and lack sensitivity to vital information of
findings themselves. Compared to these models,
our method offers an alternative solution to robustly
improve key information extraction with the help
of both graphs and contrastive learning.

6 Conclusion

In this paper, we propose to combine graphs and
contrastive learning to better incorporate valu-
able features for promoting impression generation.
Specifically, we utilize the graph encoder to extract
relation information from the graph, constructed
by medical entities and the dependence tree, for en-
hancing the representation from the pre-trained text
encoder. In addition, we employ contrastive learn-
ing to assist the model in distinguishing between
critical and secondary information, simultaneously
improving sensitivity to important word represen-
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tation by comparing positive and negative exam-
ples. Furthermore, we conduct experiments on two
benchmark datasets, and the results illustrate the
effectiveness of our proposed method, where new
state-of-the-art results are achieved.
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MODEL | HYPER-PARAMETER |

VALUE

BATCH SIZE

32,64,128,300

MIMIC-CXR | LEARNING RATE 8e-5,2e-4, le-3, 0.05,
TRAINING STEPS 150000
BATCH SI1ZE 32,64,128,300

LEARNING RATE
TRAINING STEPS

OPENI

8e-5,5e-3, 1e-3, 0.05
20000

Table 4: The hyper-parameters that we have experi-
mented on the datasets. The bold values illustrates the
best configurations of different models.

A Appendix

A.1 Hyper-parameter Settings

Table 4 reports the hyper-parameters tested in tun-
ing our models on MIMIC-CXR and OPENI. For
each dataset, we try all combinations of the hyper-
parameters and use the one achieving the highest
R-1 for MIMIC-CXR and OPENI.
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