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Abstract

There is mounting evidence that existing neural
network models, in particular the very popular
sequence-to-sequence architecture, struggle to
systematically generalize to unseen composi-
tions of seen components. We demonstrate that
one of the reasons hindering compositional gen-
eralization relates to representations being en-
tangled. We propose an extension to sequence-
to-sequence models which encourages disen-
tanglement by adaptively re-encoding (at each
time step) the source input. Specifically, we
condition the source representations on the
newly decoded target context which makes it
easier for the encoder to exploit specialized
information for each prediction rather than cap-
turing it all in a single forward pass. Experi-
mental results on semantic parsing and machine
translation empirically show that our proposal
delivers more disentangled representations and
better generalization. !

1 Introduction

When humans use language, they exhibit composi-
tional generalization; they are able to produce and
understand a potentially infinite number of novel
linguistic expressions by systematically combining
known atomic components (Chomsky, 2014; Mon-
tague, 1970). For example, if a person knows the
meaning of the utterance “A boy ate the cake on the
table in a house” and the verb “like”, it is natural for
them to understand the utterance “A boy likes the
cake on the table in a house” when they encounter
it for the first time (see Table 1). Humans are also
adept at recognizing novel combinations of famil-
iar syntactic structure, e.g., they would have no
trouble processing the above sentence if the prepo-
sition “beside the tree” were added to it, despite
not having previously seen the phrase “in a house
beside the tree” (see Table 1).

'Our code is available at https://github.com/
mswellhao/Dangle.

Training Set
A boy ate the cake on the table in a house.
*cake(x4); *table(x7); boy(xi) AND eat.agent(xz, Xi)
AND eat.theme(xs, Xx4) AND cake.nmod.on(x4, x7) AND
table.nmod.in(x7, X10) AND house(x1¢)
Test Set (Lexical Generalization)
A boy likes the cake on the table in a house.
*cake(x4); *table(x7); boy(xi1) AND like.agent(x2, X1)
AND like.theme(x2, x4) AND cake.nmod.on(x4, x7) AND
table.nmod.in(x7, X19) AND house(x19)
Test Set (Structural Generalization)
A boy ate the cake on the table in a house beside the tree.
*cake(x4); *table(xr7); *tree(x13); boy(x1) AND eat.agent(x2,
x1) AND eat.theme(x2, X4) AND cake.nmod.on(x4, X7)
AND table.nmod.in(x7, X19) AND house(x1p) AND
house.nmod.beside(x19, X13)

Table 1: Examples from COGS (Kim and Linzen, 2020)
showcasing lexical and structural generalization. In
lexical generalization, a familiar word (e.g., like) is at-
tested in a familiar syntactic structure but the resulting
combination has not been seen before. In structural
generalization, familiar syntactic components give rise
to novel combinations (e.g., only prepositional phrases
with nesting depth 2 have been previously seen whereas
new combinations show nestings of depth 3 or 4). All
PP modifiers are assumed to have an NP-attachment
reading and all modifications are nested rather than se-
quential. Definite descriptions are marked with * and
appear to the leftmost of the logical form.

There has been a long standing debate whether
this systematicity can be captured by connectionist
architectures (Fodor and Pylyshyn, 1988; Marcus,
2003; Lake and Baroni, 2018) and recent years
have witnessed a resurgence of interest thanks to
the tremendous success of neural networks at var-
ious natural language understanding and genera-
tion tasks (Sutskever et al., 2014; Vaswani et al.,
2017; Dong and Lapata, 2016; Jia and Liang, 2016).
Mounting evidence, however, suggests that existing
models, in particular the very popular sequence-to-
sequence architecture, struggle with compositional
generalization (Finegan-Dollak et al., 2018; Lake
and Baroni, 2018; Keysers et al., 2020; Herzig and
Berant, 2021). This failure may be due to spurious
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correlations which hinder out-of-distribution gener-
alization (Gururangan et al., 2018; Arjovsky et al.,
2019; Sagawa et al., 2020) or limited robustness to
perturbations in the input (Cheng et al., 2018).

In this paper, we identify an entanglement prob-
lem with how different semantic factors (e.g., lexi-
cal meaning and semantic relations) are represented
in neural sequence models that hurts generalization.
In theory, neural networks should represent seman-
tic factors in a disentangled way by virtue of the
principle of compositionality (Frege, 1884; Partee,
1995) which implies that semantic properties of
syntactic constituents are to a certain extent context
invariant and the semantic primitives they express
are conditionally independent.

Disentangled meaning representations ought to
preserve this conditional independence, and neural
units modeling a particular semantic factor should
be relatively invariant to changes in other factors
(Bengio et al., 2013). For example, the relation
between “table” and “house” in Table 1 and its rep-
resentation should not be affected by whether there
is a PP modifying “house”. However, in a standard
neural encoder (e.g., transformer-based) semantic
factors tend to be entangled so that changes in one
factor affect the representation of others. We fur-
ther illustrate this problem in an artificial setting
and find that a simple marking strategy enhances
the learning of disentangled representations.

Motivated by this finding, we propose an ex-
tension to sequence-to-sequence (seq2seq) models
which allows us to learn disentangled represen-
tations for compositional generalization. Specifi-
cally, at each time step of the decoding, we adap-
tively re-encode the source input by conditioning
the source representations on the newly decoded
target context. We therefore build specialized rep-
resentations which make it easier for the encoder
to exploit relevant-only information for each pre-
diction. Experiments on three benchmarks, namely
COGS (Kim and Linzen, 2020), CFQ (Keysers
et al., 2020), and CoGnition (Li et al., 2021), empir-
ically verify that our proposal leads to better gener-
alization, outperforming competitive baselines and
more specialized techniques.

2 Disentanglement in a Toy Experiment

We first shed light on the problem of entangled rep-
resentations with a toy experiment and then move
on to describe our modeling solution. For sim-
plicity, we only focus on relations as the kind of

semantic factors a model aims to represent, but the
entanglement issue could also exist in representa-
tions of other factors, such as lexical meaning.

Data Creation Letxz = [e1, 71, €., T2, e2] denote
a sequence of symbols. We want to predict the
relation between ey and €., and e. and ey, which
we denote by y = (y1,y2), with y; € Lp and
1o € Lo where L; are a set of relation labels for
y1 and Ly are a set of relation labels for y2. For
simplicity, we set ej, e., and e2 to the same sym-
bol e (i.e., e1, e., ea € {e}) whereas ; € R; and
ro € Ry denote different relation symbols, and R;
and Ry are the corresponding sets of relation can-
didates. In this toy setting, we will further assume
that different relation symbols determine different
relation labels (e.g., for the phrases “cat in house”
and “cat with house”, “in” and “with” represent two
distinct relations between “cat’” and “house”). In re-
ality, relations between words could be dependent
on broader context or not verbalized at all. We also
assume that there is a one-to-one mapping between
relation symbols and relation labels (i.e., between
L1 and Ry and Lo and R»).

We construct a training set by including exam-
ples [e1, 71, €, r2, e2] where r; is the same relation
symbol throughout while ry can be any relation
symbol in Ry (r1 € {7irain}, 72 € R2). We also
include examples [e1, 71, e.] with all relation sym-
bols from R; occurring in isolation (r; € Rj).
This way, the training set covers all primitive re-
lations, but contains only a particular type of re-
lation composition (i.e., {r¢qin} X R2). In con-
trast, the test set contains all unseen compositions
le1,71, €c, 72, e2] (.e., r1 € Ri\{Ttrain}, 2 € R2)
which will allow us to evaluate a model’s ability
to generalize. We set each relation set to include
10 relation symbols (| R1| = |Rz| =10).

Finally, we simplistically only consider the re-
lations of target word e, with its left and right
words e; and es. In reality, a model would be
expected to capture sentence-level semantics, i.e., a
word’s relation to al/l context words in a sentence
(including no relation).

Modeling For each input symbol, we sample a
vector from a Gaussian distribution A/(0, 0.22T)
and freeze it during training. We then em-
bed each example x into a sequence of vectors
[wy, wa, ...,wy] (Where n = 3 or n = 5) and
transform them into contextualized representa-
tions [h1, ha, .., hy] using a Transformer encoder
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(Vaswani et al., 2017). To predict the relation
between two symbols, we concatenate their cor-
responding representations and feed the resulting
vector to an MLP for classification.

To study how changes in relation y; affect the
prediction of y- at test time, we explore two train-
ing methods. One is joint training where a model
learns to predict both y; and y» (i.e., hy and hg
are concatenated to predict y; or h3 and hs are
concatenated to predict y2). The other method is
separate training where a model is trained to only
predict ys (i.e., only hs and hs are concatenated
to predict y2). For separate training, we basically
ignore examples [e1, 71, e.] which only include 71,
as they have no bearing on the prediction of y».

Observation With separate training, the model
learns to ignore 71, the accuracy of predicting 2
on the test set is 100%, regardless of which value
r1 takes. This indicates that random perturbation
of r alone does not lead to generalization failure.
It also follows that there is no spurious correla-
tion between r and y5. However, when the model
is trained to predict both relations (which is what
happens in realistic settings since we need to cap-
ture all possible relations) r; has a huge impact
on the prediction of y2 whose accuracy drops to
approximately 55%. Taken together, these results
suggest that the model fails to generalize to new
relation compositions due to its internal represen-
tations being entangled and as a result changes in
one relation affect the representation of others.

Why is there a wide performance gap between
joint and separate training? At test time the model
processes the same utterance (no matter whether it
is trained jointly or separately), and could in the-
ory be susceptible to both r; and 2. However, the
induced representations show fundamentally dif-
ferent behaviors, and remain invariant to r; with
separate training. A possible explanation is that
modern neural networks trained with SGD have a
learning bias towards simple functions (Shah et al.,
2020). When r; is not predictive of ys, relying
only on 75 whilst remaining invariant to r; consti-
tutes a simpler function than making use of both r;
and ry. As aresult, in separate training the model
learns to ignore extraneous information, focusing
exclusively on r3. On the contrary, in joint train-
ing the target of predicting both y; and y, forces
the hidden states (e.g., h3) to capture information
about both relations, leading to the entanglement
problem discussed above.

A Simple Solution Although separate training
presents a solution to entanglement, it is unreal-
istic for real-wold data as it would be extremely
inefficient to train separate models for each relation
(the number of relations is quadratic with respect to
sentence length). Instead, we explore a simple but
effective approach where a single model takes as
input an utterance enriched with different indicator
features for different targets. Specifically, given
utterance [e1, 71, €., T'2, €2, and assuming we wish
to predict relation y;, we add indicator feature 1
for symbols e, r1, and e, (marking the relation
and its immediate context), and O for all other sym-
bols. The model then takes as input the utterance
and relation indicators, i.e., [1,1,1,0, 0] for y; and
[0,0,1,1, 1] for ys, and learns embeddings for indi-
cators during training. It thus learns specialized rep-
resentations for each prediction rather than shared
representations for all predictions. Based on the
simplicity bias, the two representations will guide
the model towards exclusively relying on r; and 7o,
naturally disentangling different relations by en-
coding them separately. Such a model predicts ¥;
with 100% test accuracy and yo with 97%.

Discussion Fodor and Pylyshyn (1988) have ar-
gued that failure to capture systematicity is a major
deficiency of neural architectures, contrasting hu-
man learners who can readily apply known gram-
matical rules to arbitrary novel word combinations
to individually memorizing an exponential number
of sentences. However, our toy experiment shows
that neural networks are not just memorizing sen-
tences but implicitly capturing structure. With sep-
arate training or joint training enhanced with the
marking strategy, the neural model manages to re-
main robust to interference from r; and properly
represent 79 even for unseen examples, i.e., new
compositions of 7; and 7. This generalization abil-
ity implies that neural models do not need to see
all exponential compositions in order to produce
plausible representations of them. Instead, with
appropriate training and model design, they could
uncover and represent the structure underlying sys-
tematically related sentences.

3 Learning to Disentangle

While the marking strategy offers substantial ben-
efits in learning disentangled relation representa-
tions, we typically do not have access to explicit
labels indicating which words are helpful for pre-
dicting a specific relation. Nevertheless, the idea
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of learning representations specialized for differ-
ent predictions (albeit with shared parameters) is
general and could potentially alleviate the entangle-
ment problem for compositional generalization.

Let [x1,x9,...,2,] denote a source sequence.
Canonical seq2seq models like the Transformer
(Vaswani et al., 2017) first encode it into a sequence
of contextualized representations which are then
used to decode target symbols [y1, y2, ..., Ym] One
by one. The same source encodings are used to pre-
dict all target symbols, and are therefore expected
to capture all semantic factors in the input. How-
ever, these could be entangled as demonstrated in
our analysis above. To alleviate this issue, we pro-
pose to learn specialized source representations for
different predictions by adaptively re-encoding the
source input at every step of the decoding.

Specifically, at the ¢-th time step, we concate-
nate the source input with the previously decoded
target and obtain the context for the current pre-
diction C}; = [161, L2y ooy Ty Y1y oees Yt—1, [PHH
where [PH] is a placeholder (e.g., a mask token
when using a pretrained encoder). C} is then fed
to a standard encoder (e.g., the Transformer en-
coder) to obtain the contextualized representations
Hy = [ht,h ht2, s bty b, oo ht,n+t]3

Ht = fEncoder(Ct) (1)

The key difference from the encoder in stan-
dard seq2seq models is that at each time
step we adaptively re-compute source encodings
Hiy = [ht1, ..., ht ] that condition on the newly
decoded target [y1, ..., y;—1]. This way, target con-
text informs the encoder of predictions of interest at
each time step. This simple modification unburdens
the model from capturing all source information
through a forward pass of encoding. Instead, based
on the simplicity bias, the model tends to zero in
on information relevant for the current prediction,
remaining invariant to irrelevant details, thereby
improving disentanglement. One might argue that
the decoder in standard seq2seq models could also
extract specialized information for each prediction
(through the cross attention mechanism). How-
ever, it would fail to do so when working with an
entangled encoder that produces problematic rep-
resentations for out-of-distribution examples and
breaks down the decoding process.

We propose two strategies for exploiting the
target-informed encoder. Firstly, we use a mul-
tilayer perceptron (MLP) to predict y; based on the

encoder’s output, i.e., the last hidden states v ,,1¢:

P(yt|l’7 y<t) = furp (ht,n-i-t) )

Secondly, we incorporate the proposed encoder
into the standard encoder-decoder architecture: we
take source encodings H; ,, and feed them together
with the previous target [y, ..., ;1] to a standard
decoder (e.g., Transformer-based) to predict y;:

p(yt‘l‘, y<t) = fDecoder(Ht,na y<t) (3)

For complex tasks like machine translation, pre-
serving the encoder-decoder architecture is essen-
tial to achieving good performance.

We adopt the Transformer architecture to in-
stantiate the encoder and decoder, however, the
proposed method is generally applicable to any
seq2seq model. We maintain separate position en-
codings for source and target symbols (e.g., z1
and y; correspond to the same position). To dif-
ferentiate between source and target content, we
also add a source(target) type embedding to all
source(target) token embeddings. Compared to the
classical Transformer, our proposal increases run-
ning time from O(n? + m?) to O(m(n? + m?))
where n is input length and m is output length. Im-
proving the efficiency of our approach is deferred
to future work.

4 Experiments: Semantic Parsing

In this section, we present our experiments for
evaluating the proposed Disentangled seq2seq
model which we call DANGLE. We refer to the
two variants of DANGLE as DANGLE-ENC and
DANGLE-ENCDEC. We first focus on semantic
parsing benchmarks which target compositional
generalization. Our second suite of experiments
reports results on compositional generalization for
machine translation.

4.1 Datasets

Our semantic parsing experiments focus on two
benchmarks. The first one is COGS (Kim and
Linzen, 2020) which contains natural language sen-
tences paired with logical forms based on lambda
calculus (see the examples in Table 1). In addi-
tion to the standard splits of Train/Dev/Test, COGS
provides a generalization (Gen) set that covers five
types of compositional generalization: interpreting
novel combinations of primitives and grammati-
cal roles, verb argument structure alternation, and
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sensitivity to verb class, interpreting novel combi-
nations of modified phrases and grammatical roles,
generalizing phrase nesting to unseen depths.

The former three fall into lexical generalization
while the latter two require structural generaliza-
tion. Interpreting novel combinations of modified
phrases and grammatical roles involves generaliz-
ing from examples with PP modifiers within object
NPs to PP modifiers within subject NPs. The gen-
eralization of phrase nesting to unseen depths is
concerned with two types of recursive construc-
tions: nested CPs (e.g., [Mary knows that [John
knows [that Emma cooks]cp ]cp lcp) and nested
PPs (e.g., Ava saw the ball [in the bottle [on the ta-
ble]pp]pp). The training set only contains nestings
of depth 0-2, where depth O is a phrase without
nesting. The generalization set contains nestings
of strictly greater depths (3—12). The Train set in-
cludes 24,155 examples and the Gen set includes
21,000 examples.

Our second benchmark is CFQ (Keysers et al.,
2020), a large-scale dataset specifically designed
to measure compositional generalization. It con-
tains 239,357 compositional Freebase questions
paired with SPARQL queries. CFQ was automat-
ically generated from a set of rules in a way that
precisely tracks which rules (atoms) and rule com-
binations (compounds) were used to generate each
example. Using this information, the authors gen-
erate three splits with maximum compound diver-
gence (MCD) while guaranteeing a small atom di-
vergence between train and test sets. In this dataset
atoms refer to entities and relations and compounds
to combinations thereof. Large compound diver-
gence indicates the test set contains many examples
with unseen syntactic structures. We evaluate our
model on all three splits. Each split consists of
95,743/11,968/11,968 train/dev/test examples.

4.2 Comparison Models

On COGS, we trained a baseline TRANSFORMER
(Vaswani et al., 2017) with sinusoidal (absolute)
and relative position embeddings (Shaw et al.,
2018; Huang et al., 2020). We assessed the effect
of pretraining on compositional generalization, by
also fine-tuning T5-BASE (Raffel et al., 2020) on
the same dataset. We created disentangled versions
of these models adopting an encoder-only architec-
ture (i.e., +DANGLE-ENC). The pretrained version
of our model used ROBERTA (Liu et al., 2019).2

’Note that we use T5-BASE instead of ROBERTA as our
pretrained baseline on COGS because in initial experiments

We also compared with two models specifi-
cally designed for compositional generalization on
COGS. The first one is TREE-MAML (Conklin
et al., 2021), a meta-learning approach whose ob-
jective directly optimizes for out-of-distribution
generalization. Their best performing model uses
tree kernel similarity to construct meta-train and
meta-test task pairs. The second approach is
LEXLSTM (Akyurek and Andreas, 2021), an
LSTM-based seq2seq model whose decoder is aug-
mented with a lexical translation mechanism that
generalizes existing copy mechanisms to incorpo-
rate learned, decontextualized, token-level trans-
lation rules. The lexical translation module is in-
tended to disentangle lexical phenomena from syn-
tactic ones.

Furrer et al. (2020) showed that pretrained
seq2seq models are key to achieving good per-
formance on CFQ. We compared against their
T5-11B-MOD model which obtained best results
among various pretrained models. This is es-
sentially a T5 model with 11B parameters fine-
tuned on CFQ with intermediate representations
(i.e., SPARQL queries are simplified to be struc-
turally more aligned to the input for training
and then post-processed to obtain the original
valid SPARQL at inference time). We also
built our model on top of ROBERTA due to
the effectiveness of pre-training on this dataset
(ROBERTA+DANGLE-ENC), again adopting an
encoder-only architecture. To tease apart the ef-
fect of pretraining and the proposed approach, we
also implemented a baseline that makes use of the
ROBERTA-BASE model as the encoder and a vanilla
Transformer decoder. The Transformer decoder
was initialized randomly and trained from scratch.
Finally, we compared against HPD (Guo et al.,
2020), a hierarchical poset decoding architecture
which consists of three components: sketch predic-
tion, primitive prediction, and traversal path predic-
tion. This model is highly optimized for the CFQ
dataset and achieves competitive performance.

We implemented comparison models and DAN-
GLE with fairseq (Ott et al., 2019); for T5-BASE
we used HuggingFace Transformers (Wolf et al.,
2020). We provide details on model configuration,
and various experimental settings in the Appendix.

we found that having a pretrained decoder is critical for good
performance, possibly due to the relatively small size of COGS
and large vocabulary which includes many rare words.
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2 3 4

Model Cp PP | CP PP | CP PP

34 89 | 12 66 | 0.8 55
114 57 |103 88 |143 8.6
00 00|00 06|01 25
13.8 13.5 |18.2 19.4 (247 319

TRANSFORMER (abs)
+DANGLE-ENC

TRANSFORMER (rel)
+DANGLE-ENC

CPS PP Model MCD1 MCD2 MCD3 Mean
31 82 T5-11B-MOD 616 313 333 421
127 13.4 HPD 72.0 66.1 639 67.3
14 46 ROBERTA 60.6 33.6 360 434
272 443 +DANGLE-ENC | 78.3 59.5 604 66.1

Table 2: Exact-match accuracy for CP and PP recursion on differ-
ent splits of COGS (recursion depth with [2 — 5] range).

Model OSM CP PP Overall
TREE-MAML 0.0 00 0.0 66.7
LEXLSTM 00 00 13 821
TRANSFORMER (abs) 00 34 89 85.5

+DANGLE-ENC 00 114 57 859
TRANSFORMER (rel) 00 00 0.0 833
+DANGLE-ENC 0.0 13.8 13,5 854
T5-BASE 0.0 12.5 18.0 859
ROBERTA + DANGLE-ENC 0.0 24.6 347 87.6

Table 4: Exact-match accuracy on COGS by type of
structural generalization and overall. OSM refers to gen-
eralizing from object modifier PPs to subject modifier
PPs; CP and PP are recursion depth generalization for
sentential complements and prepositional phrases.

4.3 Results

Table 4 shows our results on COGS broken down
by type of structural generalization and overall. All
models achieve 0 accuracy on generalizing from
PP object modifiers to PP subject modifiers. We
find this is due to a predicate order bias. In all
training examples, “agent” or “theme” come before
preposition predicates like “in”, so the models learn
this spurious correlation and cannot generalize to
cases where the preposition precedes the predicate.

Interestingly, a vanilla TRANSFORMER out-
performs more complex approaches like TREE-
MAML and LEXLSTM. We conjecture the large
discrepancy is mostly due to our use of Glove em-
beddings, which comparison systems do not use.
Pretraining in general substantially benefits lexi-
cal generalization, our TRANSFORMER and T5-
BASE models achieve nearly perfect accuracy on
all such cases in COGS. An intuitive explanation
is that pretrained embeddings effectively capture
common syntactic roles for tokens of the same
type (e.g., “cat” and “dog”) and facilitate the gen-
eralization of the same decoding strategy to all of
them. DANGLE-ENC significantly improves gen-
eralization performance on CP and PP recursion
when combined with our base TRANSFORMER and
ROBERTA.

To further show the potential of our proposal, we
evaluated TRANSFORMER+DANGLE-ENC on addi-

Table 3: Exact-match accuracy on CFQ, Maxi-
mum Compound divergence (MCD) splits.

tional COGS splits. Table 2 shows how model
performance changes with exposure to progres-
sively larger recursion depths. Given recursion
depth n, we created a split by moving all examples
with depth < n from Gen to Train set. As can be
seen, TRANSFORMER+DANGLE-ENC, especially
the variant with relative embeddings, is continu-
ously improving with exposure to additional train-
ing examples. In contrast, vanilla TRANSFORMER
does not seem to benefit from additional examples,
even when relative position encodings are used.
We can also explain why adding more recursion
in training boosts generalization performance. In
the original split, many nouns never occur in ex-
amples with recursion depth 2, which could tempt
the model to exploit this kind of dataset bias for
predictions. In contrast, seeing words in different
contexts (e.g., different nesting depth) effectively
reduces the possibility of learning these spurious
correlations and therefore improves compositional
generalization.

CFQ results are shown in Table 3.
ROBERTA+DANGLE-ENC substantially boosts the
performance of ROBERTA-BASE, and is in fact
superior to T5-11B-M0OD. This result highlights
the limitations of pretraining as a solution to com-
positional generalization underscoring the benefits
of our approach. ROBERTA+DANGLE-ENC is
comparable to HPD which is a special-purpose
architecture highly optimized for the CFQ dataset.
On the contrary, DANGLE is generally applicable
to any seq2seq task including machine translation,
as we will show in Section 5.

4.4 Analysis

As discussed in Section 2, we hypothesize that
a neural model’s inability to perform composi-
tional generalization partly arises from its inter-
nal representations being entangled. To verify
this, we visualize the hidden representations for
a TRANSFORMER model with and without DAN-
GLE. Specifically, we train both models on the
4th split of COGS (i.e., data with maximum PP
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Figure 1: t-SNE visualization of hidden states corresponding to predicates “in”,

LR T

on”, and “beside” on training

examples with PP recursion depth 4 and test examples with PP recursion depth 5. Different colors denote different
recursion contexts and different shape of markers correspond to different predicates.

recursion depth 4) and test on examples with PP
recursion depth 5. Then, we extract the hidden
states before the softmax layer used to predict the
preposition predicates “in”, “beside”, and “on” and
use t-SNE (van der Maaten and Hinton, 2008) to
visualize them. Ideally, the representations of these
prepositions should be invariant to the contexts ac-
companying them so that their prediction is not
influenced by distribution shifts (e.g., contextual
changes from PP recursion 4 to PP recursion 5).

The visualization is shown in Figure 1. Differ-
ent colors correspond to different recursion depths
while different shape of markers denote different
prepositions (e.g., for a training example like “NP
in NP in NP in NP in NP”, the hidden states corre-
sponding to the four “in” prepositions have the
same marker but different colors). In training,
TRANSFORMER’s hidden states within the same
preposition scatter more widely compared to those
of DANGLE, which implies that its internal rep-
resentations conflate information about a preposi-
tion’s context with itself. In other words, TRANS-
FORMER’s hidden states capture more context vari-
ations in addition to variations corresponding to
the predicate of interest. This in turn causes catas-
trophic breakdown on the test examples, where
TRANSFORMER’s hidden states cannot discrimi-
nate context from predicate information at all. This
is in stark contrast with DANGLE, where informa-
tion about predicates is preserved even in the pres-
ence of unseen contexts.

We further design a metric to quantify entangle-
ment in neural representations drawing inspiration
from Kim and Mnih (2018). Their metric assumes
the ground-truth factors of a dataset are given, and
is applied to images with one factor fixed and all
other factors varying randomly; if the representa-

COGS CFQ
Model IntraV InterV | R |IntraV InterV | R
TRANSFORMER 0.24 0.64 037| 0.25 1.13 0.22
+DANGLE-ENC| 0.19 0.73 0.26| 0.01 0.52 0.01
TRANSFORMER 0.28 0.44 0.63| 0.32 1.06 0.30
+DANGLE-ENC| 0.23 0.54 0.42| 0.04 0.48 0.08

Table 5: Entanglement for TRANSFORMER and our ap-
proach (+DANGLE-ENC) on COGS and CFQ (for which
both models employ a ROBERTA encoder). Results for
training/test set in first/second block. Intra/InterV de-
notes intra/inter-class variance and R is their ratio.

tion is perfectly disentangled, the dimension with
the lowest variance should correspond to the fixed
factor. Since in our setting we do not have access to
ground-truth factors, we assume the variable-length
target token sequence is the factor of interest. We
also do not need to perform a mapping between
neurons and factors, because their correspondence
is hard-coded in seq2seq models (e.g., a predicate
and the hidden units used to predict it).

For each predicate y occurring in different ex-
amples e, we extract all corresponding represen-
tations {vc,}, i.e., the last layer of the hidden
states used to predict y, and compute the empir-
ical variance Vare(véy) for each y; we compute
intra-class variance as the average of all predicates’
variances weighted by their respective frequency:

d
1 .
Vintra = > By Vare(vi,) )

=1

where d is the dimension of hidden states and E is
the weighted average of their variances. Intuitively,
if the representations are perfectly disentangled,
they should remain invariant to context changes
and intra-class variance should be zero.

We also measure inter-class variance by taking
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Training Set Model 1 ErrRpygt | ErrfRager | T BLEU
en: That winter, Taylor barely moved from the fire. TRANSFORMER (abs) 204 63.8 594
zh: AREAR, LA WK KT - +DANGLE-ENCDEC 24.4 55.5 59.7
Test Set TRANSFORMER (rel) 30.5 63.8 59.4
en: That winter, the dog he liked barely moved from the fire. +DANGLE-ENCDEC 22.8 50.6 60.6

zh: BPELR, MENEIIE JLTHE KO B Eh -

Table 6: A training and test example from the CoGnition
dataset. The test example is constructed by embedding
the synthesized novel compound “the dog he liked” into
the template extracted from the training example “That
winter, [NP] barely moved from the fire.”.

the mean of v., for each predicate y and then
computing the variance of the means:

d
1 .
V;nter = gi VaI'yEe(V;y> (5)
i=1

Inter-class variance, on the contrary, should be rel-
atively large for these hidden states, because they
are intended to capture class variations. The ra-
tio of intra- and inter-class variance collectively
measures entanglement.

As shown in Table 5, representations in DANGLE
consistently obtain lower intra- to inter-class ratios
than baseline models on both COGS and CFQ on
both training and test sets.

5 Experiments: Machine Translation

5.1 Dataset

We also applied our approach to CoGnition (Li
et al., 2021), a recently released realistic com-
positional generalization dataset targeting ma-
chine translation. This benchmark includes 216K
English-Chinese sentence pairs; source sentences
were taken from the Story Cloze Test and ROCSto-
ries Corpora (Mostafazadeh et al., 2016, 2017) and
target sentences were constructed by post-editing
the output of a machine translation engine. It also
contains a synthetic test set to quantify and analyze
compositional generalization of neural MT models.
This test set includes 10,800 sentence pairs, which
were constructed by embedding synthesized novel
compounds into training sentence templates. Ta-
ble 6 shows an example. Each newly constructed
compound is combined with 5 different sentence
templates, so that every compound can be evaluated
under 5 different contexts.

5.2 Comparison Models

We compared our model to a TRANSFORMER trans-
lation model following the same setting and con-

Table 7: BLEU and compound translation error rates
(ErrR) on the compositional generalization test set. Sub-
script Inst denotes instance-wise error rate while Aggr
denotes aggregate error over 5 contexts. All results are
averaged over 3 random seeds.

figuration of Li et al. (2021). Again, we experi-
mented with sinusoidal (absolute) and relative posi-
tion embeddings. We adopted the encoder-decoder
architecture variant of our approach (i.e., DANGLE-
ENCDEC), as the encoder-only architecture per-
formed poorly possibly due to the complexity of
the machine translation task. The number of pa-
rameters was kept approximately identical to the
TRANSFORMER baseline for a fair comparison. All
models were implemented using fairseq (Ott et al.,
2019). More modeling details are provided in the
Appendix.

5.3 Results

As shown in Table 7, +DANGLE-ENCDEC im-
proves over the base TRANSFORMER model by 1.2
BLEU points when relative position embeddings
are taken into account. In addition to BLUE, Li
et al. (2021) evaluate compositional generaliza-
tion using novel compound translation error rate
which is computed over instances and aggregated
over contexts. +DANGLE-ENCDEC variants sig-
nificantly reduce novel compound translation er-
rors both across instances and on aggregate by
as much as 10 absolute accuracy points (see first
two column in Table 7). Across metrics, our re-
sults show that + DANGLE-ENCDEC variants handle
compositional generalization better than the vanilla.
TRANSFORMER model.

5.4 Analysis

Two natural questions emerge given the substantial
gain achieved by DANGLE on the compositional
generalization (CG) test set: (a) Is this gain related
to our treatment of the entanglement problem? and
(b) How does entanglement manifest itself in ma-
chine translation? We attempt to answer these ques-
tions with an example.

In the CG test set, five new utterances are con-
structed by embedding the novel compound "be-
hind the small doctor on the floor" into five sen-

4263



tence templates. In the training set, the phrases “be-
hind the [ADJ] [NOUN]” and “the [ADJ] [NOUN]
on the floor” appear frequently, but the phrase
“behind the [ADJ] [NOUN] the [ADJ] [NOUN]J”
is very rare. This poses a serious challenge
for the baseline encoder-decoder model, which
mistakenly translates the compound phrase into
MR S5 TH B/ NEAE (the small doctor behind the
floor), or Hi#R - H)/NEA (the small doctor on
the floor), or altogether ignores the translation of
some content words like H#R/5 T (behind the
floor). It seems the baseline model cannot simul-
taneously represent the relation between “behind”
and “the small doctor” and the relation between
“the small doctor” and “the floor”, even though
the two are conditionally independent. In con-
trast, DANGLE generates the correct translation
HodRk b #)/NE A2 S TA in all five contexts. We be-
lieve this is due to the proposed adaptive encoding
mechanism and its ability to decompose the rep-
resentation problem of an unfamiliar compound
phrase into sub-problems of familiar phrases (i.e,
“behind the small doctor” and “the small doctor on
the floor”).

6 Related Work

The realization that neural sequence models strug-
gle in settings requiring compositional generaliza-
tion has led to numerous research efforts aiming to
understand why this happens and how to prevent
it. One line of research tries to improve compo-
sitional generalization by adopting a more con-
ventional grammar-based approach (Herzig and
Berant, 2021), incorporating a lexicon or lexicon-
style alignments into sequence models (Akyurek
and Andreas, 2021; Zheng and Lapata, 2021), and
augmenting the standard training objective with
attention supervision losses (Oren et al., 2020; Yin
et al., 2021). Other work resorts to data augmen-
tation strategies as a way of injecting a composi-
tional inductive bias into neural models (Jia and
Liang, 2016; Akyiirek et al., 2021; Andreas, 2020)
and meta-learning to directly optimize for out-of-
distribution generalization (Conklin et al., 2021).
There are also several approaches which explore
the benefits of large-scale pre-trained language
models (Oren et al., 2020; Furrer et al., 2020).

In this work we identify the learning of repre-
sentations which are not disentangled as one of the
reasons why neural sequence models fail to gener-
alize compositionally. Disentanglement, i.e., the

ability to uncover explanatory factors from data, is
often cited as a key property of good representa-
tions (Bengio et al., 2013). For example, a model
trained on 3D objects might learn factors such as
object identity, position, scale, lighting, or colour.
Several types of variational autoencoders (Kingma
and Welling, 2014) have been proposed for the un-
supervised learning of disentangled representations
in images (Higgins et al., 2017; Kim and Mnih,
2018; Chen et al., 2018). However, some of the
underlying assumptions of these models have come
under scrutiny recently (Locatello et al., 2019).

Disentanglement for linguistic representations
remains under-explored, and has mostly focused on
separating the style of text from its content (John
et al., 2019; Cheng et al., 2020). In the context of
sentence-level semantics, disentangled representa-
tions should be able to discriminate among lexical
meanings and semantic relations between words.
We highlight the entanglement problem in neural
sequence models when trained with explicit fac-
tor supervision which, however, does not cover
the entire exponential space of compositions for
different factors. Instead of encouraging disentan-
glement with some regularization (Higgins et al.,
2017; Kim and Mnih, 2018), we propose a mod-
ification to sequence-to-sequence models which
achieves this by re-encoding the source based on
newly decoded target context. It may be counter-
intuitive that we are disentangling by conditioning
on more information, but it is feasible thanks to the
inherent simplicity bias in neural models.

7 Conclusions

In this paper we proposed an extension to sequence-
to-sequence models which allows us to learn dis-
entangled representations for compositional gener-
alization. We have argued that taking into account
the target context makes it easier for the encoder
to exploit specialized information for improving its
predictions. Experiments on semantic parsing and
machine translation have shown that our proposal
improves compositional generalization without any
model, dataset, or task specific modification.
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A Model Configuration: Semantic
Parsing Experiments

In these sections, we describe the configuration of
the models evaluated in the experiments of Sec-
tions 4 and 5, respectively.

On COGS, the small in-distribution development
(Dev) set makes model selection extremely diffi-
cult and non-reproducible. We follow Conklin et al.
(2021) and sample a small subset from the gener-
alization (Gen) set denoted as ‘Gen-Dev’ for tun-
ing hyper-parameters. Best hyper-parameters were
used to rerun the model with 5 different random
seeds for reporting final results on the Gen set. For
the baseline TRANSFORMER, the layer number of
encoder and decoders are both 2. The embedding
dimension is 300. The feedforward embedding di-
mension is 512. For TRANSFORMER+DANGLE, to
maintain approximately identical model size with
the baseline, we used the same embedding dimen-
sion and set the number of the encoding layers to 4.
For both models, we initialized embeddings (on the
both source and target side) with Glove (Penning-
ton et al., 2014).

On COGS, for the ROBERTA+DANGLE model,
we share the target vocabulary and embedding ma-
trix with the source. On CFQ, we use a separate
target vocabulary; the target embedding matrix
is randomly initialized and learned from scratch.
ROBERTA-BASE on CFQ is combined with a Trans-
former decoder that has 2 decoder layers with em-
bedding dimension 256 and feedforward embed-
ding dimension 512. All hyper-parameters are cho-
sen based on validation performance. On CFQ, for
both ROBERTA-BASE and ROBERTA+DANGLE, re-
sults are averaged over 3 randoms seeds.
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B Model Configuration: Machine
Translation Experiments

We followed the same setting of Li et al. (2021)
and adopted a TRANSFORMER translation model
consisting of a 6-layer encoder and a 6-layer de-
coder with hidden size 512. Each training batch
includes 8,191 tokens at maximum. This model
was trained for 100,000 steps and we chose the
best checkpoint on the validation set for evaluation.
Again, we experimented with sinusoidal (absolute)
and relative position embeddings.

We used the same hyperparameters as the base-
line model except for the number of layers which
we tuned on the validation set; for relative posi-
tion embeddings, the encoder has 4 vanilla source-
only Transformer encoder layers on top of 4 target-
informed Transformer encoder layers (i.e., 8 en-
coder layers in all) and the decoder has 4 Trans-
former decoder layers; for absolute position embed-
dings, the encoder has 4 vanilla source-only Trans-
former encoder layers on top of 2 target-informed
Transformer encoder layers and the decoder has 6
Transformer decoder layers. For a fair comparison,
we also experimented with 8 encoder layers and
4 decoder layers for the baseline TRANSFORMER,
and found that it performs similarly to the standard
6-layer architecture.
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