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Abstract
Learned self-attention functions in state-of-the-
art NLP models often correlate with human
attention. We investigate whether self-attention
in large-scale pre-trained language models is as
predictive of human eye fixation patterns dur-
ing task-reading as classical cognitive models
of human attention. We compare attention func-
tions across two task-specific reading datasets
for sentiment analysis and relation extraction.
We find the predictiveness of large-scale pre-
trained self-attention for human attention de-
pends on ‘what is in the tail’, e.g., the syntactic
nature of rare contexts. Further, we observe
that task-specific fine-tuning does not increase
the correlation with human task-specific read-
ing. Through an input reduction experiment
we give complementary insights on the spar-
sity and fidelity trade-off, showing that lower-
entropy attention vectors are more faithful.

1 Introduction

The usefulness of learned self-attention functions
often correlates with how well it aligns with human
attention (Das et al., 2016; Klerke et al., 2016; Bar-
rett et al., 2018; Zhang and Zhang, 2019; Klerke
and Plank, 2019). In this paper, we evaluate how
well attention flow (Abnar and Zuidema, 2020)
in large language models, namely BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) and T5
(Raffel et al., 2020), aligns with human eye fix-
ations during task-specific reading, compared to
other shallow sequence labeling models (Lecun
and Bengio, 1995; Vaswani et al., 2017) and a clas-
sic, heuristic model of human reading (Reichle
et al., 2003). We compare the learned attention
functions and the heuristic model across two task-
specific English reading tasks, namely sentiment
analysis (SST movie reviews) and relation extrac-
tion (Wikipedia), as well as natural reading, us-
ing a publicly available dataset with eye-tracking
recordings of native speakers of English (Hollen-
stein et al., 2018).

Contributions We compare human and model
attention patterns on both sentiment reading and
relation extraction tasks. In our analysis, we com-
pare human attention to pre-trained Transformers
(BERT, RoBERTa and T5), from-scratch training
of two shallow sequence labeling architectures (Le-
cun and Bengio, 1995; Vaswani et al., 2017), as
well as to a frequency baseline and a heuristic, cog-
nitively inspired model of human reading called the
E-Z Reader (Reichle et al., 2003). We find that the
heuristic model correlates well with human read-
ing, as has been reported in Sood et al. (2020b).
However when we apply attention flow (Abnar
and Zuidema, 2020), the pre-trained Transformer
models also reach comparable levels of correlation
strength. Further fine-tuning experiments on BERT
did not result in increased correlation to human fix-
ations. To understand what drives the differences
between models, we perform an in-depth analysis
of the effect of word predictability and POS tags
on correlation strength. It reveals that Transformer
models do not accurately capture tail phenomena
for hard-to-predict words (in contrast to the E-Z
Reader) and that Transformer attention flow shows
comparably weak correlation on (proper) nouns
while the E-Z Reader predicts importance of these
more accurately, especially on the sentiment read-
ing task. In addition, we investigate a subset of
the ZuCo corpus for which aligned task-specific
and natural reading data is available and find that
Transformers correlate stronger to natural reading
patterns. We test faithfulness of these different at-
tention patterns to produce the correct classification
via an input reduction experiment on task-tuned
BERT models. Our results highlight the trade-off
between model faithfulness and sparsity when com-
paring importance scores to human attention, i.e.,
less sparse (higher entropy) attention vectors tend
to be less faithful with respect to model predic-
tions. Our code is available at github.com/
oeberle/task_gaze_transformers.
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2 Pre-trained Language Models vs
Cognitive Models

Church and Liberman (2021) discuss how NLP
has historically benefited from rationalist and em-
piricist methodologies, something that holds for
cognitive modeling in general. The vast major-
ity of application-oriented work in NLP today re-
lies on pre-trained language models or other large-
scale data-driven models, but in cognitive model-
ing, most approaches remain heuristic and rule-
based, or hybrid, e.g., relying on probabilistic lan-
guage models to quantify surprisal (Rayner and
Reichle, 2010; Milledge and Blythe, 2019). This
is for good reasons: Cognitive modeling values in-
terpretability (even) more, often suffers from data
scarcity, and is less concerned with model reusabil-
ity across different contexts.

This paper presents a head-to-head comparison
of the E-Z Reader and pre-trained Transformer-
based language models. We are not the first to
evaluate pre-trained language models and large-
scale data-driven models as if they were cognitive
models. Chrupała and Alishahi (2019), for exam-
ple, use representational similarity analysis to cor-
relate sentence encodings in pre-trained language
models with fMRI signals; Abdou et al. (2019) cor-
relate sentence encodings with gaze-derived repre-
sentations. More generally, it has been argued that
cognitive evaluations are in some cases practically
superior to standard evaluation methodologies in
NLP (Søgaard, 2016; Hollenstein et al., 2019). We
return to this in the Discussion and Conclusion §6.

Commonly, pre-trained language models are dis-
regarded as cognitive models, since they are most
often implemented as computationally demand-
ing batch learning algorithms, processing data “at
once”. Günther et al. (2019) points out that this
is an artefact of their implementation, and online
learning of pre-trained language models is possible,
yet impractical. Generally, several researchers have
argued for taking pre-trained language models se-
riously as cognitive models (Rogers and Wolmetz,
2016; Mandera et al., 2017; Günther et al., 2019).
In the last section, §6, we discuss some of the im-
plications of comparisons of pre-trained language
models and cognitive models – for cognitive mod-
eling, as well as for NLP. In our experiments, we
focus on Transformer architectures that are cur-
rently the dominating pre-trained language models
and a de facto baseline for modern NLP research.

3 Experiments

3.1 Data

The ZuCo dataset (Hollenstein et al., 2018) con-
tains eye-tracking data for 12 participants (all En-
glish native speakers) performing natural reading
and relation extraction on 300 and 407 English
sentences from the Wikipedia relation extraction
corpus (Culotta et al., 2006) respectively and senti-
ment reading on 400 samples of the Stanford Sen-
timent Treebank (SST) (Socher et al., 2013). For
our analysis, we extract and average word-based
total fixation times across participants and focus on
the task-specific relation extraction and sentiment
reading samples.

3.2 Models

Below we briefly describe our used models and
refer to Appendix A for more details.

Transformers The superior performance of
Transformer architectures across broad sets of NLP
tasks raises the question of how task-related atten-
tion patterns really are. In our experiments, we
focus on comparing task-modulated human fixa-
tions to attention patterns extracted from the fol-
lowing commonly used models: (a) We use both
pre-trained uncased BERT-base and large models
(Devlin et al., 2019) as well as fine-tuned BERT
models on the respective tasks. BERT was orig-
inally pre-trained on the English Wikipedia and
the BookCorpus. (b) The RoBERTa model has
the same architecture as BERT and demonstrates
better performance on downstream tasks using an
improved pre-training scheme and the use of addi-
tional news article data (Liu et al., 2019). (c) The
Text-to-Text Transfer Transformer (T5) uses an
encoder-decoder structure to enable parallel task-
training and has demonstrated state-of-the-art per-
formance over several transfer tasks including senti-
ment analysis and natural language inference (Raf-
fel et al., 2020).

We evaluate different ways of extracting token-
level importance scores: We collect attention repre-
sentations and compute the mean attention vector
over the final layer heads to capture the mixing of
information in Transformer self-attention modules
as in Hollenstein and Beinborn (2021) and present
this as mean for all aforementioned Transformers.

To capture the layer-wise structure of deep Trans-
former models we compute attention flow (Abnar
and Zuidema, 2020). This approach considers the
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Sentiment Reading (SST)                                                    Relation Extraction (Wikipedia)

Figure 1: Spearman correlation analysis between human attention and different models for two task settings. Solid
bar edges indicate sentence-level correlations in contrast to a token-level analysis. Left: Sentiment Reading on the
SST dataset. Right: Relation Extraction on Wikipedia. Standard deviations over five seeds are shown for fine-tuned
models and correlations are statistically significant with p < 0.01 unless stated otherwise (ns: not significant).

attention matrices as a graph, where tokens are
represented as nodes and attention scores as edges
between consecutive layers. The edge values de-
fine the maximal flow possible between a pair of
nodes. Flow between edges is thus (i) limited to
the maximal attention between any two consecu-
tive layers for this token and (ii) conserved such
that the sum of incoming flow must be equal to the
sum of outgoing flow. We denote the attention flow
propagated back from layer L as flow L.

Shallow Models We ground our analysis on
Transformers by comparing them to relatively shal-
low models that were trained from-scratch and eval-
uate how well they coincide with human fixation.
We train a standard CNN (Kim, 2014) network
with multiple filter sizes on pre-trained GloVe em-
beddings (Pennington et al., 2014). Importance
scores over tokens are extracted using Layerwise
Relevance Propagation (LRP) (Arras et al., 2016,
2017) which has been demonstrated to produce
robust explanations by iterating over layers and re-
distributing relevance from outer layers towards the
input (Bach et al., 2015; Samek et al., 2021). In par-
allel, we use a shallow multi-head self-attention
network (Lin et al., 2017) on GloVe vectors with a
linear read-out layer for which we compute token
relevance scores using LRP.

E-Z Reader As a cognitive model for human
reading, we compute task-neutral fixation times
using the E-Z Reader (Reichle et al., 1998) model.
The E-Z Reader is a multi-stage, hybrid model,
which relies on an n-gram model and several heuris-
tics, based, for example, on theoretical assumptions
about the role of predictability and average saccade

length. Additionally, we compare to a frequency
baseline using word statistics of the BNC (British
National Corpus, Kilgarriff (1995))1 as proposed
by Barrett et al. (2018).

3.3 Optimization

For training models on the different tasks we re-
move all sentences that overlap between ZuCo and
the original SST and Wikipedia datasets. Models
are then trained on the remaining train-split data
until early stopping is reached and we report re-
sults over five runs. We provide further details on
the optimization and model task performance in
Appendix A.

3.4 Metric

To compare models with human attention, we com-
pute Spearman correlation between human and
model-based importance vectors after concatena-
tion of individual sentences as well as on a token-
level, see Hollenstein and Beinborn (2021). This
enables us to distinguish unrelated effects caused
by varying sentence length from token-level im-
portance. As described before, we extract human
attention from gaze (ZuCo), simulated gaze (E-Z
Reader), raw attentions (BERT, RoBERTa, T5), rel-
evance scores (CNN, self-attention) and inverse
token probability scores (BNC).2 We use ZuCo to-

1We compute the negative log-transformed probability of
each lower-cased token corresponding to an inverse relation
between word-frequency and human gaze duration (Rayner
and Duffy, 1986)

2First and last token bins from each sentence are ignored to
avoid the influence of sentence border effects in Transformers
(Clark et al., 2019) and for which the E-Z Reader does not
compute fixations.
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kens to align sentences across tokenizers and apply
max-pooling of scores when bins are merged.

3.5 Main result

To evaluate how well model and human attention
patterns for sentiment reading and relation extrac-
tion align, we compute pair-wise correlation scores
as displayed in Figure 1. Reported correlations are
statistically significant with p < 0.01 if not indi-
cated otherwise (ns: not significant). After ranking
based on the correlations on sentence-level, we ob-
serve clear differences between sentiment reading
on SST and relation extraction on Wikipedia for
the different models. For sentiment reading, the
E-Z Reader and BNC show the highest correlations
followed by the Transformer attention flow values
(the ranking between E-Z/BNC and Transformer
flows is significant at p < 0.05 ). For relation ex-
traction, we see the highest correlation for BERT-
base attention flows (with and without fine-tuning)
and BERT-large followed by the E-Z Reader (rank-
ing is significant at p < 0.05). On the lower end,
computing means over BERT attentions across the
last layer shows weak to no correlations for both
tasks.3 The shallow architectures result in low to
moderate correlations with a distinctive gap to at-
tention flow. Focusing on flow values for Trans-
formers, BNC and E-Z Reader, correlations are sta-
ble across word and sentence length. Correlations
grouped by sentence length shows stable values
around 0.6 (SST) and 0.4−0.6 (Wikipedia) except
for shorter sentences where correlations fluctuate.
To check the linear relationship between human
and model attention patterns we additionally com-
pute token- and sentence-level Pearson correlations
which can be found in Appendix B. Results confirm
that Spearman and Pearson correlation coefficients
as well as rankings hardly differ - which suggests a
linear relationship - and that correlation strength is
in line with Hollenstein and Beinborn (2021).

4 Analyses

In addition to our main result – that pre-trained
language models are competitive to heuristic cog-
nitive models in predicting human eye fixations
during reading – we present a detailed analysis, in-
vestigating what our main results depend on, where

3We have experimented with oracle analyses selecting the
maximally correlating attention head in the last layer for each
sentence and find that correlations are generally weaker than
with attention flow.

pre-trained language models improve on cognitive
models, and where they are still challenged.

Fine-tuning BERT does not change correlations
to human attention We find that fine-tuning base
and large BERT models on either task does not sig-
nificantly change correlations and are of similar
strength to untuned models. This observation can
be embedded into findings that Transformers are
equipped with overcomplete sets of attention func-
tions that hardly change until the later layers, if at
all, during fine-tuning and that this change is also
dependent on the tuning task itself (Kovaleva et al.,
2019; Zhao and Bethard, 2020). In addition, we ob-
serve that Transformer flows propagated back from
early, medium and final layers do not considerably
change correlations to human attention. This can
be explained by attention flow filtering the path of
minimal value at each layer as discussed in Abnar
and Zuidema (2020).

Attention flow is important The correlation
analysis emphasizes that we need to capture the
layered propagation structure in Transformer mod-
els, e.g., by using attention flow, in order to extract
importance scores that are competitive with cog-
nitive models. Interestingly, selecting the highest
correlating head for the last attention layer pro-
duces generally weaker correlation than attention
flows.3 This offers additional evidence that raw
attention weights do not reliably correspond to to-
ken relevance (Serrano and Smith, 2019; Abnar
and Zuidema, 2020) and, thus, are of limited use to
compare task attention to human gaze.

Differences between language models BERT,
RoBERTa and T5 are large-scale pretrained lan-
guage models based on Transformers, but they
also differ in various ways. One key difference
is that BERT and RoBERTa use absolute posi-
tion encodings, while T5 uses relative encodings.
BERT and RoBERTa differ in that (i) BERT has
a next-sentence-prediction auxiliary objective; (ii)
RoBERTa and T5 were trained on more data; (iii)
RoBERTa uses dynamic masking and trains with
larger mini-batches and learning rates, while T5
uses multi-word masking; (iv) RoBERTa uses byte
pair encoding for subword segmentation. We leave
it as an open question whether the superior at-
tention flows of BERT, compared to RoBERTa
and T5, has to do with training data, next sen-
tence prediction, or fortunate hyper-parameter set-
tings, but note that BERT is also known to have
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Figure 2: Upper: Correlations between human fixation and different models for SST (left) and Relation Extraction
(right) for the six most common POS tags. Lower: Average attention value after standardization (mean=0, std=1)
for respective POS tag and model.

Figure 3: Correlation between human fixations and different models for SST (left) and Wikipedia (right) with respect
to word predictability in equally sized bins. Word predictability scores, were calculated with a 5-gram Kneser-Ney
language model. Respective bin limits are given on the x-axis. Samples for every other bin are displayed on the
upper x-axis.

higher alignment with human-generated explana-
tions than other large-scale pre-trained language
models (Prasad et al., 2021).

E-Z Reader is less sensitive to hard-to-predict
words and POS We compare correlations to hu-
man fixations with attention flow values for Trans-
former models in the last layer, the E-Z Reader and
the BNC baseline for different word predictabil-
ity scores computed with a 5-gram Kneser-Ney
language model (Kneser and Ney, 1995; Chelba
et al., 2013). Figure 3 shows the results on SST
and Wikipedia for equally sized bins of word pre-
dictability scores. We can see that the Transformer
models correlate better for more predictable words
on both datasets whereas the E-Z Reader is less in-
fluenced by word predictability and already shows
medium correlation on the most hard-to-predict
words (0.3 − 0.4 for both, SST and Wikipedia).
In fact, on SST, Transformers only pass the E-Z
Reader on the most predictable tokens (word pre-
dictability > 0.03).

We also compare correlations to human fixations

based on the top-6 (most tokens) Part-of-speech
(POS) tags. On SST, correlations with E-Z Reader
are very consistent across POS tags whereas atten-
tion flow shows weak correlations on proper nouns
(0.12), nouns (0.16) and verbs (0.16) as presented
in Figure 2. The BNC frequency baseline correlates
well with human fixations on adpositions (ADP)
which both assign comparably low values. Proper
nouns (PROPN) are overestimated in BNC as a
result of their infrequent occurrence.

Input reduction When comparing machines to
humans we typically regard the psychophysical
data as the gold standard. We will now take the
model perspective and test fidelity of both human
and model attention patterns in task-tuned models.
By this we aim to test how effective the exact token
ranking based on attention scores is at producing
the correct output probability. We perform such
an input reduction analysis (Feng et al., 2018) us-
ing fine-tuned BERT models for both sentiment
classification and relation extraction as the refer-
ence model and present results in Figure 4. In
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Figure 4: Results of our reduction analysis where most
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our analysis, we observe - as to be expected - that
adding tokens according to token probability (BNC
prob) performs even worse than randomly adding
tokens. From-scratch trained models (CNN and
self-attention) are most effective in selecting task-
relevant tokens, and even more so than using any
Transformer attention flow. Adding tokens based
on human attention is as effective for the senti-
ment task as the E-Z Reader. Interestingly, for the
relation extraction task, human attention vectors
provide the most effective flipping order after the
relevance-based shallow methods. All Transformer-
based flows perform comparably in both tasks. To
better understand what drives these effects we ex-
tract the fraction of POS tags for the first added
token (see Figure 4 and full results in the Appendix
Figure 5). For sentiment reading, the flipping ac-
cording to CNN relevances puts more emphasis on
adjectives (ADJ) whereas the other methods tend
to flip nouns (NOUN) first. Across the Transformer
models RoBERTa relies much less on adjectives
than any other model. In the relation extraction
task, we observe that proper nouns (PROPN) are
dominant (and adjectives play almost no role) in
all model systems which highlights the role of task
nature on the importance assignment. In addition,
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Table 1: Mean entropy over all sentences for each task
setting. Lower entropy means sparser token importance.
The maximal entropy of a uniform model is 4.09 bits.

we see that the E-Z Reader overestimates the im-
portance of punctuation, whereas proper nouns are
least dominant in comparison to the other models.

Entropy levels of Transformer flow is similar to
those in human attention Averaged sentence-
level entropy values on both datasets reveal that
BERT, RoBERTa and T5 attention flow, the E-Z
Reader and BNC obtain similar levels of sparsity
as human attention around 3.4-3.6 bits as sum-
marized in Table 1. Entropies are lower for the
shallow networks with self-attention (LRP) at 1.8-
2.2 bits and CNN (LRP) at around 2.9 bits. This
difference in sparsity levels might explain the ad-
vantage of CNN and shallow self-attention in the
input reduction analysis: Early addition of few
but very relevant words has a strong effect on the
model’s decision compared to less sparse scoring
as, e.g. in Transformers. The shallow models were
also trained from-scratch for the respective tasks
whereas all other models (including human atten-
tion) are heavily influenced by a more general mod-
eling of language which could explain attention to
be distributed more broadly over all tokens.
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Table 2: Correlations between human fixations and mod-
els on 48 duplicates appearing in the ZuCo dataset for
both natural reading (NR) and relation extraction (task-
specific reading - TSR).

Natural reading versus task-specific reading A
unique feature of the ZuCo dataset is that it con-
tains a subset of sentences that were presented to
participants both in a task-specific (relation extrac-
tion) and a natural reading setting. This allows for
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a direct comparison of how correlation strength is
influenced by the task. In Table 2 correlations of
human gaze-based attention with model attentions
are shown. The highest correlation can be observed
when comparing human attention for task-specific
and natural reading (0.72). The remaining model
correlations correspond to the ranking and corre-
lation strength observed in the main result (see
Figure 1). We observe lower correlation scores for
the task-specific reading as compared to normal
reading among attention flow, the E-Z Reader and
BNC. This suggests that these models capture the
statistics of natural reading - as is expected for a
cognitive model designed to the natural reading
paradigm - and that task-related changes in human
fixation patterns are not reflected in Transformer
attention flows. Interestingly, averaged last layer
attention heads show a reverse effect (but at much
weaker correlation strength). This might suggest
that pre-training in Transformer models induces
specificity of later layer attention heads to task-
solving instead of general natural reading patterns.

5 Related Work

Saliency modeling Early computational mod-
els of visual attention have used bottom-up ap-
proaches to model the neural circuitry represent-
ing pre-attentive selection processes from visual
input (Koch and Ullman, 1985) and later the cen-
tral idea of a saliency map was introduced (Niebur
and Koch, 1996). A central hypothesis studying
eye movements under task conditions is known as
Yarbus theorem stating that a task can be directly
decoded from fixation patterns (Yarbus, 1967)
which has found varying support (Greene et al.,
2012; Henderson et al., 2013; Borji and Itti, 2014).

More recently, extracting features from deep
pre-trained filters in combination with readout net-
works has boosted performance on the saliency
task (Kümmerer et al., 2016). This progress has
enabled modeling of more complex gaze patterns,
e.g. vision-language tasks such as image caption-
ing (Sugano and Bulling, 2016), visual question
answering (Das et al., 2016) or text-guided object
detection (Vasudevan et al., 2018).

Predicting text gaze patterns has been studied
extensively, often in the context of probabilistic
(Feng, 2006; Hara et al., 2012; Matthies and Sø-
gaard, 2013; Hahn and Keller, 2016) or token
transition models (Nilsson and Nivre, 2009; Haji-
Abolhassani and Clark, 2014; Coutrot et al., 2017).

More recently deep language features have been
used as feature extractors in modeling text saliency
(Sood et al., 2020a; Hollenstein et al., 2021) open-
ing the question of their cognitive plausibility.

Eye-tracking signals for NLP Augmenting ma-
chine learning models using human gaze informa-
tion has been shown to improve performance for
a number of different settings: Human attention
patterns as regularization during model training
have resulted in comparable or improved task per-
formance in tagging part-of-speech (Barrett and
Søgaard, 2015a,b; Barrett et al., 2018), sentence
compression (Klerke et al., 2016), detecting senti-
ment (Mishra et al., 2016, 2017) or reading com-
prehension (Malmaud et al., 2020). In these works,
general free-viewing gaze data is used without con-
sideration of the specific training task which opens
the question of task-modulation in human reading.

From natural to task-specific reading Recent
work on reading often analyses eye-tracking data
in combination with neuroimaging techniques such
as EEG (Wenzel et al., 2017) and f-MRI (Hillen
et al., 2013; Choi et al., 2014). Research questions
thereby focus either on detecting relevant parts in
text (Loboda et al., 2011; Wenzel et al., 2017) or the
difference between natural and pseudo-reading, i.e.,
text without syntax/semantics (Hillen et al., 2013)
or pseudo-words (Choi et al., 2014). To the best
of our knowledge there has not been any work on
comparing fixations between natural reading and
task-specific reading on classical NLP tasks such
as relation extraction or sentiment classification.

6 Discussion and Conclusion

In this paper, we have compared attention and rel-
evance mechanisms of a wide range of models to
human gaze patterns when solving sentiment clas-
sification on SST movie reviews and relation ex-
traction on Wikipedia articles. We generally found
that Transformer architectures are competitive with
the E-Z Reader, but only when computing atten-
tion flow scores. We generally saw weaker cor-
relations for relation extraction on Wikpedia, pre-
sumably due to simpler sentence structures and the
occurrence of polarity words. In the following, we
discuss implications of our findings on NLP and
Cognitive Science in more detail.

Lessons for NLP One implication of the above
for NLP follows from the importance of attention
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flow in our experiments: Using human gaze to regu-
larize or supervise attention weights has proven ef-
fective in previous work (§5), but we observed that
correlations with task-specific human attention in-
crease significantly by using layer-dependent atten-
tion flow compared to using raw attention weights.
This insight motivates going beyond regularizing
raw attention weights or directly injecting human
attention vectors during training, to instead opti-
mize for correlation between attention flow and
human attention. Jointly modeling language and
human gaze has recently shown to yield compet-
itive performance on paraphrase generation and
sentence compression while resulting in more task-
specific attention heads (Sood et al., 2020b). For
this study natural gaze patterns were also simulated
using the E-Z Reader.

Another potential implication concerns inter-
pretability. It remains an open problem how best to
interpret self-attention modules (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019), and whether
they provide meaningful explanations for model
predictions. Including gradient information to
explain Transformers has recently been consid-
ered to improve their interpretability (Chefer et al.,
2021b,a; Ali et al., 2022). A successful expla-
nation of a machine learning model should be
faithful, human-interpretable and practical to ap-
ply (Samek et al., 2021). Faithfulness and prac-
ticality is often evaluated using automated proce-
dures such as input reduction experiments or mea-
suring time and model complexity. By contrast,
judging human-interpretability typically requires
costly experiments in well-controlled settings and
obtaining human gold-standards for interpretability
remain difficult (Miller, 2019; Schmidt and Bieß-
mann, 2019). Using gaze data to evaluate the faith-
fulness and trustworthiness of machine learning
models is a promising approach to increase model
transparency.

Lessons for Cognitive Science Attention flow
in Transformers, especially for BERT models, cor-
relates surprisingly well with human task-specific
reading, but what does this tell us about the short-
comings of our cognitive models? We know that
word frequency and semantic relationships between
words influence word fixation times (Rayner, 1998).
In our experiments, we see relatively high correla-
tion between human fixations and the inverse word
probability baseline which raises the question to
what extent reading gaze is driven by low-level pat-

terns such as word frequency or syntactic structure
in contrast to more high-level semantic context or
wrap-up effects.

In computer vision, cognitively inspired bottom-
up models, e.g., using intensity and contrast fea-
tures, are able to explain at most half of the gaze fix-
ation information in comparison to the human gold
standard (Kümmerer et al., 2017). The robustness
of the E-Z Reader on movie reviews is likely due to
its explicit modeling of low-level properties such
as word frequency or sentence length. BERT was
recently shown to be primarily modeling higher-
order word co-occurrence statistics (Sinha et al.,
2021). We argue that while Transformers are lim-
ited, e.g., in not capturing the dependency of human
gaze on word length (Kliegl et al., 2004), cogni-
tive models seem to underestimate the role of word
co-occurrence statistics.

During reading, humans are faced with a trade-
off between the precision of reading comprehen-
sion and reading speed, by avoiding unnecessary
fixations (Hahn and Keller, 2016). This trade-off
is related to the input reduction experiments per-
formed in Section 4. Here, we observe that shallow
methods score well at being sparse and effective in
changing model output towards the correct class,
but produce only weak correlation to human read-
ing patterns when compared to layered language
models. In comparison, extracted attention flow
from pre-trained Transformer models correlates
much better with human attention, but offers less
sparse token attention. In other words, our results
show that task-specific reading is sub-optimal rel-
ative to solving tasks and heavily regularized by
natural reading patterns (see also our comparison
of task-specific and natural reading in Section 4).

Conclusion In our experiments, we first and
foremost found that Transformers, and especially
BERT models, are competitive to the E-Z Reader
in terms of explaining human attention in task-
specific reading. For this to be the case, comput-
ing attention flow scores (rather than raw attention
weights) is important. Even so, the E-Z Reader
remains better at hard-to-predict words and is less
sensitive to part of speech. While Transformers
thus have some limitations compared to the E-
Z Reader, our results indicate that cognitive models
have placed too little weight on high-level word co-
occurrence statistics. Generally, Transformers and
the E-Z Reader correlate much better with human
attention than other, shallow from-scratch trained
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sequence labeling architectures. Our input reduc-
tion experiments suggest that in a sense, both pre-
trained language models and humans have subop-
timal, i.e., less sparse, task-solving strategies, and
are heavily regularized by what is optimal in natu-
ral reading contexts.
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A Model and Optimization Details

In the following we present details for all modes
and describe the training details used for task-
tunning. Model performance over five runs is re-
ported in Table 3.

A.1 CNN
The CNN models use 300-dimensional pre-trained
GloVe_840B (Pennington et al., 2014) embeddings.
Input sentences are tokenized using the SpaCy to-
kenizer (Honnibal et al., 2020). We use 150 con-
volutional filters of filter sizes s = [3, 4, 5] with
ReLu activation, followed by a max-pooling-layer

and apply dropout of p = 0.5 of the linear clas-
sification layer during training. For training we
use a batchsize of bs = 50 and train all model
parameters using the Adam optimizer with a learn-
ing rate of lr = 1e − 4 for a maximum num-
ber of T = 20 epochs. For all model trainings,
we apply early stopping to avoid overfitting dur-
ing training and stop optimization as soon as the
validation loss begins to increase. To compute
LRP relevances we use the general formulation
of LRP propagation rules with γ = 0. for the lin-
ear readout layers (Montavon et al., 2019). We
take absolute values over resulting relevance scores
since we find they correlate best with human at-
tention in comparison to raw and rectified pro-
cessing. For propagation through the max-pooling
layer we apply the winner-take-all principle and for
convolutional layers we use the LRP-γ redistribu-
tion rule and select γ = 0.5 after a search over
γ = [0., 0.25, 0.5, 0.75, 1.0] resulting in largest
correlations to human attention.

A.2 Self-Attention model
For the multi-head self-attention model again use
300-dimensional pre-trained GloVe_840B embed-
dings and tokenized via SpaCy. The architecture
consists of a set of k = 3 self-attention heads for
the SR task and k = 8 for REL. The resulting
sentence representation is then fed into a linear
classification readout layer with γ = 0. and which
we also use for the propagation to input embed-
dings. During optimization we use lr = 1e − 4,
bs = 50 and T = 50.

A.3 Transformer Models
We use standard BERT-base/large-uncased archi-
tectures and tokenizers as provided by the hug-
gingface library (Wolf et al., 2020). For BERT-
base fine-tuning we use lr = 1e− 5 for REL and
lr = 1e− 6 for SR, bs = 32 and T = 50 for both
tasks. For BERT-large we use lr = 1e− 5 for REL
and lr = 5e− 7 for SR, bs = 16 and T = 50. For
RoBERTa and T5 we use the RoBERTa-base and
T5-base checkpoints and respective tokenizers.

A.4 E-Z Reader
We use version 10.2 of the E-Z Reader with de-
fault parameters and 1000 repetitions. Cloze scores,
i.e. word predictability scores, were therefore com-
puted using a 5-gram Kneser-Ney language model
(Kneser and Ney, 1995) as provided by the SRI
Language Modeling Toolkit (Stolcke, 2002) and
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Acc (SR) F1 (SR) Acc (REL) F1 (REL)

self-attention 69.0± 0.2 64.5± 2.2 67.5± 1.3 55.5± 2.0
CNN 71.3± 0.2 69.8± 1.7 74.0± 1.9 68.7± 4.8
BERT-base 76.0± 0.1 67.0± 3.0 78.3± 1.5 72.7± 3.3
BERT-large 76.4± 0.1 63.8± 1.3 78.9± 2.3 71.0± 2.7

Table 3: Accuracy and F1 scores after fine-tuning on the respective task dataset over five runs: sentiment reading on
SST (SR) and relation extraction on Wikipedia (REL). Samples that overlap with the ZuCo dataset were filtered out.

trained on the 1 billion token dataset (Chelba et al.,
2013). Resulting perplexity on the held-out test set
was ppl = 81.9. Then, word-based total fixation
times are computed from the E-Z Readers trace
files and averaged over all subjects.

B Spearman versus Pearson correlation
on sentence and token level

In addition to Spearman correlation over all tokens,
we also report Pearson correlation coefficients on
a sentence and token-level. Results are displayed
in Table 4. Compared to Spearman correlation
on all tokens, the ranking does hardly change for
Pearson or sentence-level correlations. Absolute
correlation coefficients are higher for Spearman
compared to Pearson and also are slightly higher
on the sentence-level as compared to the token-
level analysis. Biggest changes occur in a drop for
BNC when Spearman correlation is calculated on
all tokens for relation extraction and an increase
for self-attention (LRP) in sentiment reading. We
hypothesize that both effects can be traced back to
the level of sparsity and the corresponding ranking
for Spearman correlations. In our entropy analysis
we found that, i.e. self-attention shows a sparser
representation which was likely caused by the over-
confidence of the model, and which could explain
the higher rank-based correlation.

C Input reduction - POS tag analysis

Figure 5 shows the full distribution of POS tags
of the first tokens flipped. This extends Figure 4
where we only show the first 3 POS tags.

D Entropy analysis

We compute entropy values for different attention
and relevance scores in both task settings. To com-
pensate for different sentence lengths we perform
a stratified analysis such that every sentence length
occurs equally often in both tasks. Sentence lengths
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Figure 5: Full distribution of POS tags of most impor-
tant first flip tokens for the task of sentiment reading
(top) and relation extraction (bottom).

which merely occur in one of the two tasks, are ex-
cluded from the sampling. Maximum entropy is
reached for uniformly distributed token scores.
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SR TSR
tok sent tok sent

pearson spearman pearson spearman pearson spearman pearson spearman

BNC inv prob 0.57 0.66 0.62 0.64 0.34 0.41 0.45 0.46
CNN (LRP) 0.17 0.27 0.27 0.26 0.13 0.14 0.21 0.18
self-attention 0.36 0.48 0.43 0.54 0.27 0.49 0.44 0.61
self-attention (LRP) 0.07 0.39 0.34 0.43 0.09 0.31 0.28 0.36
BERT flow 0 0.52 0.62 0.61 0.63 0.47 0.55 0.55 0.60
BERT flow 5 0.53 0.61 0.60 0.61 0.49 0.53 0.57 0.57
BERT flow 11 0.54 0.62 0.62 0.63 0.51 0.56 0.60 0.61
fine-BERT flow 0 0.52 0.62 0.61 0.63 0.47 0.55 0.55 0.60
fine-BERT flow 5 0.53 0.61 0.59 0.61 0.50 0.54 0.59 0.59
fine-BERT flow 11 0.54 0.62 0.62 0.63 0.51 0.56 0.60 0.60
BERT-large flow 0 0.51 0.61 0.62 0.63 0.47 0.54 0.57 0.60
BERT-large flow 11 0.55 0.63 0.62 0.62 0.50 0.55 0.57 0.57
BERT-large flow 23 0.55 0.63 0.62 0.62 0.50 0.55 0.57 0.57
fine-BERT-large flow 0 0.51 0.61 0.62 0.63 0.47 0.54 0.57 0.60
fine-BERT-large flow 11 0.55 0.63 0.62 0.62 0.50 0.55 0.57 0.57
fine-BERT-large flow 23 0.55 0.63 0.62 0.62 0.50 0.55 0.57 0.57
RoBERTa flow 0 0.44 0.54 0.52 0.55 0.35 0.43 0.42 0.47
RoBERTa flow 5 0.32 0.42 0.45 0.46 0.26 0.33 0.36 0.40
RoBERTa flow 11 0.44 0.51 0.51 0.52 0.37 0.41 0.45 0.46
T5 flow 0 0.44 0.53 0.51 0.54 0.37 0.44 0.47 0.50
T5 flow 5 0.43 0.50 0.49 0.49 0.35 0.40 0.44 0.43
T5 flow 11 0.44 0.51 0.51 0.53 0.37 0.42 0.46 0.46
BERT mean 0.04 0.14 0.10 0.11 -0.03 0.11 0.02 0.09
fine-BERT mean 0.03 0.09 0.05 0.03 -0.03 0.10 0.02 0.08
BERT-large mean -0.01 0.20 0.10 0.28 -0.03 0.14 -0.01 0.14
fine-BERT-large mean -0.02 0.11 0.04 0.17 -0.09 -0.05 -0.12 -0.06
RoBERTa mean 0.22 0.22 0.26 0.21 0.08 0.10 0.14 0.10
T5 mean -0.00 0.06 -0.00 0.07 -0.02 0.10 0.02 0.19
E-Z Reader 0.64 0.65 0.69 0.67 0.46 0.51 0.56 0.56

Table 4: Full correlation analysis for sentiment reading (left) and relation extraction (right). We show Spearman and
Pearson correlation coefficients between human fixations and models. Correlation coefficients were calculated per
sentence and averaged (sen) or after concatenation of all sentences (tok)
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