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Abstract

Event detection (ED) is a critical subtask of
event extraction that seeks to identify event
triggers of certain types in texts. Despite sig-
nificant advances in ED, existing methods typ-
ically follow a “one model fits all types” ap-
proach, which sees no differences between
event types and often results in a quite skewed
performance. Finding the causes of skewed
performance is crucial for the robustness of
an ED model, but to date there has been lit-
tle exploration of this problem. This research
examines the issue in depth and presents a
new concept termed trigger salience attribu-
tion, which can explicitly quantify the un-
derlying patterns of events. On this founda-
tion, we develop a new training mechanism
for ED, which can distinguish between trigger-
dependent and context-dependent types and
achieve promising performance on two bench-
marks. Finally, by highlighting many dis-
tinct characteristics of trigger-dependent and
context-dependent types, our work may pro-
mote more research into this problem.

1 Introduction

Event detection (ED) is the first and a crucial step
of event extraction, which aims to identify events of
certain types in plain texts (Ahn, 2006; Nguyen and
Grishman, 2015; Mitamura et al., 2017). Previous
methods to ED typically adopt a “one model fits
all types” approach, seeing no difference between
event types and using a single model to address
them all (Ji and Grishman, 2008; Li et al., 2013;
Chen et al., 2015; Lin et al., 2020). However, such
approaches produce quite skewed performance on
different types. Tasking the ACE benchmark as
an example, we note the state-of-the-art ED model
(Wadden et al., 2019) can strike 90% in F1 for the
type DIVORCE, yet only 50% for the type START-
POSITION, and it is more surprising that the training
set of DIVORCE is eight times smaller than that of
START-POSITION. Finding the causes underlying

S1: The couple divorced four years later. 

S2: He became the first US minister to England.

[Divorce]

[Start-Position]

Figure 1: Two typical event instances of DIVORCE and
START-POSITION (taken from the ACE 2005 bench-
mark), where the trigger words are colored.

the skewed performance is crucial to the robustness
of an ED model; however, this problem is still
understudied in current research.

In this study we take a fresh look at above prob-
lem and for the first time attribute the skewed per-
formance to the contextual patterns of events. Let
consider the two typical instances of DIVORCE

and START-POSITION shown in Figure 1. Intu-
itively, they demonstrate distinct patterns: the DI-
VORCE event is more trigger-dependent, and the
trigger word (i.e., “divorced”) is very indicative
of the event’s occurrence; by contrast, the START-
POSITION event is more context-dependent — the
event semantic is primarily expressed by contexts
rather than the trigger “become”, which is a merely
light verb. We hypothesize an ED model performs
poorly on context-dependent types because cap-
turing context semantics is challenging (Lu et al.,
2019; Liu et al., 2020b). With the above intuitions,
two questions rise: (i) Can we estimate an event’s
pattern quantitatively? (ii)) How to robustify an
ED model by characterizing such patterns?

To address the first question, we introduce a
brandy new concept called trigger saliency attribu-
tion, which can explicitly quantify an event’s con-
textual pattern. Figure 2 illustrates the key idea: to
determine how much an event is trigger-dependent
or context-dependent, we measure the trigger’s con-
tribution to expressing overall the event semantic.
Specifically, we first assign each sentence a global
event label that represents the overall event seman-
tic. Then, inspired by the feature attribution method
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(Simonyan et al., 2014; Sundararajan et al., 2017),
we regard each word as a feature and compute its
contribution (i.e., saliency value) for predicting
the global event label. Finally, by examining the
ground-truth trigger’s saliency value, we can tell
how much an event depends on triggers or con-
texts: a higher value, for example, indicates that
the trigger contributes more to the event, implying
the event is more trigger-dependent.

To answer the second question, we develop a
new training mechanism based on trigger saliency
attribution, which uses saliency as evidence to en-
hance learning. Our method is simple and straight-
forward — instead of using a single model to detect
all event types, we group event types with similar
patterns together (assessed by trigger saliency attri-
bution) and develop separate models for each group.
This strategy enables different models to capture
distinct patterns — for example, the model for
context-dependent type can focus on mining con-
textual information for learning. To further boost
learning, we also propose two saliency-exploration
strategy to augment the above framework, which
can explicitly integrate saliency information into
learning and produce improved performance par-
ticularly for context-dependent types (§ 6.2).

To verify the effectiveness of our approach, we
have conducted extensive experiments on two ED
benchmarks (i.e., ACE 2005 (LDC, 2005) and
MAVEN (Wang et al., 2020)). According to the
results: (i) Our trigger saliency attribution method
can capture the underlying pattern and well explain
the skewed performance, obtaining Spearman’s cor-
relation coefficients of 0.72 and 0.61 with per-type
F1 on ACE 2005 and MAVEN respectively; (ii)
Our new training regime based on saliency demon-
strates improved results on the two benchmarks.
On ACE 2005, for example, it produces a 2% ab-
solute gain in F1 over methods training different
event types jointly. Finally, in ablation studies, we
compare and highlight many significant characteris-
tics (e.g., linguistic and lexical patterns) of trigger-
dependent and context-dependent event types; our
work may inspire future research into their patterns.

To summarize, our contributions are three-fold:

• We analyze the origins of an ED model’s
skewed performance and propose a new no-
tion termed trigger saliency attribution, which
can assess the underlying pattern of events.
Our findings, as a seminal study, raises the
possibility that the traditional “one model fits

S1: The couple divorced four years later. 

S2: He became the first minister to England.

[Divorce]

[Start-Pos]
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Figure 2: Illustration of trigger saliency attribution,
where the saliency value of a trigger can quantify its
contribution to the overall event semantic.

all types” paradigm may need to be changed.

• We present a new ED training mechanism
based on trigger saliency attribution that
achieves promising results on two bench-
marks, especially when dealing with context-
dependent event types.

• We highlight several diverse patterns of
trigger-dependent and context-dependent
event types, and our findings may stimulate
future research into their differences.

2 Background and Related Work

Event Detection. ED is a critical subtask of
event extraction that seeks to locate event instances
in text, which has received a lot of attention from
researchers. Traditional methods for ED typically
use fine-grained features (Ahn, 2006; Ji and Grish-
man, 2008; Liao and Grishman, 2010; Hong et al.,
2011; Li et al., 2013), whereas newer methods rely
on neural networks (Chen et al., 2015; Nguyen and
Grishman, 2015; Feng et al., 2016; Nguyen and
Nguyen, 2019; Liu et al., 2018a, 2019a,b), which
have investigated the use of syntactic information
(Liu et al., 2018b; Lai et al., 2020), document-level
cues (Wadden et al., 2019; Lin et al., 2020; Du and
Cardie, 2020; Liu et al., 2020b; Lai et al., 2021;
Pouran Ben Veyseh et al., 2021; Li et al., 2021;
Chen et al., 2021; Liu et al., 2021), and external
supervision signals (Tong et al., 2020; Liu et al.,
2020a) to boost learning. However, most methods
recognize no distinction between event types and
train a single model to identify all event types, re-
sulting in rather skewed performance on different
event types. Two seminal works (Lu et al., 2019;
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Liu et al., 2020b) have observed the comparatively
poor performance on context-dependent texts and
offered a better context-exploration strategy to im-
prove training. Nonetheless, they are in a position
to improve performance rather than investigate the
root causes. Our approach, on the other hand, takes
a fresh look at the issue and aims to define the
underlying patterns of events for learning.

Feature Attribution. The goal of feature attri-
bution (FA) is to assess how important an input
feature for model prediction, which has sparked a
lot of interest in interpreting model decisions (Si-
monyan et al., 2014; Sundararajan et al., 2017).
Formally, suppose we have an input vector x = (x1,
x2, ..., xn) ∈Rn and a functionF : Rn→ [0, 1] rep-
resenting a model. The attribution value of x, with
respect to the output F(x), is defined as a vector
AF (x) = (a1, a2, ..., an) ∈ Rn, where ai measures
the contribution of xi to F(x). The existing FA
methods are classified as gradient-based methods,
which consider the gradient of the output to the in-
put as the attribution value (Simonyan et al., 2014;
Springenberg et al., 2015), and reference-based
methods, which consider the difference between
the model’s output and some “reference" output,
in terms of the difference between the input and
some “reference" input, as the attribution value
(Ribeiro et al., 2016; Sundararajan et al., 2017).
FA have been used to interpret model predictions
in applications including image classification (Si-
monyan et al., 2014), machine translation (Ding
et al., 2017), text classification (Chen et al., 2018),
and others (Bastings and Filippova, 2020). To the
best of our knowledge, this is the first work intro-
ducing FA to ED for quantifying the underlying
event patterns.

Integrated Gradient. Integrated Gradient (Sun-
dararajan et al., 2017) is a specific (reference-
based) FA method that views the feature attribution
value as the accumulated gradient along the line be-
tween the model’s input x and a reference input x′,
which denotes the lack of a feature1. Particularly,
the attribution value of xi (i.e., the ith dimension
of x) with respect to an output F (x) is defined as:

ai = (xi − x′i)×
∫ 1

α=0

∂F(x′ + α× (x− x′))
∂xi

dα (1)

where ∂F(x)
∂xi

indicates the gradient of F(x) to xi.
In our approach, we prefer Integrated Gradient to

1In text related tasks, x′ is usually set as a sequence of
embedding vectors with all zero values (Wallace et al., 2019).

Algorithm 1: Trigger Saliency Attribution
Input :Training set D; a re-defined event type set T

1 . Train a sentence-level classifier on D
2 for each training instance s ∈ D do
3 . Conduct sentence-level classifcation on s;
4 for each word wi ∈ s and each type T ∈ T do
5 . Evalaute word-level saliency with Eq. (4);
6 end for
7 end for
8 for each event type T ∈ T do
9 . Evaluate type-level saliency with Eq. (5);

10 end for

other FA methods due to its computing efficiency
and effectiveness in addressing a wide range of
text based tasks (Sundararajan et al., 2017; Liu and
Avci, 2019; Bastings and Filippova, 2020).

3 Trigger Saliency Attribution

Algorithm 1 provides an overview of our trigger
saliency attribution method, which consists of three
major steps: (i) sentence-level event classification,
(ii) word-level saliency estimation, and (iii) type-
level saliency estimation. Let s = [w1, w2, · · · ,
wN ] be a sentence of N words, and the ED task
corresponds to predicting an event label sequence
Ys = [y1, y2, · · · , yN ], where yi ∈ T ∪ {O} indi-
cates the event label of wi, T is a set containing
all pre-defined event types, and O is a “null type”
denoting no-trigger words.

Sentence-Level Event Classification. We start
by giving s a sentence-level event label Gs, which
represents the overall event semantic. Let the label
be Gs = [g1, g2, ..., g|T |] ∈ R|T |, where gi ∈ {0, 1}
indicates whether a trigger of the ith event type is
contained by s (gi=1) or not (gi=0). Following that,
we construct a sentence-level event classifier and
aim to learn a mapping from s to Gs. Particularly,
we devise a BERT based sentence classifier (Devlin
et al., 2019) and adopt a multi-label binary cross-
entropy loss for optimization:

L(Gs;Xs) = −
1

|T |

|T |∑
i=1

gi · log(osi )+(1−gi) · log(1−osi )

(2)

whereXs is the input embedding of s in BERT, os

∈ R|T | indicates the logits vector computed by the
classier, and osi denotes the ith element of os.

Word-Level Saliency Estimation. Based on the
sentence-level classifier, we next use Integrated
Gradient (Sundararajan et al., 2017) to calculate
the contribution (i.e., saliency value) of each word
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Figure 3: The overview of our saliency enhanced ED model; it first divides event types into different sets based on
their patterns and then uses separate models, with different saliency-exploration strategies, to address each set.

to the prediction. We utilize the loss function as
the desired model (Wallace et al., 2019), and calcu-
late the saliency of wi, more accurately, its BERT
representation xi ∈Xs, regarding the loss by:

αwi = (xi − x′
i)×∫ 1

α=0

∂L(Gs;X ′ + α× (Xs −X ′))

∂xi
dα

(3)

whereX ′ is a sequence of all-zero vectors (serving
as a reference input), andx′i denotes the ith element
in X ′. We then normalize αwi as a scalar value
αwi with a sentence-wise normalization:

αwi = e‖αwi‖2/
∑N

n=1
e‖αwn‖2 (4)

where ‖‖ denotes the L2 norm. In actuality, we
may not be concerned with a word’s saliency to the
general event semantic Gs, but rather with a specific
event type T ∈ T . To this end, we replace Gs with
the one-hot representation of T in Equation (3) for
evaluation. Finally, we represent the word-level
saliency of wi with respect to the event type T by
α
(T )
wi , and we suppose α(T )

wi = 0 if the sentence
does not describe any event of type T .

Type-Level Saliency Estimation. Based on the
word-level saliency, we measure the type-level trig-
ger saliency value (regarding an event type T ) as:

SL(T ) =

∑
(s,Ys)

∑
w∈{wi|yi=T} α

(T )
w

#of training examples of typeT
(5)

where (s, Ys) ranges over each training instance;
{wi|yi = T} is a set containing all of the trig-
gers of type T in s. The type-level saliency vale

SL(T ) indicates how trigger-dependent or context-
dependent an event type T is, and it has been shown
to correlate strongly with the per-type model per-
formance (§ 6.1).

4 Saliency Enhanced ED

Based on trigger saliency attribution, we devise a
new training paradigm for ED, which can distin-
guish event types with similar patterns for learning
and achieves promising results. The overview is
shown in Figure 3, and the technical details follow.

Event Type Division. Based on type-level
saliency estimation, we divide all event types into
a trigger-dependent set Ttrigger = {T |SL(T ) ≥
λ} and a context-dependent set Tcontext =
{T |SL(T ) < λ}. The threshold λ is empirically
determined as the median of all per-type trigger
saliency values, implying that the event types are
evenly divided into two sets2.

Saliency-Enriched Event Detector. Following
that, we create separate ED models for Ttrigger
and Tcontext. Each model is implemented using
the BERT architecture (Devlin et al., 2019), and
given a sentence s, it performs a word-by-word
classification over BERT’s output to generate a
label sequence: Ỹs = (ỹ1, ỹ2, · · · , ỹN ), with ỹi
being the predicted event label for wi. Based on
the different characteristics of trigger-dependent
and context-dependent types, we devise different
saliency-exploration methods to boost learning.
(i) Word Saliency Embeddings. Given that
trigger-dependent types often have indicative trig-

2We have tried using more than two sets for division in our
pilot experiments, but the results were negative.
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gers, we build a mechanism called word saliency
embeddings (WSEs) in the model for Ttrigger to
capture such regularities. Specifically, we first
quantify each word’s saliency value3 as 0 or 1 based
on λ, i.e., the threshold we used previously for dis-
tinguishing event types, and then use a separate
embedding vector to distinguish 0 and 1, similar
to word embeddings. Such embeddings are incor-
porated into the model4 to capture a regularity that
words with high saliency values are more likely to
be triggers. Note WSEs are also incorporated in
the model for the Tcontext, which on the other hand
seeks to learn the opposite regularity that words
with high saliency values may not be triggers.
(ii) Saliency as Context Evidence. In the event
detector for Tcontext, we also devise a regime for
interpreting salient information as context evidence
for reasoning. Consider the previous example S2.
Our method identifies the context words “US minis-
ter” as the most salient words (with saliency values
larger than λ) expressing the overall event semantic.
Here we regard salient contexts as supplementary
evidence and concatenate them with the sentence
for learning, as shown in the bottom of Figure 3.
Compared with WSEs, this method can additional
capture the lexical semantics of the salient words,
which has been shown to considerably aid in the
recognition of context-dependent event types (§ 7).

Model Ensemble. In the testing stage, we com-
bine the results of two models to make a final pre-
diction. If ambiguous cases occur, i.e., the two ED
models predict different event types for the same
word, we use the type with a higher probability as
the result. We use cross-entropy loss for optimiza-
tion. For example, the model for Ttrigger is trained
by minimizing the following loss:

L = −
∑

(s,Ys)

∑
(wi,yi)∈(s,Ys)

logP (yi|wi)

(6)
where (s, Ys) refers to each training instance; (wi,
yi

5) ranges over each pair of word and its ground-
truth event label; P (yi|wi) denotes the conditional
probability that the model predicts yi for wi. We
use Adam (Kingma and Ba, 2015) with default
hyper-parameters for parameter update.

3To prevent label leaking, at the testing stage we use pre-
dicted labels rather than ground-truth labels for attribution.

4Because combining external embeddings with BERT re-
mains difficult, we alter the segmentation embeddings in
BERT to WSEs, motivated by (Wu et al., 2019).

5Note in the event detector for Ttrigger, we should consider
yi as O for yi ∈ Tcontext.

Dataset # Type Split # Sen. # Tok. # Trig.

ACE 33
Training 17,172 267,959 4,420
Dev. 923 18,246 505
Test 832 19,061 424

MAVEN 168 Training 32,431 832,186 77,993
Dev. 8,042 204,556 18,904

Table 1: Statistics of ACE 2005 and MAVEN, where #
Sen., # Tok., and # Trig. indicate the number of event
types, sentences, tokens, and triggers respectively.

5 Experimental Setups

Datasets. We conduct experiments on ACE 2005
(LDC, 2005) and MAVEN (Wang et al., 2020).
ACE 2005 defines 33 event types and contains 599
documents. We adopt a common split for evalu-
ation following previous works (Li et al., 2013;
Wadden et al., 2019). MAVEN is a newly released
corpus defining 168 more fine-grained event types
(Wang et al., 2020). Because the MAVEN test
set is not publicly available and our study is con-
cerned with per-type performance, we instead use
the MAVEN development set for assessment and
divide the original MAVEN training set as 9:1 for
training and validating. Table 1 displays the com-
prehensive data statistics for the two datasets.

Evaluation Metrics. We adopt the following
metrics to evaluate our model: (i) Spearman’s rank
correlation coefficient, which can determine the sta-
tistical dependency between two ranked variable se-
quences. The metric is defined as ρ = 1− 6

∑
d2i

n(n2−1) ,

where di is the difference between the ith pair of
ranked variables, and n is the sequence length. We
use it to measure how well our trigger saliency
attribution results correlate with per-type model
performance. (ii) Precision (P), Recall (R) and (Mi-
cro) F1, which are widely used to assess the overall
performance of an ED model. (iii) Macro F1, the
arithmetic mean of class-wise F1-scores, which
will be low for models that only perform well on
common types but badly on rare types.

Implementations. In our trigger saliency attribu-
tion method, the sentence-level classifier is built on
the BERT-base. The batch size is set to 20, and
the learning rate is set to 1e-5. After 5 epochs, it
achieves 74.8% in F1 on the ACE 2005 develop-
ment set, matching the state-of-the-art performance
(Liu et al., 2019c). As for the two ED models, we
consider BERT-base architectures. The batch
size is set to 20, chosen from [1, 5, 10, 20, 30]. The
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Dataset

Setting Method ACE 05 MAVEN

Static # of Training Instances 0.06 0.09
Trigger Variance 0.26 0.25

Dynamic Trigger Attention 0.12 0.14
Trigger Saliency (Ours) 0.72 0.61

Table 2: The Spearman’s ρ correlation (ρ ∈ [-1, 1])
between per-type F1 and different criteria (high corre-
lation is considered when ρ > 0.6).

learning rate is set to 1e-5, chosen from a range
from 1e-3 to 1e-6. The dimension of word saliency
embeddings is empirically set to 100. To allow
for further investigation, we have made our code
publicly available at https://github.com/
jianliu-ml/SaliencyED.

6 Experimental Results

6.1 Results of Correlation Measurement

Table 2 shows the Spearman’s rank correlation be-
tween per-type F1 and four criteria: 1) the number
of training instances (regarding an event type); 2)
trigger variance, defined as the ratio of the num-
ber of unique event triggers to the total number of
event triggers (regarding an event type); 3) trigger
attention value, which corresponds to the ground-
truth trigger’s attention value in the BERT model;
4) trigger saliency attribution (our method). We use
a state-of-the-art ED model (Wadden et al., 2019)
and perform a 5-run average on the development
set to obtain the per-type F1 score.

According to the results, our trigger saliency at-
tribution approach correlates the best with model
performance, yielding a score as high as 0.72 and
0.61 in Spearman’s ρ correlation. This suggests
that our method can well explain the skewed perfor-
mance. Our other findings are interesting: (i) Sur-
prisingly, the number of training examples shows
a negligible correlation (ρ = 0.06 and 0.09) with
per-type F1. This implies that simply collecting
more training data may not be an effective way to
improve an ED model. (ii) The trigger variance
metric demonstrates a moderate association (ρ =
0.25 and 0,26), indicating that the diversity of event
triggers is a factor influencing model performance.
(iii) The trigger attention value also shows a poor
association, which may be another proof that atten-
tion is not explainable (Jain and Wallace, 2019).

Lastly, Figure 4 visualizes correlations between
per-type F1 and the number of training instances
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Figure 4: Correlation between per-type F1 and (i) the
number of training instances (top), and (ii) type-level
trigger salience value (bottom), based on ACE 2005.
Each point indicates a specific event type.

and our trigger saliency attribution method. In addi-
tion to noting that our method adequately explains
the per-type F1-score, we find that λ = 0.25 may be
a good threshold for distinguishing between trigger-
dependent and context-dependent event types.

6.2 Results of Saliency Enhanced ED

To test the efficacy of our saliency enhanced ED
model: 1) For ACE 2005, we compare our model
with (i) DYGIE++ (Wadden et al., 2019), which
uses a graph view to learn context features; (ii) Trig-
gerQA (Du and Cardie, 2020), which uses a ques-
tion answering formulation for the task; (iii) OneIE
(Lin et al., 2020), which adopts cross-sentence fea-
tures for the task. Because pre-processing has a sig-
nificant impact on the results (Orr et al., 2018), to
ensure a fair comparison, we only consider models
using the same pre-processing steps as in (Wad-
den et al., 2019). 2) For MAVEN, we use the
BERT+CRF proposed in the original work (Wang
et al., 2020) for comparison. As a baseline, we also
construct a model called BERTEns, which ensem-
bles two BERT models similar to ours but does not
differentiate event types. We refer to our approach
that merely separates event types for learning (with-
out saliency-exploration strategies) as SaliencyED
(SL), and our full approach as SaliencyED (Full).
Table 3 displays performances of different models.

The results have confirmed our approach’s effec-
tiveness. Particularly: (i) our full model achieves
the best Micro F1 score (75.8% and 67.1%) on
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Method P N R N F1 N F1 O

ACE

DYGIE++ (2019) - - 73.6 65.7
TriggerQA (2020) 71.2 73.7 72.4 64.5
OneIE (2020) - - 75.2 66.6
BERTEns 71.5 73.1 72.3 65.4

SaliencyED (SL) 74.7 75.5 75.1 68.1
SaliencyED (Full) 75.4 76.2 75.8 68.8

MAV

BERT+CRF (2020) 62.3 64.1 63.2 55.2
BERTEns 64.7 66.9 65.8 58.0

SaliencyED (SL) 64.9 68.2 66.5 59.2
SaliencyED (Full) 64.9 69.4 67.1 60.3

Table 3: Results on ACE 2005 and MAVEN (MVN). P
N, R N, and F1 N indicate Precision, Recall, and Micro
F1 respectively; F1 O denotes Macro F1.

ACE 2005 and MAVEN without the use of sophis-
ticated architectures or external resources, as DY-
GIE++ and OneIE do. (ii) Impressively, with the
identical architectures, our full model SaliencyED
(Full) outperforms BERTEns by 2.8% and 1.7% in
F1 on the two datasets, respectively; SaliencyED
(SL), which only differentiates event types for train-
ing, outperforms BERTEns by 1.6% in F1. This
emphasizes the significance of identifying event
patterns for ED. (iii) Our method gives the best
Macro F1 on two datasets, indicating that it per-
forms well on both common and rare event types.

Table 4 shows the performance breakdown
for trigger-dependent (TD) and context-dependent
(CD) types. According to the results, different mod-
els consistently produce good performance on TD
types but low performance on CD types, implying
that the patterns found by our trigger saliency at-
tribution method are reasonable. When comparing
SaliencyED (SL) and SaliencyED (Full), we see
that the saliency-exploring method is more effec-
tive on CD types (+2.3% in F1) than on TD types
(+0.3% in F1). This makes sense because detect-
ing context-dependent events relies significantly
on context reasoning, and our method can just use
important contexts as evidence to improve learning.

7 Discussion

Ablation Study. We undertake an ablation study
in Table 5 to investigate different model com-
ponents, using the more challenging context-
dependent (CD) types as an example. In the vari-
ant models, +WSE and +Evidence denote sup-
plementing SaliencyED (SL) with word saliency
embeddings and context evidence, respectively.
+MaskAtt is an approach for calculating atten-

TD Types CD Types

Method F1 N F1 O F1 N F1 O

ACE

DYGIE++ (2019) 78.2 74.4 65.8 52.1
TriggerQA (2020) 80.1 76.3 65.2 53.2
OneIE (2020) 83.6 77.9 69.0 54.2
BERTEns 83.3 77.8 68.3 52.3

SaliencyED (SL) 86.2 82.0 70.0 56.9
SaliencyED (Full) 86.4 81.6 71.5 57.8

MAV

BERT+CRF (2020) 67.5 67.1 49.2 38.1
BERTEns 70.3 70.0 51.5 38.1

SaliencyED (SL) 71.3 70.2 52.6 49.1
SaliencyED (Full) 71.6 70.8 53.5 50.4

Table 4: Results on trigger-dependent (TD) and
context-dependent (CD) event types, where F1 N and
F1 O indicate Micro and Macro F1 respectively.

Method F1 N F1 O

SaliencyED (SL) 70.0 56.9

SaliencyED (SL) + WSE 70.2 57.3
SaliencyED (SL) + Evidence 70.6 57.5
SaliencyED (SL) + MaskAtt 70.4 57.1

SaliencyED (Full) 71.5 57.8
SaliencyED (Full) + Gold Arguments 78.2 68.9

Table 5: Ablations on context-dependent types. F1 N
and F1 O indicate Micro and Macro F1 respectively.

tion that masks the word itself, which can drive
the model to focus more on contexts for learning;
+Gold Argument is an oracle method that uses gold
event arguments as evidence for learning. Based
on the results, +Evidence outperforms +WSE and
+MaskAtt, indicating its efficacy. Interestingly,
+MaskAtt also boosts performance, implying that
the contexts of CD events do carry important infor-
mation for asserting the event. Finally, the superior
performance of +Gold Arguments implies that find-
ing indicative evidence (e.g., event arguments) is
the key factor boosting learning on CD types.

Impact of Event Type Division. We use our
event type division method as a baseline and com-
pare it to three other event type division strategies:
1) at random; 2) based on the amount of training in-
stances; 3) based on development set performance.
According to the results, the first two strategies de-
crease performance by 1.27% and 1.41% in Micro
F1 on ACE, and 1.53% and 1.40% on MAVEN,
which suggests that an inappropriate separation
of event types impairs learning. The third strat-
egy based on development performance improves
learning (+0.8%/+1.1% on ACE/MAVEN), but it
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Figure 6: A comparison of the average amount of event
arguments in TD and CD types.

is still inferior to our approach. An explanation is
that the final model performance is the product of a
combination of factors, and thus categorizing event
types based on development set performance may
not assure that event types with similar patterns are
grouped together, resulting in inferior results.

Distinctions in TD/CD Types. We use ACE
2005 as a case to highlight the distinct characteris-
tics between TD and CD types. Figure 5 (Left) de-
picts the top k accuracy (hit@k) in the case where
the most salient word in a sentence appears to be
an event trigger; Figure 5 (Right) depicts the per-
formance drop in an adversarial attack in which
the gold event triggers are masked for sentence-
level event type classification. The CD and TD
types exhibit opposing behaviors: TD types display
excellent H@k accuracy but a significant perfor-
mance loss in adversarial attack, whereas CD types
exhibit the opposite tendency. This implies that
the CD and TD types respectively rely on triggers
and contexts. Figure 6 shows a comparison of the
number of event arguments for TD and CD types.
Clearly, CD types have a larger number of event
arguments than TD types. This is also another in-
dication that CD types rely on contexts — they
require more arguments to convey an event.

Linguistic/Lexical Insights. Table 6 give typi-
cal TD and CD types on ACE 2005 (Please refer
to Appendixes for the full set). Intuitively, the
TD types appear to be finer-grained and concrete,

8 Most Trigger-Dependent (TD) Types:
Divorce(0.434), Hearing(0.355), Fine(0.349), Injure(0.308),
Be_Born(0.306), Elect(0.305), Sentence(0.304), Die(0.304)
8 Most Context-Dependent (CD) Types:
Start_Org(0.127), Pardon(0.129), Nominate(0.132),
Extradite(0.134), Acquit(0.142), Merge_Org(0.151),
Transfer_Money(0.155), End_Org(0.156)

Table 6: Typical TD and CD types on ACE 2005.

Figure 7: Case visualization, where the ground-truth
event triggers are underlined. Color is used to represent
words with large saliency values (≥ 0.1).

whereas the CD types appear to be coarser-grained
and abstract. For example, we may further sub-
divide a CD type TRANSFER_MONEY into finer-
grained ones like LOAN and PURCHASE. We pro-
vide linguistic/lexical insights by comparing the hi-
erarchy levels of TD/CD types on WordNet (Miller,
1992). Accordingly, triggers of TD types are at
the lower level of WordNet, with an average of 5.6
hypernyms; yet CD type triggers are at a higher
level of WordNet, with 2.3 hypernyms. This find-
ing supports our intuition that TD types are more
concrete whereas CD types are more abstract.

Case Visualization. Figure 7 depicts the
saliency map of several cases. Accordingly, event
triggers of TD types do usually have large saliency
values. For example, case 2) is the instance of
DIVORCE with the lowest trigger saliency value,
which is still as high as 0.34. In contrast, event
triggers of CD types typically have low saliency
values. For example, case 4) and 6) show random
instances of TRANSFER-MONEY and TRANSPORT,
where the trigger saliency values are only 0.01.

8 Conclusion

In this study, we analyze the origins of an ED
model’s skewed performance and introduce a new
notion called trigger saliency attribution to quan-
tify the pattern of events. We devise a new train-
ing paradigm for ED that can distinguish between
trigger-dependent and context-dependent types for
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learning, yielding promising results on two bench-
marks. We also examine the differences between
the two types extensively, and our work may pro-
mote future research on this problem. In the future,
we would apply our method to other tasks (e.g., re-
lation extraction) where contextual patterns matter.
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A The Full Event Types and Their Saliency Values

We provide the full set of event types in ACE (LDC, 2005) and MAVEN (Wang et al., 2020) and their
saliency values evaluated by our method.

Trigger-Dependent Types Context-Dependent Types
Divorce 0.434 Demonstrate 0.239
Trial_Hearing 0.354 Attack 0.236
Fine 0.349 Phone_Write 0.234
Injure 0.308 End_Position 0.198
Be_Born 0.306 Start_Position 0.196
Elect 0.304 Transfer_Ownership 0.181
Sentence 0.304 Execute 0.178
Die 0.304 Meet 0.178
Marry 0.301 Transport 0.156
Appeal 0.294 End_Org 0.155
Declare_Bankruptcy 0.293 Transfer_Money 0.155
Charge_Indict 0.274 Merge_Org 0.150
Sue 0.273 Acquit 0.142
Arrest_Jail 0.256 Extradite 0.134
Convict 0.255 Nominate 0.131
Release_Parole 0.241 Pardon 0.128

Start_Org 0.127

Table 7: Event types and their trigger saliency values in the ACE ontology.

Trigger-Dependent Types Context-Dependent Types
Commerce_sell 0.221 Cause_to_make_progress 0.104
Rescuing 0.195 Cost 0.104
Use_firearm 0.168 Hold 0.103
Receiving 0.165 Award 0.102
Becoming 0.160 Check 0.102
Bodily_harm 0.160 Being_in_operation 0.101
Choosing 0.159 Manufacturing 0.101
Destroying 0.157 Bringing 0.100
Escaping 0.156 Response 0.099
Death 0.152 Know 0.099
Arranging 0.150 Perception_active 0.098
Cause_change_of_strength 0.150 Ratification 0.097
Competition 0.150 Creating 0.096
Defending 0.146 Prison 0.096
Besieging 0.146 Testing 0.096
Expressing_publicly 0.146 Incident 0.092
Conquering 0.145 Kidnapping 0.092
Surrendering 0.144 Legal_rulings 0.089
Arrest 0.144 Temporary_stay 0.088
Dispersal 0.143 Imposing_obligation 0.087
Sending 0.143 Scouring 0.086
Control 0.143 Social_event 0.086
Preserving 0.142 Motion 0.085
Influence 0.140 Create_artwork 0.084
Commerce_buy 0.138 Action 0.082
Coming_to_be 0.137 Collaboration 0.078
Damaging 0.136 Come_together 0.078
Earnings_and_losses 0.135 Robbery 0.077
Motion_directional 0.135 Scrutiny 0.076
Assistance 0.135 GetReady 0.076
Killing 0.134 Legality 0.076
Commerce_pay 0.131 Emptying 0.075
Arriving 0.131 Communication 0.075
Deciding 0.131 Coming_to_believe 0.075
Request 0.130 Connect 0.072
Recording 0.129 Forming_relationships 0.071
Supporting 0.128 Institutionalization 0.071
Becoming_a_member 0.128 Reveal_secret 0.067
Aiming 0.127 Patrolling 0.067
Containing 0.125 Rewards_and_punishments 0.065
Name_conferral 0.124 Filling 0.065
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Change_event_time 0.124 Self_motion 0.064
Using 0.124 Adducing 0.063
Building 0.124 Cure 0.063
Sign_agreement 0.124 Submitting_documents 0.063
Reporting 0.124 Criminal_investigation 0.063
GiveUp 0.123 Reforming_a_system 0.062
Getting 0.121 Expend_resource 0.062
Recovering 0.120 Rite 0.062
Cause_to_amalgamate 0.118 Commitment 0.061
Cause_to_be_included 0.117 Protest 0.059
Departing 0.117 Statement 0.059
Publishing 0.117 Hiding_objects 0.059
Change 0.117 Limiting 0.058
Agree_or_refuse_to_act 0.117 Committing_crime 0.058
Cause_change_of_position_on_a_scale 0.116 Education_teaching 0.056
Judgment_communication 0.116 Terrorism 0.055
Process_end 0.116 Employment 0.053
Wearing 0.116 Military_operation 0.052
Traveling 0.115 Telling 0.052
Releasing 0.115 Theft 0.050
Giving 0.115 Confronting_problem 0.046
Process_start 0.115 Practice 0.046
Quarreling 0.115 Revenge 0.045
Exchange 0.115 Convincing 0.044
Presence 0.114 Renting 0.043
Preventing_or_letting 0.113 Having_or_lacking_access 0.041
Attack 0.113 Resolve_problem 0.040
Catastrophe 0.112 Labeling 0.038
Hindering 0.111 Vocalizations 0.036
Warning 0.111 Body_movement 0.036
Participation 0.111 Breathing 0.035
Achieve 0.110 Ingestion 0.035
Violence 0.109 Research 0.033
Placing 0.109 Lighting 0.033
Causation 0.108 Justifying 0.032
Hostile_encounter 0.108 Writing 0.032
Surrounding 0.108 Extradition 0.031
Carry_goods 0.107 Suspicion 0.031
Change_of_leadership 0.107 Change_sentiment 0.030
Removing 0.106 Bearing_arms 0.019
Supply 0.105 Change_tool 0.012
Expansion 0.105 Emergency 0.010
Openness 0.105 Risk 0.010

Table 8: Event types and their trigger saliency values in the MAVEN ontology.
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