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Abstract

Graph neural networks have triggered a resur-
gence of graph-based text classification meth-
ods, defining today’s state of the art. We show
that a wide multi-layer perceptron (MLP) us-
ing a Bag-of-Words (BoW) outperforms the re-
cent graph-based models TextGCN and Hete-
GCN in an inductive text classification set-
ting and is comparable with HyperGAT. More-
over, we fine-tune a sequence-based BERT and
a lightweight DistilBERT model, which both
outperform all state-of-the-art models. These
results question the importance of synthetic
graphs used in modern text classifiers. In
terms of efficiency, DistilBERT is still twice
as large as our BoW-based wide MLP, while
graph-based models like TextGCN require set-
ting up an O(N2) graph, where N is the
vocabulary plus corpus size. Finally, since
Transformers need to compute O(L2) atten-
tion weights with sequence length L, the MLP
models show higher training and inference
speeds on datasets with long sequences.

1 Introduction

Text categorization is the task of assigning topical
categories to text units such as documents, social
media postings, or news articles. Research on text
categorization is a very active field as just the sheer
amount of new methods in recent surveys shows
(Bayer et al., 2021; Li et al., 2020; Zhou et al.,
2020; Kowsari et al., 2019; Kadhim, 2019).

There are approaches based on a Bag of Words
(BoW) that perform text categorization purely
on the basis of a multiset of tokens. Among
them are Deep Averaging Networks (DAN) (Iyyer
et al., 2015), a deep Multi-Layer Perceptron
(MLP) model with n layers that relies on averag-
ing the BoW, Simple Word Embedding Models
(SWEM) (Shen et al., 2018) that explores different
pooling strategies for pretrained word embeddings,
and fastText (Bojanowski et al., 2017), which uses
a linear layer on top of pretrained word embed-

dings. These models count the occurrence of all
tokens in the input sequence, while disregarding
word position and order, and then rely on word em-
beddings and fully connected feedforward layer(s).
We call these BoW-based models.

Among the most popular recent methods for
text categorization are graph-based models such
as TextGCN (Yao et al., 2019) that first induce a
synthetic word-document co-occurence graph over
the corpus and subsequently apply a graph neural
network (GNN) to perform the classification task.
Besides TextGCN, there are follow-up works like
HeteGCN (Ragesh et al., 2021), TensorGCN (Liu
et al., 2020), and HyperGAT (Ding et al., 2020),
which we collectively call graph-based models.

Finally, there is the well-known Trans-
former (Vaswani et al., 2017) universe with models
such as BERT (Devlin et al., 2019) and its size-
reduced variants such as DistilBERT (Sanh et al.,
2019). Here, the input is a (fixed-length) sequence
of tokens, which is then fed into multiple layers of
self-attention. Lightweight versions such as Distil-
BERT and others (Tay et al., 2020; Fournier et al.,
2021) use less parameters but operate on the same
type of input. Together with recurrent models such
as LSTMs, we call these sequence-based models.

In this paper, we hypothesize that text catego-
rization can be very well conducted by simple but
effective BoW-based models. We investigate this
research question in three steps: First, we conduct
an in-depth analysis of the literature. We review
the key research in the field of text categorization.
From this analysis, we derive the different families
of methods, the established benchmark datasets,
and identify the top performing methods. We de-
cide for which models we report numbers from the
literature and which models we run on our own.
Overall, we compare 16 different methods from
the families of BoW-based models (8 methods),
sequence-based models (3 methods), and graph-
based models (5 methods). We run our own experi-
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ments for 7 of these methods on 5 text categoriza-
tion datasets, while we report the results from the
literature for the remaining methods.

The result is surprising: Our own BoW-based
MLP, called the WideMLP, with only one wide hid-
den layer, outperforms many of the recent graph-
based models for inductive text categorization (Yao
et al., 2019; Liu et al., 2020; Ragesh et al., 2021).
Moreover, we did not find any reported scores
for BERT-based methods from the sequence-based
family. Thus, we fine-tuned our own BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2019).
These models set a new state of the art. On a meta-
level, our study shows that MLPs have largely been
ignored as competitor methods in experiments. It
seems as if MLPs have been forgotten as baseline
in the literature, which instead is focusing mostly
on other advanced Deep Learning architectures.
Considering strong baselines is, however, an impor-
tant means to argue about true scientific advance-
ment (Shen et al., 2018; Dacrema et al., 2019).
Simple models are also often preferred in industry
due to lower operational and maintenance costs.

Below, we introduce our methodology and re-
sults from the literature study. Subsequently, we in-
troduce the families of models in Section 3. There-
after, we describe the experimental procedure in
Section 4. We present the results of our exper-
iments in Section 5 and discuss our findings in
Section 6, before we conclude.

2 Literature on Text Categorization

Methodology In a first step, we have analyzed re-
cent surveys on text categorization and comparison
studies (Minaee et al., 2021; Bayer et al., 2021; Li
et al., 2020; Zhou et al., 2020; Kowsari et al., 2019;
Kadhim, 2019; Galke et al., 2017; Zhang et al.,
2016). These cover the range from shallow to deep
classification models. Second, we have screened
for literature in key NLP and AI venues. Finally,
we have complemented our search by checking re-
sults and papers on paperswithcode.com. On the
basis of this input, we have determined three fam-
ilies of methods and benchmark datasets (see Ta-
ble 2). We focus our analysis on identifying models
per family showing strong performance and select
the methods to include in our study. For all mod-
els, we have verified that the same train-test split
is used. We check whether modified versions of
the datasets have been used (e. g., fewer classes),
to avoid bias and wrongfully giving advantages.

BoW-based Models Classical machine learning
models that operate on a BoW-based input are ex-
tensively discussed in two surveys (Kowsari et al.,
2019; Kadhim, 2019) and other comparison stud-
ies (Galke et al., 2017). Iyyer et al. (2015) proposed
DAN, which combine word embeddings and deep
feedforward networks. It is an MLP with 1-6 hid-
den layers, non-linear activation, dropout, and Ada-
Grad as optimization method. The results suggest
to use pretrained embeddings such as GloVe (Pen-
nington et al., 2014) over a randomly initialized
neural bag of-words (Kalchbrenner et al., 2014) as
input. In fastText (Bojanowski et al., 2017; Joulin
et al., 2017) a linear layer on top of pretrained em-
beddings is used for classification. Furthermore,
Shen et al. (2018) explore embedding pooling vari-
ants and find that SWEM can rival approaches
based on recurrent (RNN) and convolutional neural
networks (CNN). We consider fastText, SWEM,
and a DAN-like deeper MLP in our comparison.

Note that those approaches that rely on logistic
regression on top of pretrained word embeddings,
e. g., fastText, share a similar architecture as an
MLP with one hidden layer. However, the standard
training protocol involves pretraining the word em-
bedding on large amounts of unlabeled text and
then freezing the word embeddings while training
the logistic regression (Mikolov et al., 2013).

Graph-based Models Using graphs induced
from text for the task of text categorization has
a long history in the community. An early work
is the term co-occurrence graph of the KeyGraph
algorithm (Ohsawa et al., 1998). The graph is split
into segments, representing the key concepts in the
document. Co-occurence graphs have also been
used for automatic keyword extraction such as in
RAKE (Rose et al., 2010) and can be also used for
classification (Zhang et al., 2021).

Modern approaches exploit this idea in combi-
nation with graph neural networks (GNN) (Hamil-
ton, 2020). Examples of GNN-based methods op-
erating on a word-document co-occurence graph
are TextGCN (Yao et al., 2019) and its succes-
sor TensorGCN (Liu et al., 2020) as well as Hete-
GCN (Ragesh et al., 2021), HyperGAT (Ding et al.,
2020), and DADGNN (Liu et al., 2020). We briefly
discuss these models: In TextGCN, the authors
set up a graph based on word-word connections
given by window-based pointwise mutual informa-
tion and word-document TF-IDF scores. They use
a one-hot encoding as node features and apply a
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two-layer graph convolutional network (Kipf and
Welling, 2017) on the graph to carry out the node
classification task. HeteGCN combines ideas from
Predictive Text Embedding (Tang et al., 2015) and
TextGCN and split the adjacency matrix into its
word-document and word-word sub-matrices and
fuse the different layers’ representations when re-
quired. TensorGCN uses multiple ways of convert-
ing text data into graph data including a semantic
graph created with an LSTM, a syntactic graph cre-
ated by dependency parsing, and a sequential graph
based on word co-occurrence. HyperGAT extended
the idea of text-induced graphs for text classifica-
tion to hypergraphs. The model uses graph atten-
tion and two kinds of hyperedges. Sequential hyper-
edges represent the relation between sentences and
their words. Semantic hyperedges for word-word
connections are derived from topic models (Blei
et al., 2001). Finally, DADGNN is a graph-based
approach that uses attention diffusion and decou-
pling techniques to tackle oversmoothing of the
GNN and to be able to stack more layers.

In TextGCN’s original transductive formulation,
the entire graph including the test set needs to be
known for training. This may be prohibitive in prac-
tical applications as each batch of new documents
would require retraining the model. When these
methods are adapted for inductive learning, where
the test set is unseen, they achieve notably lower
scores (Ragesh et al., 2021). GNNs for text classifi-
cation use corpus statistics, e. g., pointwise mutual
information (PMI), to connect related words in a
graph (Yao et al., 2019). When these were omitted,
the GNNs would collapse to bag-of-words MLPs.
Thus, GNNs have access to more information than
BoW-MLPs. GloVe (Pennington et al., 2014) also
captures PMI corpus statistics, which is why we
include an MLP on GloVe input representations.

Sequence models: RNN and CNN Recurrent
neural networks (RNN) are a natural choice for any
NLP task. However, it turned out to be challeng-
ing to find numbers reported on text categoriza-
tion in the literature that can be used as references.
The bidirectional LSTM with two-dimensional max
pooling BLSTM-2DCNN (Zhou et al., 2016) has
been applied on a stripped-down to 4 classes ver-
sion of the 20ng dataset. Thus, the high score of
96.5 reported for 4ng cannot be compared with
papers applied on the full 20ng dataset. Also Text-
RCNN (Lai et al., 2015), a model combining re-
currence and convolution uses only the 4 major

categories in the 20ng dataset. The results of Text-
RCNN are identical with BLSTM-2DCNN. For the
MR dataset, BLSTM-2DCNN provides no infor-
mation on the specific split of the dataset. RNN-
Capsule (Wang et al., 2018) is a sentiment analysis
method reaching an accuracy of 83.8 on the MR
dataset, but with a different train-test split. Lyu and
Liu (2020) combine a 2D-CNN with bidirectional
RNN. Another work applying a combination of a
convolutional layer and an LSTM layer is by Wang
et al. (2019b). The authors experiment with five
English and two Chinese datasets, which are not
in the set of representative datasets we identified.
The authors report that their approach outperforms
existing models like fastText on two of the five
English datasets and both Chinese datasets.

Sequence models: Transformers Surprisingly,
only few works consider Transformer models
for text categorization. A recent work shows
that BERT outperforms classic TF-IDF BoW ap-
proaches on English, Chinese, and Portuguese
text classification datasets (González-Carvajal and
Garrido-Merchán, 2020). We have not found any
results of transformer-based models reported on
those text categorization datasets that are com-
monly used in the graph-based approaches.

Therefore, we fine-tune BERT (Devlin et al.,
2019) and DistilBERT (Sanh et al., 2019) on those
datasets ourselves. BERT is a large pretrained lan-
guage model on the basis of Transformers. Dis-
tilBERT (Sanh et al., 2019) is a distilled version
of BERT with 40% reduced parameters while re-
taining 97% of BERT’s language understanding
capabilities. TinyBERT (Jiao et al., 2020) and Mo-
bileBERT (Sun et al., 2020) would be similarly
suitable alternatives, among others. We chose Dis-
tilBERT because it can be fine-tuned independently
from the BERT teacher. Its inference times are 60%
faster than BERT, which makes it more likely to be
reusable by labs with limited resources.

Summary From our literature survey, we see that
all recent methods are based on graphs. BoW-based
methods are hardly found in experiments, while,
likewise surprisingly, Transformer-based sequence
models are extremely scarce in the literature on
topical text categorization. The recent surveys on
text categorization include both classical and Deep
Learning models, but none considered a simple
MLP except for the inclusion of DAN (Iyyer et al.,
2015) in Li et al. (2020).
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Model Synthetic Graph Position-Aware Arbitrary Length Inductive

Bag-of-Words No No Yes Yes
Graph: TextGCN Yes No Yes No
Graph: TensorGCN Yes Yes Yes No
Graph: HeteGCN/HyperGAT Yes No Yes Yes
Sequence: RNN/CNN No Yes Yes Yes
Sequence: BERT/DistilBERT No Yes No Yes

Table 1: Properties of text categorization approaches. Graph-based models that rely on having access to unlabeled
test documents such as TextGCN and TensorGCN are not capable of inductive learning without modifications.

3 Models for Text Categorization

We formally introduce the three families of mod-
els for text categorization, namely the BoW-based,
graph-based, and sequence-based models. Table 1
summarizes the key properties of the approaches:
whether they require a synthetic graph, whether
word position is reflected in the model, whether
the model can deal with arbitrary length text, and
whether the model is capable of inductive learning.

3.1 BoW-Based Text Categorization

Under pure BoW-based text categorization, we de-
note approaches that are not order-aware and op-
erate only on the multiset of words from the in-
put document. Given paired training examples
(x, y) ∈ D, each consisting of a bag-of-words
x ∈ Rnvocab and a class label y ∈ Y, the goal
is to learn a generalizable function ŷ = f

(BoW)
θ (x)

with parameters θ such that argmax(ŷ) preferably
equals the true label y for input x.

As BoW-based model, we consider a one hidden
layer WideMLP (i. e., two layers in total). We ex-
periment with pure BoW, TF-IDF weighted, and
averaged GloVe input representations. We also use
a two hidden layers WideMLP-2. We list the num-
bers for fastText, SWEM, and logistic regression
from Ding et al. (2020) in our comparison.

3.2 Graph-Based Text Categorization

Graph-based text categorization approaches first
set up a synthetic graph on the basis of the text
corpus D in the form of an adjacency matrix
Â := make-graph(D). For instance, in TextGCN
the graph is set up in two parts: word-word connec-
tions are modeled by pointwise mutual information
and word-document edges resemble that the word
occurs in the document. Then, a parameterized
function f (graph)θ (X, Â) is learned that uses the
graph as input, where X are the node features.
The graph is composed of word and document
nodes, each receiving its own embedding (by set-

ting X = I). In inductive learning, however, there
is no embedding of the test documents. Note that
the graph-based approaches from the current liter-
ature such as TextGCN also disregard word order,
similar to the BoW-based models described above.
A detailed discussion of the connection between
TextGCN and MLP is provided in Appendix B.

We consider top performing graph-based models
from the literature, namely TextGCN along with
its successors HeteGCN, TensorGCN, HyperGAT,
DADGNN, as well as simplified GCN (SGC) (Wu
et al., 2019). We do not run our own experiments
for the graph-based models but rely on the original
work and extensive studies by Ding et al. (2020)
and Ragesh et al. (2021).

3.3 Sequence-Based Text Categorization

We consider RNNs, LSTMs, and Transformers as
sequence-based models. These models are aware
of the order of the words in the input text in the
sense that they are able to exploit word order infor-
mation. Thus, the key difference to the BoW-based
and graph-based families is that the word order is
reflected by sequence-based model. The model sig-
nature is ŷ = f

(sequence)
θ (〈x1, x2, . . . , xk〉), where

k is the (maximum) sequence length. Word posi-
tion is modeled by a dedicated positional encoding.
For instance, in BERT each position is associated
with an embedding vector that is added to the word
embedding at input level.

For the sequence-based models, we run our own
experiments with BERT and DistilBERT, while
reporting the scores of a pretrained LSTM from
Ding et al. (2020) for comparison.

4 Experimental Apparatus

4.1 Datasets

We use the same datasets and train-test split as
in TextGCN (Yao et al., 2019). Those datasets
are 20ng, R8, R52, ohsumed, and MR. Twenty
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Newsgroups (20ng)1 (bydate version) contains long
posts categorized into 20 newsgroups. The mean
sequence length is 551 words with a standard de-
viation (SD) of 2,047. R8 and R52 are subsets
of the Reuters 21578 news dataset with 8 and 52
classes, respectively. The mean sequence length
and SD is 119± 128 words for R8, and 126± 133
words for R52. Ohsumed2 is a corpus of medical
abstracts from the MEDLINE database that are cat-
egorized into diseases (one per abstract). The mean
sequence length is 285 ± 123 words. Movie Re-
views (MR)3 (Pang and Lee, 2005), split by Tang
et al. (2015), is a binary sentiment analysis dataset
on sentence level (mean sequence length and SD:
25± 11). Table 2 shows the dataset characteristics.

Table 2: Characteristics of text classification datasets

Dataset N #Train #Test #Classes

20ng 18,846 11,314 7,532 20
R8 7,674 5,485 2,189 8
R52 9,100 6,532 2,568 52
ohsumed 7,400 3,357 4,043 23
MR 10,662 7,108 3,554 2

4.2 Inductive and Transductive Setups

We distinguish between a transductive and an in-
ductive setup for text categorization. In the trans-
ductive setup, as used in TextGCN, the test doc-
uments are visible and actually used for the pre-
processing step. In the inductive setting, the test
documents remain unseen until test time (i. e., they
are not available for preprocessing). We report the
scores of the graph-based models for both setups
from the literature, where available. BoW-based
and sequence-based models are inherently induc-
tive. Ragesh et al. (2021) have evaluated a variant
of TextGCN that is capable of inductive learning,
which we include in our results, too.

4.3 Procedure and Hyperparameter Settings

We have extracted accuracy scores from the liter-
ature according to our systematic selection from
Section 2. Below, we provide a detailed descrip-
tion of the procedure for the models that we have
run ourselves. We borrow the tokenization strategy

1http://qwone.com/~jason/20Newsgroups/
2http://disi.unitn.it/moschitti/

corpora.htm
3https://www.cs.cornell.edu/people/

pabo/movie-review-data/

from BERT (Devlin et al., 2019) along with its un-
cased vocabulary. The tokenizer relies primarily on
WordPiece (Wu et al., 2016) for a high coverage
while maintaining a small vocabulary.

Training our BoW-Models. Our WideMLP has
one hidden layer with 1,024 rectified linear units
(one input-to-hidden and one hidden-to-output
layer). We apply dropout after each hidden layer,
notably also after the initial embedding layer. Only
for GloVe+WideMLP, neither dropout nor ReLU
is applied to the frozen pretrained embeddings but
only on subsequent layers. The variant WideMLP-
2 has two ReLU-activated hidden layers (three lay-
ers in total) with 1, 024 hidden units each. While
this might be overparameterized for single-label
text classification tasks with few classes, we rely
on recent findings that overparameterization leads
to better generalization (Neyshabur et al., 2018;
Nakkiran et al., 2020). In pre-experiments, we
realized that MLPs are not very sensitive to hyper-
parameter choices. Therefore, we optimize cross-
entropy with Adam (Kingma and Ba, 2015) and its
default learning rate of 10−3, a linearly decaying
learning rate schedule and train for a high amount
of steps (Nakkiran et al., 2020) (we use 100 epochs)
with small batch sizes (we use 16) for sufficient
stochasticity, along with a dropout ratio of 0.5.

Fine-tuning our BERT models. For BERT and
DistilBERT, we fine-tune for 10 epochs with a lin-
early decaying learning rate of 5 · 10−5 and an
effective batch size of 128 via gradient accumula-
tion of 8 x 16 batches. We truncate all inputs to 512
tokens. To isolate the influence of word order on
BERT’s performance, we conduct two further abla-
tions. First, we set all position embeddings to zero
and disable their gradient (BERT w/o pos ids). By
doing this, we force BERT to operate on a bag-of-
words without any notion of word order or position.
Second, we shuffle each sequence to augment the
training data. We use this augmentation strategy
to increase the number of training examples by a
factor of two (BERT w/ shuf. augm.).

4.4 Measures

We report accuracy as evaluation metric, which is
equivalent to Micro-F1 in single-label classifica-
tion (see Appendix C). We repeat all experiments
five times with different random initialization of
the parameters and report the mean and standard
deviation of these five runs.
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5 Results

5.1 Effectiveness
Table 3 shows the accuracy scores for the text cate-
gorization models on the five datasets. All graph-
based models in the transductive setting show sim-
ilar accuracy scores (maximum difference is 2
points). As expected, the scores decrease in the in-
ductive setting up to a point where they are matched
or even outperformed by our WideMLP.

In the inductive setting, the WideMLP models
perform best among the BoW models, in partic-
ular, TFIDF+WideMLP and WideMLP on an un-
weighted BoW. The best-performing graph-based
model is HyperGAT, yet DADGNN has a slight
advantage on R8, R52, and MR. For the sequence-
based models, BERT attains the highest scores,
closely followed by DistilBERT.

The strong performance of WideMLP rivals all
graph-based techniques reported in the literature,
in particular, the recently published graph-inducing
methods. MLP only falls behind HyperGAT, which
relies on topic models to set up the graph. Another
observation is that 1 hidden layer (but wide) is suf-
ficient for the tasks, as the scores for MLP variants
with 2 hidden layers are lower. We further observe
that both pure BoW and TF-IDF weighted BoW
lead to better results than approaches that exploit
pretrained word embeddings such as GloVe-MLP,
fastText, and SWEM.

With its immense pretraining, BERT yields the
overall highest scores, closely followed by Distil-
BERT. DistilBERT outperforms HyperGAT by 7
points on the MR dataset while being on par on
the others. BERT outperforms the strongest graph-
based competitor, HyperGAT, by 8 points on MR,
1.5 points on ohsumed, 1 point on R52 and R8, and
0.5 points on 20ng.

Our results further confirm that position embed-
dings are important for BERT with a notable de-
crease when those are omitted. Augmenting the
data with shuffled sequences has led to neither a
consistent decrease nor increase in performance.

5.2 Efficiency
Parameter Count of the Models Table 4 lists
the parameter counts of the models. Even though
the MLP is fully-connected on top of a bag-of-
words with the dimensionality of the vocabulary
size, it has only half of the parameters as Distil-
BERT and a quarter of the parameters of BERT.
Using TF-IDF does not change the number of

model parameters. Due to the high vocabulary
size, GloVe-based models have a high number of
parameters, but the majority of those is frozen, i. e.,
does not get gradient updates during training.

Runtime Performance of the Models We pro-
vide the total running times in Table 5 as observed
while conducting the experiments on a single
NVIDIA A100-SXM4-40GB card. All WideMLP
variants are an order of magnitude faster than Dis-
tilBERT when considering the average runtime per
epoch. DistilBERT is twice as fast as the original
BERT. The transformers are only faster than BoW
models on the MR dataset. This is because the
sequences in the MR dataset are much shorter and
less O(L2) attention weights have to be computed.

6 Discussion

Key Insights Our experiments show that our
MLP models using BoW outperform the recent
graph-based models TextGCN and HeteGCN in
an inductive text classification setting. Further-
more, the MLP models are comparable to Hyper-
GAT. Only transformer-based BERT and Distil-
BERT models outperform our MLP and set a new
state-of-the-art. This result is important for two
reasons: First, the strong performance of a pure
BoW-MLP questions the added value of synthetic
graphs in models like TextGCN to the text cat-
egorization task. Only HyperGAT, which uses
the expensive Latent Dirichlet Allocation for com-
puting the graph, slightly outperforms our BoW-
WideMLP in two out of five datasets. Thus, we
argue that using strong baseline models for text
classification is important to assess the true scien-
tific advancement (Dacrema et al., 2019).

Second, in contrast to conventional wis-
dom (Iyyer et al., 2015), we find that pretrained
embeddings, e. g., GloVe, can have a detrimen-
tal effect when compared to using an MLP with
one wide hidden layer. Such an MLP circumvents
the bottleneck of the small dimensionality of word
embeddings and has a higher capacity. Further-
more, we experiment with more hidden layers (see
WideMLP-2), but do not observe any improvement
when the single hidden layer is sufficiently wide. A
possible explanation is that already a single hidden
layer is sufficient to approximate any compact func-
tion to an arbitrary degree of accuracy depending
on the width of the hidden layer (Cybenko, 1989).

Finally, a new state-of-the-art is set by the trans-
former model BERT, which is not very surpris-
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Table 3: Accuracy and standard deviation on text classification datasets. Column “Provenance” reports the source.

Inductive Setting 20ng R8 R52 ohsumed MR Provenance

BoW-Models
Log. Regression 83.70 93.33 90.65 61.14 76.28 Ragesh et al. (2021)
SWEM 85.16 (0.29) 95.32 (0.26) 92.94 (0.24) 63.12 (0.55) 76.65 (0.63) Ding et al. (2020)
fastText 79.38 (0.30) 96.13 (0.21) 92.81 (0.09) 57.70 (0.49) 75.14 (0.20) Ding et al. (2020)
TF-IDF + WideMLP 84.20 (0.16) 97.08 (0.16) 93.67 (0.23) 66.06 (0.29) 76.32 (0.17) own experiment
WideMLP 83.31 (0.22) 97.27 (0.12) 93.89 (0.16) 63.95 (0.13) 76.72 (0.26) own experiment
WideMLP-2 81.02 (0.23) 96.61 (1.22) 93.98 (0.23) 61.71 (0.33) 75.91 (0.51) own experiment
GloVe+WideMLP 76.80 (0.11) 96.44 (0.08) 93.58 (0.06) 61.36 (0.22) 75.96 (0.17) own experiment
GloVe+WideMLP-2 76.33 (0.18) 96.50 (0.14) 93.19 (0.11) 61.65 (0.27) 75.72 (0.45) own experiment

Graph-based Models
TextGCN 80.88 (0.54) 94.00 (0.40) 89.39 (0.38) 56.32 (1.36) 74.60 (0.43) Ragesh et al. (2021)
HeteGCN 84.59 (0.14) 97.17 (0.33) 93.89 (0.45) 63.79 (0.80) 75.62 (0.26) Ragesh et al. (2021)
HyperGAT 86.62 (0.16) 97.07 (0.23) 94.98 (0.27) 69.90 (0.34) 78.32 (0.27) Ragesh et al. (2021)
DADGNN — 98.15 (0.16) 95.16 (0.22) — 78.64 (0.29) Liu et al. (2021b)

Seq.-based Models
LSTM (pretrain) 75.43 (1.72) 96.09 (0.19) 90.48 (0.86) 51.10 (1.50) 77.33 (0.89) Ding et al. (2020)
DistilBERT 86.24 (0.26) 97.89 (0.15) 95.34 (0.08) 69.08 (0.60) 85.10 (0.33) own experiment
BERT 87.21 (0.18) 98.03 (0.24) 96.17 (0.33) 71.46 (0.54) 86.61 (0.38) own experiment
BERT w/o pos emb 81.47 (0.49) 97.39 (0.20) 94.70 (0.27) 65.18 (1.53) 80.35 (0.20) own experiment
BERT w/ shuf. augm. 86.46 (0.42) 98.07 (0.21) 96.48 (0.18) 70.94 (0.60) 86.23 (0.33) own experiment

Transductive Setting 20ng R8 R52 ohsumed MR Provenance

Graph-based Models
TextGCN 86.34 97.07 93.56 68.36 76.74 Yao et al. (2019)
SGC 88.5 (0.1) 97.2 (0.1) 94.0 (0.2) 68.5 (0.3) 75.9 (0.3) Wu et al. (2019)
TensorGCN 87.74 98.04 95.05 70.11 77.91 Liu et al. (2020)
HeteGCN 87.15 (0.15) 97.24 (0.51) 94.35 (0.25) 68.11 (0.70) 76.71 (0.33) Ragesh et al. (2021)

Table 4: Parameter counts of the models

Model #parameters

WideMLP 31.3M
WideMLP-2 32.3M
GloVe+WideMLP 575,2M (frozen) + 0.3M
GloVe+WideMLP-2 575,2M (frozen) + 1.3M
DistilBERT 66M
BERT 110M

ing. However, as our efficiency analysis shows,
the MLPs require only a fraction of the parameters
and are faster in their combined training and infer-
ence time except for the MR dataset. The attention
mechanism of (standard) Transformers is quadratic
in the sequence length, which leads to slower pro-
cessing of long sequences. With larger batches, the
speed of the MLP could be increased even further.

Detailed Discussion of Results Graph-based
models come with high training costs, as not only
the graph has to be first computed, but also a GNN
has to be trained. For standard GNN methods, the
whole graph has to fit into the GPU memory and
mini-batching is nontrivial, but possible with ded-
icated sampling techniques for GNNs (Fey et al.,
2021). Furthermore, the original TextGCN is inher-

ently transductive, i. e., it has to be retrained when-
ever new documents appear. Strictly transductive
models are effectively useless in practice (Lu et al.,
2019) except for applications, in which a partially
labeled corpus needs to be fully annotated. How-
ever, recent extensions such as HeteGCN, Hyper-
GAT, and DADGNN already relax this constraint
and enable inductive learning. Nevertheless, word-
document graphs require O(N2) space, where N
is the number of documents plus the vocabulary
size, which is a hurdle for large-scale applications.

There are also tasks where the natural structure
of the graph data provides more information than
the mere text, e. g., citations networks or connec-
tions in social graphs. In such cases, the perfor-
mance of graph neural networks is the state of the
art (Kipf and Welling, 2017; Velickovic et al., 2018)
and are superior to MLPs that use only the node
features and not the graph structure (Shchur et al.,
2018). GNNs also find application in various NLP
tasks, other than classification (Wu et al., 2021).

An interesting factor is the ability of the mod-
els to capture word order. BoW models disregard
word order entirely and yield good results, but still
fall behind order-aware Transformer models. In an
extensive study, Conneau et al. (2018) have shown
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Table 5: Total runtime (training+inference). Average of five runs rounded to minutes.

Model #epochs 20ng R8 R52 ohsumed MR

WideMLP 100 7min 3min 4min 3min 4min
TF-IDF+WideMLP 100 9min 4min 4min 3min 4min
WideMLP-2 100 9min 5min 5min 3min 6min
GloVe+WideMLP 100 6min 3min 4min 3min 4min
GloVe+WideMLP-2 100 6min 4min 4min 3min 4min
DistilBERT 10 8min 4min 5min 3min 1min
BERT 10 15min 7min 8min 5min 2min

that memorizing the word content (which words
appear at all) is most indicative of downstream
task performance. Sinha et al. (2021) have experi-
mented with pretraining BERT by disabling word
order during pretraining and show that it makes sur-
prisingly little difference for fine-tuning. In their
study, word order is preserved during fine-tuning.
In our experiments, we have conducted comple-
mentary experiments: we have used a BERT model
that is pretrained with word order, but we have de-
activated the position encoding during fine-tuning.
Our results show that there is a notable drop in per-
formance but the model does not fail completely.

Other NLP tasks such as question answering (Ra-
jpurkar et al., 2016) or natural language infer-
ence (Wang et al., 2019a) can also be regarded
as text classification on a technical level. Here,
the positional information of the sequence is more
important than for pure topical text categorization.
One can expect that BoW-based models perform
worse than sequence-based models.

Generalizability We expect that similar obser-
vations would be made on other text classifica-
tion datasets because we have already covered a
range of different characteristics: long and short
texts, topical categorization (20ng, Reuters, and
Ohsumed) and sentiment prediction (MR) in the
domains of forum postings, news, movie reviews,
and medical abstracts. Our results are in line with
those from other fields, who have reported a resur-
gence of MLPs. For example, in business predic-
tion, an MLP baseline outperforms various other
Deep Learning models (Venugopal et al., 2021;
Yedida et al., 2021). In computer vision, Tolstikhin
et al. (2021) and Melas-Kyriazi (2021) proposed
attention-free MLP models that are on par with
the Vision Transformer (Dosovitskiy et al., 2021).
In natural language processing, Liu et al. (2021a)
show similar results, while acknowledging that a
small attention module is necessary for some tasks.

Threats to Validity We acknowledge that the ex-
perimental datasets are limited to English. While
word order is important in the English language, it
is notable that methods that discard word order still
work well for text categorization. Another possi-
ble bias is the comparability of the results. How-
ever, we carefully checked all relevant parameters
such as the train/test split, the number of classes in
the datasets, if datasets have been pre-processed in
such a way that, e. g., makes a task easier like reduc-
ing the number of classes, the training procedure,
and the reported evaluation metrics. Regarding our
efficency analysis, we made sure to report num-
bers for the parameter count and a measure for
the speed other than FLOPs, as recommended by
Dehghani et al. (2021). Since runtime is heavily de-
pendant on training parameters such as batch size,
we complement this with asymptotic complexity.

Practical Impact and Future Work Our study
has an immediate impact on practitioners who seek
to employ robust text categorization models in re-
search projects and in industrial operational en-
vironments. Furthermore, we advocate to use an
MLP baseline in future text categorization research,
for which we provide concrete guidelines in Ap-
pendix A. As future work, it would be interesting to
analyze multi-label classification tasks and to com-
pare with hierarchical text categorization methods
(Peng et al., 2018; Xiao et al., 2019). Another in-
teresting yet challenging setting would be few-shot
classification (Brown et al., 2020).

7 Conclusion

We argue that a wide multi-layer perceptron en-
hanced with today’s best practices should be consid-
ered as a strong baseline for text classification tasks.
In fact, the experiments show that our WideMLP
is oftentimes on-par or even better than recently
proposed models that synthesize a graph structure
from the text.
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The source code is available online:
https://github.com/lgalke/
text-clf-baselines

Ethical Considerations

The focus of this work is text classification. Poten-
tial risks that apply to text classification in general
also apply to this work. Nonetheless, we present
alternatives to commonly used pretrained language
models, which suffer from various sources of bias
due to the large and poorly manageable data used
for pretraining (Bender et al., 2021). In contrast,
the presented alternatives render full control over
the training data and, thus, contribute to circumvent
the biases otherwise introduced during pretraining.

References

Markus Bayer, Marc-André Kaufhold, and Christian
Reuter. 2021. A survey on data augmentation for
text classification. ArXiv preprint, abs/2107.03158.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Mod-
els Be Too Big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, pages 610–623, New York, NY,
USA. Association for Computing Machinery.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2001. Latent dirichlet allocation. In Advances in
Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Syn-
thetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada], pages 601–608. MIT
Press.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, et al. 2020. Language models are few-
shot learners. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

George Cybenko. 1989. Approximation by superposi-
tions of a sigmoidal function. Math. Control. Sig-
nals Syst., 2(4):303–314.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Di-
etmar Jannach. 2019. Are we really making much
progress? A worrying analysis of recent neural rec-
ommendation approaches. In Proceedings of the
13th ACM Conference on Recommender Systems,
RecSys 2019, Copenhagen, Denmark, September 16-
20, 2019, pages 101–109. ACM.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer,
Ashish Vaswani, and Yi Tay. 2021. The efficiency
misnomer. ArXiv preprint, abs/2110.12894.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4927–4936, Online. Association for Computa-
tional Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image is
worth 16x16 words: Transformers for image recog-
nition at scale. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and
Jure Leskovec. 2021. GNNAutoScale: Scalable and
expressive graph neural networks via historical em-
beddings. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-
24 July 2021, Virtual Event, volume 139 of Proceed-
ings of Machine Learning Research, pages 3294–
3304. PMLR.

Quentin Fournier, Gaétan Marceau Caron, and
Daniel Aloise. 2021. A practical survey on
faster and lighter transformers. ArXiv preprint,
abs/2103.14636.

Lukas Galke, Florian Mai, Alan Schelten, Dennis Brun-
sch, and Ansgar Scherp. 2017. Using titles vs. full-
text as source for automated semantic document an-
notation. In Proceedings of the Knowledge Capture
Conference, K-CAP 2017, Austin, TX, USA, Decem-
ber 4-6, 2017, pages 20:1–20:4. ACM.

4046

https://github.com/lgalke/text-clf-baselines
https://github.com/lgalke/text-clf-baselines
https://arxiv.org/abs/2107.03158
https://arxiv.org/abs/2107.03158
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://proceedings.neurips.cc/paper/2001/hash/296472c9542ad4d4788d543508116cbc-Abstract.html
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://arxiv.org/abs/2110.12894
https://arxiv.org/abs/2110.12894
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://proceedings.mlr.press/v139/fey21a.html
http://proceedings.mlr.press/v139/fey21a.html
http://proceedings.mlr.press/v139/fey21a.html
https://arxiv.org/abs/2103.14636
https://arxiv.org/abs/2103.14636
https://doi.org/10.1145/3148011.3148039
https://doi.org/10.1145/3148011.3148039
https://doi.org/10.1145/3148011.3148039


Santiago González-Carvajal and Eduardo C. Garrido-
Merchán. 2020. Comparing BERT against tradi-
tional machine learning text classification. ArXiv
preprint, abs/2005.13012.

William L. Hamilton. 2020. Graph Representation
Learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan & Claypool
Publishers.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1681–1691, Beijing, China. Association for Compu-
tational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Ammar Ismael Kadhim. 2019. Survey on supervised
machine learning techniques for automatic text clas-
sification. Artif. Intell. Rev., 52(1):273–292.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 655–
665, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura E. Barnes, and Don-
ald E. Brown. 2019. Text classification algorithms:
A survey. Inf., 10(4):150.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA, pages 2267–2273.
AAAI Press.

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu
Yang, Lichao Sun, Philip S. Yu, and Lifang He. 2020.
A survey on text classification: From shallow to
deep learning. ArXiv preprint, abs/2008.00364.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V.
Le. 2021a. Pay attention to MLPs. ArXiv preprint,
abs/2105.08050.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping
Lv. 2020. Tensor graph convolutional networks for
text classification. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pages 8409–8416. AAAI Press.

Yonghao Liu, Renchu Guan, Fausto Giunchiglia,
Yanchun Liang, and Xiaoyue Feng. 2021b. Deep at-
tention diffusion graph neural networks for text clas-
sification. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8142–8152, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Haonan Lu, Seth H. Huang, Tian Ye, and Xiuyan Guo.
2019. Graph star net for generalized multi-task
learning. ArXiv preprint, abs/1906.12330.

Shengfei Lyu and Jiaqi Liu. 2020. Combine convolu-
tion with recurrent networks for text classification.
ArXiv preprint, abs/2006.15795.

Florian Mai, Lukas Galke, and Ansgar Scherp. 2018.
Using deep learning for title-based semantic subject
indexing to reach competitive performance to full-
text. In Proceedings of the 18th ACM/IEEE on Joint
Conference on Digital Libraries, JCDL 2018, Fort
Worth, TX, USA, June 03-07, 2018, pages 169–178.
ACM.

Luke Melas-Kyriazi. 2021. Do you even need at-
tention? A stack of feed-forward layers does
surprisingly well on ImageNet. ArXiv preprint,
abs/2105.02723.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 3111–
3119.

4047

https://arxiv.org/abs/2005.13012
https://arxiv.org/abs/2005.13012
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.3390/info10040150
https://doi.org/10.3390/info10040150
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745
https://arxiv.org/abs/2008.00364
https://arxiv.org/abs/2008.00364
https://arxiv.org/abs/2105.08050
https://aaai.org/ojs/index.php/AAAI/article/view/6359
https://aaai.org/ojs/index.php/AAAI/article/view/6359
https://doi.org/10.18653/v1/2021.emnlp-main.642
https://doi.org/10.18653/v1/2021.emnlp-main.642
https://doi.org/10.18653/v1/2021.emnlp-main.642
https://arxiv.org/abs/1906.12330
https://arxiv.org/abs/1906.12330
https://arxiv.org/abs/2006.15795
https://arxiv.org/abs/2006.15795
https://doi.org/10.1145/3197026.3197039
https://doi.org/10.1145/3197026.3197039
https://doi.org/10.1145/3197026.3197039
https://arxiv.org/abs/2105.02723
https://arxiv.org/abs/2105.02723
https://arxiv.org/abs/2105.02723
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html


Shervin Minaee, Nal Kalchbrenner, Erik Cambria,
Narjes Nikzad, Meysam Chenaghlu, and Jianfeng
Gao. 2021. Deep learning-based text classifica-
tion: A comprehensive review. ACM Comput. Surv.,
54(3):62:1–62:40.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2020. Deep
double descent: Where bigger models and more data
hurt. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli,
Yann LeCun, and Nathan Srebro. 2018. Towards
understanding the role of over-parametrization in
generalization of neural networks. ArXiv preprint,
abs/1805.12076.

Yukio Ohsawa, Nels E. Benson, and Masahiko Yachida.
1998. Keygraph: Automatic indexing by co-
occurrence graph based on building construction
metaphor. In Proceedings of the IEEE Forum on
Research and Technology Advances in Digital Li-
braries, IEEE ADL ’98, Santa Barbara, California,
USA, April 22-24, 1998, pages 12–18. IEEE Com-
puter Society.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 115–
124, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference on
World Wide Web, WWW 2018, Lyon, France, April
23-27, 2018, pages 1063–1072. ACM.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Rahul Ragesh, Sundararajan Sellamanickam, Arun
Iyer, Ramakrishna Bairi, and Vijay Lingam. 2021.
HeteGCN: Heterogeneous graph convolutional net-
works for text classification. In WSDM ’21, The
Fourteenth ACM International Conference on Web
Search and Data Mining, Virtual Event, Israel,
March 8-12, 2021, pages 860–868. ACM.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. In Text Mining, chapter 1,
pages 1–20. John Wiley & Sons, Ltd.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. ArXiv
preprint, abs/1910.01108.

Oleksandr Shchur, Maximilian Mumme, Aleksandar
Bojchevski, and Stephan Günnemann. 2018. Pitfalls
of graph neural network evaluation. ArXiv preprint,
abs/1811.05868.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple
word-embedding-based models and associated pool-
ing mechanisms. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 440–
450, Melbourne, Australia. Association for Compu-
tational Linguistics.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional
hypothesis: Order word matters pre-training for lit-
tle. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2888–2913, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE:
predictive text embedding through large-scale het-
erogeneous text networks. In Proceedings of the
21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, August 10-13, 2015, pages 1165–
1174. ACM.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
ArXiv preprint, abs/2009.06732.

Ilya O. Tolstikhin, Neil Houlsby, Alexander
Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel
Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey
Dosovitskiy. 2021. MLP-Mixer: An all-MLP archi-
tecture for vision. ArXiv preprint, abs/2105.01601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

4048

https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=B1g5sA4twr
https://arxiv.org/abs/1805.12076
https://arxiv.org/abs/1805.12076
https://arxiv.org/abs/1805.12076
https://doi.org/10.1109/ADL.1998.670375
https://doi.org/10.1109/ADL.1998.670375
https://doi.org/10.1109/ADL.1998.670375
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/3437963.3441746
https://doi.org/10.1145/3437963.3441746
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1811.05868
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1145/2783258.2783307
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601


Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Ishwar Venugopal, Jessica Töllich, Michael Fairbank,
and Ansgar Scherp. 2021. A comparison of deep-
learning methods for analysing and predicting busi-
ness processes. In International Joint Conference
on Neural Networks, IJCNN 2021, Shenzhen, China,
July 18-22, 2021, pages 1–8. IEEE.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Ruishuang Wang, Zhao Li, Jian Cao, Tong Chen, and
Lei Wang. 2019b. Convolutional recurrent neural
networks for text classification. In International
Joint Conference on Neural Networks, IJCNN 2019
Budapest, Hungary, July 14-19, 2019, pages 1–6.
IEEE.

Yequan Wang, Aixin Sun, Jialong Han, Ying Liu, and
Xiaoyan Zhu. 2018. Sentiment analysis by capsules.
In Proceedings of the 2018 World Wide Web Confer-
ence on World Wide Web, WWW 2018, Lyon, France,
April 23-27, 2018, pages 1165–1174. ACM.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christo-
pher Fifty, Tao Yu, and Kilian Q. Weinberger. 2019.
Simplifying graph convolutional networks. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages
6861–6871. PMLR.

Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Han-
ning Gao, Shucheng Li, Jian Pei, and Bo Long. 2021.
Graph neural networks for natural language process-
ing: A survey. ArXiv preprint, abs/2106.06090.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, et al. 2016. Google’s neu-
ral machine translation system: Bridging the gap
between human and machine translation. ArXiv
preprint, abs/1609.08144.

Huiru Xiao, Xin Liu, and Yangqiu Song. 2019. Ef-
ficient path prediction for semi-supervised and
weakly supervised hierarchical text classification. In

The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, May 13-17, 2019, pages 3370–
3376. ACM.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pages 7370–7377. AAAI Press.

Rahul Yedida, Xueqi Yang, and Tim Menzies. 2021.
When SIMPLE is better than complex: A case study
on deep learning for predicting Bugzilla issue close
time. ArXiv preprint, abs/2101.06319.

Dell Zhang, Jun Wang, Emine Yilmaz, Xiaoling Wang,
and Yuxin Zhou. 2016. Bayesian performance com-
parison of text classifiers. In Proceedings of the 39th
International ACM SIGIR conference on Research
and Development in Information Retrieval, SIGIR
2016, Pisa, Italy, July 17-21, 2016, pages 15–24.
ACM.

Lu Zhang, Jiandong Ding, Yi Xu, Yingyao Liu, and
Shuigeng Zhou. 2021. Weakly-supervised text clas-
sification based on keyword graph. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2803–2813,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classifica-
tion improved by integrating bidirectional LSTM
with two-dimensional max pooling. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 3485–3495, Osaka, Japan. The COLING
2016 Organizing Committee.

Xujuan Zhou, Raj Gururajan, Yuefeng Li, Revathi
Venkataraman, Xiaohui Tao, Ghazal Bargshady,
Prabal Datta Barua, and Srinivas Kondalsamy-
Chennakesavan. 2020. A survey on text classifica-
tion and its applications. Web Intell., 18(3):205–
216.

4049

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/IJCNN52387.2021.9533742
https://doi.org/10.1109/IJCNN52387.2021.9533742
https://doi.org/10.1109/IJCNN52387.2021.9533742
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1109/IJCNN.2019.8852406
https://doi.org/10.1109/IJCNN.2019.8852406
https://doi.org/10.1145/3178876.3186015
http://proceedings.mlr.press/v97/wu19e.html
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/2106.06090
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3308558.3313658
https://doi.org/10.1145/3308558.3313658
https://doi.org/10.1145/3308558.3313658
https://doi.org/10.1609/aaai.v33i01.33017370
https://arxiv.org/abs/2101.06319
https://arxiv.org/abs/2101.06319
https://arxiv.org/abs/2101.06319
https://doi.org/10.1145/2911451.2911547
https://doi.org/10.1145/2911451.2911547
https://doi.org/10.18653/v1/2021.emnlp-main.222
https://doi.org/10.18653/v1/2021.emnlp-main.222
https://aclanthology.org/C16-1329
https://aclanthology.org/C16-1329
https://aclanthology.org/C16-1329
https://doi.org/10.3233/WEB-200442
https://doi.org/10.3233/WEB-200442


A Practical Guidelines for Designing a
WideMLP

On the basis of our results, we provide recommen-
dations for designing a WideMLP baseline.

Tokenization We recommend using modern sub-
word tokenizers such as BERT-like WordPiece or
SentencePiece that yield a high coverage while
needing a relatively small vocabulary.

Input Representation In contrast to conven-
tional wisdom (Iyyer et al., 2015), we find that
pretrained embeddings, e. g., GloVe, can have a
detrimental effect when compared to using an MLP
with one wide hidden layer. Such an MLP circum-
vents the bottleneck of the small dimensionality of
word embeddings and has a higher capacity.

Depth vs. Width In text classification, width
seems more important than depth. We recommend
to use a single, wide hidden layer, i. e., one input-to-
hidden and one hidden-to-output layer, e. g., with
1,024 hidden units and ReLU activation. While
this might be overparameterized for single-label
text classification tasks with few classes, we rely
on recent findings that overparameterization leads
to better generalization (Neyshabur et al., 2018;
Nakkiran et al., 2020).

We further motivate the choice of using wide
layers with results from multi-label text classifica-
tion (Galke et al., 2017), which has shown that a
(wide) MLP outperforms all tested classical base-
lines such as SVMs, k-Nearest Neighbors, and lo-
gistic regression. Follow-up work (Mai et al., 2018)
then found that also CNN and LSTM do not sub-
stantially improve over the wide MLP.

Having a fully-connected layer on-top of a bag-
of-words leads to a high number of learnable pa-
rameters. Still, the wide first input-to-hidden layer
can be implemented efficiently by using an embed-
ding layer followed by aggregation, which avoids
large matrix multiplications.

In our experiments, we did not observe any im-
provement with more hidden layers (WideMLP-2),
as suggested by Iyyer et al. (2015), but it might be
beneficial for other, more challenging datasets.

Optimization and Regularization We seek to
find an optimization strategy that does not
require dataset-specific hyperparameter tuning.
This comprises optimizing cross-entropy with
Adam (Kingma and Ba, 2015) and default learning

rate 10−3, a linearly decaying learning rate sched-
ule and training for a high amount of steps (Nakki-
ran et al., 2020) (we use 100 epochs) with small
batch sizes (we use 16) for sufficient stochasticity.

For regularization during this prolonged train-
ing, we suggest to use a high dropout ratio of 0.5.
Regarding initialization, we rely on framework de-
faults, i. e., N (0, 1) for the initial embedding layer
and random uniform U(−

√
dinput,

√
doutput) for

subsequent layers’ weight and bias parameters.

B Connection between BoW-MLP and
TextGCN

TextGCN uses the PMI matrix to set up edge
weights for word-word connections. A single layer
Text-GCN is a BoW-MLP, except for the docu-
ment embedding. The one-hop neighbors are words
which are aggregated after a nonlinear transform.
The basic GCN equation H = σ(ÂXW ) reveals
that the order of transformation and neighborhood
aggregation is irrelevant. The document embed-
ding implies that TextGCN is a semisupervised
technique. Truly new documents, as in inductive
learning scenarios, would need a special treatment
such as using an all zero embedding vector.

A two-layer MLP can be characterized by the
equation ŷ = W (2)σ(W (1)x + b(1)) + b(2). On
bag-of-words inputs, the first layer W (1)x+ b(1)

can be replaced by an equivalent embedding layer
with weighting (e. g., TF-IDF or length normal-
ization) being applied during aggregation of the
embedding vectors.

The first layer of TextGCN is equivalent to ag-
gregating embedding vectors. A standard GCN
layer with shared weights has the form (assuming
self-loops have been inserted)

hi =
∑
j∈N(i)

aijW
(1)xj + b(1)

Now in TextGCN node features are given by the
identity, such that xj is one-hot. Then we can
rewrite the first layer of Text-GCN as an aggrega-
tion of embeddings E. We gain

hi =
∑
j∈N(i)

aijEj

as Wx+ b may again be replaced by an embed-
ding matrix if applied to one hot vectors x. Now E
contains two types of embedding vectors: word em-
beddings and document embeddings corresponding
to word nodes and document nodes. We see that the
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first layer of TextGCN is essentially an aggregation
of word embeddings plus the document embedding.
Only with a second layer, TextGCN considers the
embedding of other documents whose words are
connected to the present documents’ words.

C Equivalence of Micro-F1 and
Accuracy in Multiclass Classification

In multiclass classification, we have a single true
label for each instance and the predictions are con-
strained to a single prediction per instance. As a
consequence, the measures accuracy and Micro-F1
coincide to the same formula.

Micro-F1 aggregates true positives (TP), true
negatives (TN), false positives (FP), and false neg-
atives (FN) globally. It can be expressed as:

Micro-F1 =
2
∑

cTPc
2
∑

cTPc +
∑

c FPc +
∑

c FNc
,

where c iterates over all classes.
While the accuracy can be expressed as:

Acc =

∑
cTPc +

∑
cTNc∑

cTPc +
∑

cTNc +
∑

c FPc +
∑

c FNc

In multiclass classification, every true positive
is also a true negative for all other classes. When
summing those up over the entire dataset, we obtain∑

c

TPc =
∑
c

TNc.

Thus, we can rewrite

2
∑
c

TPc =
∑
c

TPc +
∑
c

TNc

and see that the Micro-F1 and accuracy are equiva-
lent in the multiclass (a.k.a. single-label) case.
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