
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3960 - 3975

May 22-27, 2022 c©2022 Association for Computational Linguistics

Automatic Error Analysis
for Document-level Information Extraction

Aliva Das∗, Xinya Du∗, Barry Wang∗,
Kejian Shi, Jiayuan Gu, Thomas Porter, Claire Cardie

Department of Computer Science, Cornell University
{ad677, xd75, zw545, ks2325, jg844, tjp78, ctc9}@cornell.edu

Abstract

Document-level information extraction (IE)
tasks have recently begun to be revisited in
earnest using the end-to-end neural network
techniques that have been successful on their
sentence-level IE counterparts. Evaluation of
the approaches, however, has been limited in
a number of dimensions. In particular, the
precision/recall/F1 scores typically reported
provide few insights on the range of errors
the models make. We build on the work of
Kummerfeld and Klein (2013) to propose a
transformation-based framework for automat-
ing error analysis in document-level event
and (N-ary) relation extraction. We employ
our framework to compare two state-of-the-
art document-level template-filling approaches
on datasets from three domains; and then, to
gauge progress in IE since its inception 30
years ago, vs. four systems from the MUC-4
(1992) evaluation.1

1 Introduction

Although information extraction (IE) research has
almost uniformly focused on sentence-level rela-
tion and event extraction (Grishman, 2019), the
earliest research in the area formulated the task at
the document level. Consider, for example, the first
large-scale (for the time) evaluations of IE systems
— e.g. MUC-3 (1991) and MUC-4 (1992). Each
involved a complex document-level event extrac-
tion task: there were 24 types of events, over a
dozen event arguments (or roles) to be identified
for each event; documents could contain zero to
tens of events, and extracting argument entities (or
role fillers) required noun phrase coreference res-
olution to ensure interpretability for the end-user
(e.g. to ensure that multiple distinct mentions of the

*These authors contributed equally to this work.
1Our code for the error analysis tool and its output on dif-

ferent model predictions are available at https://github.
com/IceJinx33/auto-err-template-fill/.

same entity in the output were not misinterpreted
as references to distinct entities).

The task was challenging: information relevant
for a single event could be scattered across the
document or repeated in multiple places; relevant
information might need to be shared across multi-
ple events; information regarding different events
could be intermingled. In Figure 1, for example,
the DISEASE "Newcastle" is mentioned well before
its associated event is mentioned (via the triggering
phrase "the disease has killed"); that same mention
of "Newcastle" must again be recognized as the
DISEASE in a second event; and the COUNTRY

of the first event ("Honduras") appears only in the
sentence describing the second event.

In fact, the problem of document-level informa-
tion extraction has only recently begun to be re-
visited (Quirk and Poon, 2017; Jain et al., 2020;
Du et al., 2021b,a; Li et al., 2021; Du, 2021; Yang
et al., 2021) in part in an attempt to test the power
of end-to-end neural network techniques that have
been so successful on their sentence-level counter-
parts.2 Evaluation, however, has been limited in a
number of ways.

First, despite the relative complexity of the task,
approaches are only evaluated with respect to their
overall performance scores (e.g. precision, recall,
and F1). Even though scores at the role level are
sometimes included, no systematic analysis or char-
acterization of the types of errors that occur is typi-
cally done. The latter is needed to determine strate-
gies to improve performance, to obtain more infor-
mative cross-system and cross-genre comparisons,
and to identify and track broader advances in the
field as the underlying approaches evolve. To date,
for example, there has been no attempt to directly
compare the error landscape and distribution of

2See, for example, Zhang et al. (2019), Du and Cardie
(2020) and Lin et al. (2020) for within-sentence event extrac-
tion; Akbik et al. (2018), and Akbik et al. (2019) for named
entity recognition (NER); and Zhang et al. (2018) and Luan
et al. (2019) for sentence-level relation extraction.

3960

https://github.com/IceJinx33/auto-err-template-fill/.
https://github.com/IceJinx33/auto-err-template-fill/.

200006221022

[Trigger]

[Trigger]

Input Document

Country Honduras

Disease Newcastle

Victims close to half a million
Honduran chickens

Status confirmed

Country Guatemala

Disease Newcastle

Victims

Status confirmed

Country Newcastle (x)

Disease (x)

Victims close to half a million
Honduran chickens

Status confirmed

Desired Template(s)

Predicted Template(s)

Our Automatic
Error Analysis System

Missing Template(s) 1

... ...

Error Statistics

The Agriculture ministers of El Salvador and
Honduras ... to control the spread of disease
affecting poultry, like the virus
Newcastle[Disease].

Urrutia ... to study the Newcastle outbreak. The
disease has killed close to half a million
Honduran chickens[Victims] in recent weeks.

Honduras[Country] said this week it would halt
the importation of chickens and eggs from
Guatemala[Country], where the disease has been
detected earlier, and

—

—

Figure 1: The document-level extraction task from the ProMED dataset on disease outbreaks (left) and the auto-
matic error analysis process (right). Our system performs a set of transformations on the predicted templates to
convert them into the corresponding gold standard templates. Transformation steps are mapped to corresponding
error types to produce informative error statistics.

newly developed neural IE methods with that of
the largely hand-crafted systems of the 1990s.

In this work, we first introduce a framework for
automating error analysis for document-level event
and relation extraction, casting both as instances of
a general role-filling, or template-filling task (Juraf-
sky and Martin, 2021). Our approach converts pre-
dicted system outputs into their gold standard coun-
terparts through a series of template-level transfor-
mations (Figure 2) and then maps combinations
of transformations into a collection of IE-based er-
ror types. Examples of errors include duplicates,
missing and spurious role fillers, missing and spu-
rious templates, and incorrect role and template
assignments for fillers. (See Figure 3 for the full
set).

Next, we employ the error analysis framework
in a comparison of two state-of-the-art document-
level neural template-filling approaches, DyGIE++
(Wadden et al., 2019) and GTT (Du et al., 2021b),
across three template-filling datasets (SciREX,
ProMED (Patwardhan and Riloff, 2009)3, and
MUC-4).

Finally, in an attempt to gauge progress in the in-
formation extraction field over the past 30 years, we
employ the framework to compare the performance
of four of the original MUC-4 systems with the
two newer deep-learning approaches to document-
level IE.4 We find that (1) the best of the early IE
models — which strikes a better balance between

3http://www.promedmail.org
4The 1992 model outputs are available in the

MUC-4 dataset released by NIST, available at https:
//www-nlpir.nist.gov/related_projects/
muc/muc_data/muc_data_index.html.

precision and recall — outperforms modern mod-
els that exhibit much higher precision and much
lower recall; (2) the modern neural models make
more mistakes on scientific vs. news-oriented texts,
and missing role fillers is universally the largest
source of errors; and (3) modern models have clear
advantages over the early IE systems in terms of
accurate span extraction, while the early systems
make fewer mistakes assigning role fillers to their
roles.

2 Related Work

Aside from the original MUC-4 evaluation scoring
reports (Chinchor, 1991), which included counts of
missing and spurious role filler errors, there have
been very few attempts at understanding the types
of errors made by IE systems and grounding those
errors linguistically. Valls-Vargas et al. (2017) pro-
posed a framework for studying how different er-
rors propagate through an IE system; however, the
framework can only be used for pipelined systems,
not end-to-end ones.

On the other hand, automated error analysis
with linguistically motivated error types has been
used in other sub-fields of NLP such as machine-
translation (Vilar et al., 2006; Zhou et al., 2008;
Farrús et al., 2010; Kholy and Habash, 2011; Ze-
man et al., 2011; Popović and Ney, 2011), coref-
erence resolution (Uryupina, 2008; Kummerfeld
and Klein, 2013; Martschat and Strube, 2014;
Martschat et al., 2015) and parsing (Kummerfeld
et al., 2012). Recently, generalized automated error
analysis frameworks involving human-in-the-loop
testing like Errudite (Wu et al., 2019), CHECK-

3961

http://www.promedmail.org
https://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html.
https://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html.
https://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html.

LIST (Ribeiro et al., 2020), CrossCheck (Arendt
et al., 2021), and AllenNLP Interpret (Wallace
et al., 2019) have successfully been applied to tasks
like machine comprehension and relation extrac-
tion (Alt et al., 2020). Closest to our work are Kum-
merfeld et al. (2012) and Kummerfeld and Klein
(2013), which use model-agnostic transformation-
based mapping approaches to automatically obtain
error information in the predicted structured output.

3 Template-Filling Task Specification
and Evaluation

As in Jurafsky and Martin (2021), we will refer
to document-level information extraction tasks as
template-filling tasks and use the term going for-
ward to refer to both event extraction and document-
level relation extraction tasks.

Given a document, D, and an IE template speci-
fication consisting of a predetermined list of roles
R1, R2, ..., Ri associated with each type of relevant
event for the task of interest, the goal for template
filling is to extract from D, one output template,
T for every relevant event/relation e1, e2, . . . , en
present in the document. Notably, in the general
case, n ≥ 0 and is not specified as part of the input.
In each output template, its roles are filled with the
corresponding role filler(s), which can be inferred
or extracted from the document depending on the
predetermined role types. We consider two role
types here:5

Set-fill roles, which must be filled with exactly
one role filler from a finite set supplied in the tem-
plate specification. An example of a set-fill role in
Figure 1 is STATUS, which can be confirmed,
possible, or suspected.

String-fill roles, whose role filler(s) are spans
extracted from the document, or left empty if no
corresponding role filler is found in the document.
VICTIMS, DISEASE and COUNTRY are string-fill
roles in Figure 1. Some string-fill roles allow mul-
tiple fillers; for example, there might be more than
one VICTIMS. Importantly, for document-level
template filling, exactly one string should be in-
cluded for each role filler entity (typically a canon-
ical mention of the entity), i.e. coreferent mentions
of the same entity are not permitted.

Evaluation. We use the standard (exact-match)
F1 score (Chinchor, 1991) to evaluate the output

5There are potentially more role types depending on the
dataset (e.g. normalized dates, times, locations); we will not
consider those here.

produced by a template-filling system:

F1 =
2 · Precision · Recall
Precision + Recall

4 Methodology: Automatic
Transformations for Error Analysis

Similar to the work of Kummerfeld and Klein
(2013), our error analysis approach is system-
agnostic, i.e. it only uses system output and does
not consider intermediate system decisions. This
allows for error analysis and comparison across dif-
ferent kinds of systems — end-to-end or pipeline;
neural or pattern-based.

Given inputs consisting of the system-predicted
templates and gold standard templates (i.e. desired
output) for every document in the target dataset,
our error analysis tool operates in three steps. For
each document,

1. Perform an optimized mapping of the associ-
ated predicted templates and gold templates.

2. Apply a pre-defined set of transformations to
convert each system-predicted template into
the desired gold template, keeping track of the
transformations applied.

3. Map the changes made in the conversion pro-
cess to an IE-based set of error types.

We describe each step in detail in the subsections
below.

4.1 Optimized Matching
The first stage of the error analysis tool involves
matching each system-predicted template to the
best-matching gold template for each document
in the dataset. In particular, the overall F1 score
for a given document can vary based on how a
predicted template is individually matched with a
gold template (or left unmatched).

Specifically, for each document, we recursively
generate all possible template matchings — where
each predicted template is matched (if possible) to
a gold template. In particular, for a document with
P predicted templates and G gold templates, the
total number of possible template matchings is:

1 +

(
P

1

)
G+

(
P

2

)
G(G− 1) + ...+

G!

(G− P)!
, if G− P ≥ 0

1 +

(
P

1

)
G+

(
P

2

)
G(G− 1) + ...+

(
P

G

)
G!, if G− P < 0

=

min(P,G)∑
i=0

(
P

i

)
G!

(G− i)!

3962

R1:

R2:

R3:

R1:

R2:

R3:

R1:

R2:

R3:

R1:

R2:

R3: Remove Spurious
Template(s)

Alter Mention span(s)

Dupl.

+

Desired Template(s)

Remove Role Filler(s)

Introduce Role Filler(s)

R1:

R2:

R3:

Predicted Template(s)

Alter Role(s)

Dupl.

Dupl.Dupl.

R1:

R2:

R3:

Figure 2: Automatic transformations to convert predicted templates (on the left) to gold templates (on the right).
Arrows represent transformations. Colored circles represent role filler entity mentions. Dupl. stands for duplicate.

Note that template matching can result in un-
matched predicted templates (Spurious Templates),
as well as unmatched gold templates (Missing Tem-
plates).

Next, for each predicted-gold pair in a template
matching, we iterate through all its roles and recur-
sively generate all possible mention matchings, in
each of which a predicted role filler is matched (if
possible) to a set of coreferent gold role fillers. Sim-
ilar to template matching, the process of mention
matching can also result in unmatched predicted
role fillers (Spurious Role Fillers) and unmatched
coreferent sets of gold role fillers (Missing Role
Fillers).

Through the process, each predicted role filler in-
creases the denominator of the total precision by 1,
and each set of coreferent gold role fillers increases
the denominator of total recall by 1. Whenever
there is a matched mention pair in which the pre-
dicted role filler has an exact match to an element
of the set of coreferent gold role fillers, this adds 1
to the numerator of both precision and recall. These
counts are calculated for each template matching.

Using precision and recall, the total F1 score
across all the slots/roles is calculated and the tem-
plate matching with the highest total F1 score is
chosen. If there are ties, the template matching
with the fewest errors is chosen (see Section 4.3).

4.2 Transformations

The second part of the error analysis tool involves
changing the predicted templates to the desired
gold templates with the help of a fixed set of trans-
formations as detailed below.

• Alter Span transforms a role filler into the
gold role filler with the lowest span compar-
ison score (SCS). The tool provides two

options for computing the SCS between two
spans, and each depends only on the starting
and ending indices of the spans.6 SCS can
be interpreted as distance and is 0 between
two identical spans, and 1 for non-overlapping
spans. The two modes are given as follows:

a) absolute: This mode captures the (posi-
tive) distance between the starting (and end-
ing) character offsets of spans x and y in the
document, and scales that value by the sum of
the lengths of x and y, capping it at a maxi-
mum of 1.

SCS = max
(
1, |xstart−ystart|+|xend−yend|

length(x)+length(y)

)
b) geometric mean:

This mode captures the degree of disjointed-
ness between spans x and y by dividing the
length of the overlap between the two spans
with respect to each of their lengths, multiply-
ing those two fractions, and subtracting the
final result from 1.

If si is the length of the intersection of x and y,
and neither x nor y have length 0, SCS is cal-
culated as shown below; otherwise, SCS is 1.

overlap = min(xend, yend)−max(xstart, ystart)

si = max (0, overlap)

SCS = 1−

(
si2

length(x) ∗ length(y)

)

Thus, if the predicted role filler is an exact
match for the gold role filler, the SCS is 0. If
there is some overlap between the spans, the

6This deviates from Kummerfeld and Klein (2013), in
which incorrect spans are altered to gold mentions that have
the same head token, requiring the use of a syntactic parser.

3963

Error Type
Error Component

Error Name Transformations(s) Predicted GoldMis-
placement

Span
Error

i)

Within
Template

■ Span Error Alter Span PerInd: [members]
PerpInd: [members of the
maoist terrorist organization
shining path]

ii) Duplicate Role Filler Remove Role Filler
Target: [electrical
appliance store], [store]

Target: [electrical appliance
store, store]

iii) ■ Duplicate Partially
Matched Role Filler

Alter Span
+ Remove Role Filler

Target: [store],
[electrical]

Target: [store,
electrical appliance store]

iv) ■ Spurious Spurious Role Filler Remove Role Filler
PerpOrg: [fmln]
Victim: [rosa imelda
gonzalez medrano]

PerpOrg: —
Victim: [rosa imelda gonzalez
medrano]

v) □ (Missing) Missing Role Filler Introduce Role Filler Target: —
Target: [local garrison,
garrison]

vi) ■
Role
Error

Incorrect Role Alter Role
PerpInd: —
Victim: [gonzalo
rodriguez gacha]

PerpInd: [gonzalo rodriguez
gacha]
Victim: —

vii) ■
Incorrect Role +
Partially Matched
Filler

Alter Span
+ Alter Role

PerpInd: —
Victim: [gonzalo
rodriguez]

PerpInd: [gonzalo rodriguez
gacha]
Victim: —

viii)

Within
and Cross
Template

■
Template

Error

Wrong Template
Role Filler

Remove Cross
Template Spurious
Role Filler

T1: Target: [public bus]
T2: Target: —

T1: Target: —
T2: Target: [public bus, bus]

ix) ■
Wrong Template For
Partially Matched
Role Filler

Alter Span
+ Remove Cross
Template Spurious
Role Filler

T1: Target: [public]
T2: Target: —

T1: Target: —
T2: Target: [public bus, bus]

x)

■■ 
Role

+
Template

Error

Wrong Template +
Wrong Role

Alter Role
+ Remove Cross
Template Spurious
Role Filler

T1:
Victim: —
Weapon: —
T2:
Victim: [adolfo spezua]
Weapon: [thomas
pellisier]

T1:
Victim: [thomas pellisier]
Weapon: —
T2:
Victim: [adolfo spezua]
Weapon: —

xi) ■
Wrong Template +
Wrong Role +
Partially Matched
Filler

Alter Span
+ Alter Role
+ Remove Cross
Template Spurious
Role Filler

T1:
Victim: —
Weapon: —
T2:
Victim: [adolfo spezua]
Weapon: [thomas]

T1:
Victim: [thomas pellisier]
Weapon: —
T2:
Victim: [adolfo spezua]
Weapon: —

xii)
Template
Detection

■ Spurious Spurious Template Remove Template T1: PerpOrg: [fmln] —

xiii) □ (Missing) Missing Template Introduce Template — T1: PerpOrg: [fmln]

1

Figure 3: Error Types with examples from the MUC-4 dataset. For each template, in every role, the role fillers in
brackets refer to the same entity, while role fillers in different brackets refer to different entities. The underlined
text indicates the error in the prediction.

SCS is between 0 and 1 (not inclusive), and
if there is no overlap between the spans, the
SCS is 1. The order of comparison of the
spans doesn’t change the SCS score for both
modes.

As the absolute mode is less sensitive to
changes in span indices as compared to the
geometric mean, we chose geometric mean
for our analysis, as tiny changes in index po-
sitions result in a bigger change in the SCS
score.

• Alter Role changes the role of a role filler to

another role within the same template.

• Remove Duplicate Role Filler removes a
role filler that is coreferent to an already
matched role filler.

• Remove Cross Template Spurious Role
Filler removes a role filler that would be cor-
rect if present in another template (in the same
role).

• Remove Spurious Role Filler removes a role
filler that has not been mentioned in any of
the gold templates for a given document.

3964

• Introduce Role Filler introduces a role filler
that was not present in the predicted template
but was required to be present in the matching
gold template.

• Remove Template removes a predicted tem-
plate that could not be matched to any gold
template for a given document.

• Introduce Template introduces a template
that can be matched to an unmatched gold
template for a given document.

For a given document, all singleton Alter Span
and Alter Role transformations, as well as sets
of Alter Span + Alter Role transformations, are
applied first. The other transformations are applied
in the order in which they were detected, which
is dependent on the order of predicted and gold
template pairs in the optimized matching and the
order of the slots/roles in the template.

4.3 Error Type Mappings

The transformations in Section 4.2 are mapped onto
a set of IE-specific error types as shown in Figure 3.
In some cases, a single transformation maps onto
a single error, while in others a sequence of trans-
formations is associated with a single error. Full
details are in Appendix A.

5 Document-level IE Datasets

Our experiments employ three document-level in-
formation extraction datasets. We briefly describe
each below. Dataset statistics are summarized in
Table 1.

MUC-4 (MUC-4, 1992) consists of newswire
describing terrorist incidents in Latin America pro-
vided by the FBIS (Federal Broadcast Information
Services). We converted the optional templates to
required templates and removed the subtypes of
the incidents as done in previous work (Chambers,
2013; Du et al., 2021b) so that the dataset is
transformed into standardized templates. The roles
chosen from the MUC-4 dataset are PERPIND

(individual perpetrator), PERPORG (organization
perpetrator), TARGET (physical target), VICTIM

(human target), and WEAPON which are all
string-fill roles, as well as INCIDENT TYPE which
is a set-fill role with six possible role fillers:
attack, kidnapping, bombing, arson,

robbery, and forced work stoppage. As
seen in Table 1, 44.59% of the documents have
no templates, which makes the identification of
relevant vs. irrelevant documents critical to the
success of any IE model for this dataset.

ProMED8 (Patwardhan and Riloff, 2009) consists
of just 125 annotated tuning examples and 120
annotated test examples, describing global disease
outbreaks by subject matter experts from ProMED.
We use the tuning data as training data and reserve
10% of the test data, i.e. 12 examples, to create a de-
velopment/validation set. 19.83% of the documents
in the dataset have no templates. The roles that we
extract from the dataset are STATUS, COUNTRY,
DISEASE, and VICTIMS. DISEASE, VICTIMS,
and COUNTRY are string-fill roles9; STATUS is
a set-fill role with confirmed, possible,
and suspected as the possible role filler options.

SciREX (Jain et al., 2020) consists of annotated
computer science articles from Papers with Code10.
We focus specifically on its 4-ary relation extrac-
tion subtask. The roles present in each relation
are MATERIAL (DATASET), METRIC, TASK, and
METHOD which are all string-fills. We convert
the dataset from its original format to templates
for our models, and remove individual role fillers
(entities) that have no mentions in the text.11 We
also remove any duplicate templates.12 During pre-
processing, we remove malformed words longer
than 25 characters, as the majority of these consist
of concatenated words that are not present in the
corresponding text.

6 IE Modeling Details

In our experiments, we train and test two neural-
based IE models, described briefly below, on the
MUC-4, ProMED, and SciREX datasets. Note that

8http://www.promedmail.org
9In the ProMED dataset, COUNTRY is a set-fill role, but

since countries are explicitly mentioned in most of the docu-
ments, we can treat this role as a string-fill.

10https://paperswithcode.com
11According to Jain et. al., around 50% of relations

in the SciREX dataset contain one or more role fillers
that do not appear in the corresponding text. These rela-
tions are removed during evaluation for our end-to-end task.
https://github.com/allenai/SciREX/blob/master/README.md

12Removing unmentioned entities sometimes eliminates
differences between templates. This results in some templates
becoming identical or making some templates contain infor-
mation that is a subset of the information present in another
template. Thus, we only keep one of these processed tem-
plates.

3965

http://www.promedmail.org
https://paperswithcode.com

docs
(train/val/test/unannot.)

tokens per doc
(min/max/avg.)

templates per
relevant doc (max/avg.)

% docs with
0 templates

- MUC-4
(MUC-4, 1992) 1300 / 200 / 200 / 0 31 / 1695 / 362 14 / 1.61 44.59

- ProMED7 125 / 12 / 108 / 4979 57 / 4417 / 621 9 / 1.55 19.83
- SciREX
(Jain et al., 2020) 304 / 66 / 66 / 0 1153 / 13155 / 5401 16 / 2.28 0.00

Table 1: Dataset Statistics. A relevant document has one or more templates.

to create the training data for both the DyGIE++
and GTT models, we use the first mention of each
role filler in the document as the mention to be
extracted.

DyGIE++ with Clustering We use DyGIE++
— a span-based, sentence-level extraction model
— to identify role fillers in the document and
associate them with certain role types. During
training, the maximum span length enumerated
by the model is set to 8 tokens as in Wadden et al.
(2019) for the SciREX dataset and 11 tokens for the
ProMED dataset. We use bert-base-cased and al-
lenai/scibert_scivocab_uncased for the base BERT
and SciBERT models respectively, which both have
a maximum input sequence length of 512 tokens.

To aggregate entities detected by DyGIE++ into
templates, we use a clustering algorithm. For the
SciREX dataset, we adopt a heuristic approach that
assumes there is only one template per document,
and in that template, we assign the named entities
predicted by DyGIE++ for a document to the pre-
dicted role types. For the ProMED dataset, we
use a different clustering heuristic that ensures that
each template has exactly one role filler for the
COUNTRY and DISEASE roles, as detailed in the
dataset annotation guidelines. Also, since STATUS

has the value confirmed in the majority of the
templates, every template predicted has its STATUS

assigned as confirmed.

GTT is an end-to-end document-level template-
generating model. For the MUC-4 and SciREX
datasets, GTT is run for 20 epochs, while for
ProMED it is run for 36 epochs, to adjust for
the smaller size of the dataset. All other hyper-
parameters are set as in Du et al. (2021b). We use
the same BERT and SciBERT base models as de-
scribed in the DyGIE++ architecture above, both
with a maximum input sequence length of 512 to-
kens.

The computational budget and optimal hyper-
parameters for these models can be found in Ap-

pendix sections D and E, respectively.

7 Experimental Results and Analysis

We first discuss the results of DyGIE++ and GTT
on SciREX, ProMED, and MUC-4; and then exam-
ine the performance of these newer neural models
on the 1992 MUC-4 dataset vs. a few of the best-
performing IE systems at the time.

7.1 DyGIE++ vs. GTT

Table 2 shows the results of evaluating DyGIE++
and GTT on the SciREX, ProMED, and MUC-
4 datasets. We can see that all models perform
substantially worse on scientific texts (ProMED,
SciREX) as compared to news (MUC-4), likely
because the model base is pretrained for general-
purpose NLP applications (BERT) or there are not
enough examples of scientific-style text in the pre-
training corpus (SciBERT). In addition, models
seem to perform better on the news-style ProMED
dataset than the scientific-paper-based long-text
SciREX dataset. This can be explained by the
fact that all four models handle a maximum of
512 tokens as inputs, while the average length of a
SciREX document is 5401 tokens. Thus, a majority
of the text is truncated and, hence, unavailable to
the models.

Nevertheless, we see an increase in F1 scores for
all SciBERT-based models when compared to their
BERT counterparts for the SciREX dataset. The
same trend is seen for DyGIE++ for ProMED, but
not for GTT. This can be explained by the fact that
GTT (SciBERT) has more Missing Template errors
than GTT (BERT). So even if GTT (SciBERT)
performs better on the scientific slot VICTIMS, i.e.
it extracts more scientific information, it does not
identify relevant events as well as GTT (BERT),
reducing the F1 score across the remaining slots.

From the error count results in Figure 4, we
see that GTT makes fewer Missing Template er-
rors than DyGIE++ on the MUC-4 dataset (86
vs. 97). However, there is no significant difference

3966

SciREX ProMED MUC-4

DyGIE++ (BERT) 22.47% 35.01% 45.79%
DyGIE++ (SciBERT) 25.39% 38.15% -
GTT (BERT) 21.54% 44.64% 49.00%
GTT (SciBERT) 27.68% 42.96% -

Table 2: F1 Scores for the Neural Models on SciREX,
ProMED, and MUC-4

Precision Recall F1

GE NLToolset 56.69% 52.09% 54.29%
NYU PROTEUS 34.23% 31.28% 32.69%
SRI FASTUS 48.47% 38.42% 42.86%
UMass CIRCUS 48.62% 39.04% 43.30%

GTT (BERT) 63.18% 40.02% 49.00%
DyGIE++ (BERT) 61.90% 36.33% 45.79%

Table 3: Precision, Recall, and F1 scores for models on
the MUC-4 dataset. The first four models were devel-
oped in 1992, while the last two models are recent and
use neural-based methods.

in the number of missing templates between the
two models on the ProMED and SciREX datasets.
This could be because DyGIE++ is prone to over-
generation — there are significantly more Spurious
Role Filler and Spurious Template errors as com-
pared to the results of GTT. Since we use heuristics
that create templates based on the extracted role
fillers, this increases the probability that there was
a possible match to a gold template, reducing the
number of Missing Template Errors.

We can also conclude that DyGIE++ is worse at
coreference resolution when compared to GTT
as DyGIE++ makes more Duplicate Role Filler
errors across all datasets.

Overall, we find that the major source of er-
ror for both GTT and DyGIE++ across all the
datasets is missing recall in the form of Missing
Role Filler and Missing Template errors.

7.2 Early IE Models vs. DyGIE++ and GTT

Table 3 presents the precision, recall, and F1 perfor-
mance on the MUC-4 dataset for early models from
1992 alongside those of the more recent DyGIE++
and GTT models. We summarize key findings be-
low.

The best of the early models (GE NLToolset)
performs better than either of the modern mod-
els. It does so by doing a better job balancing
precision and recall, whereas GTT and DyGIE++
exhibit much higher precision and much lower re-
call.

Predicted Gold Match

power lines along the
road

power lines

enrique ruiz, retired enrique ruiz

maoist shining path
group

shining path

group of unidentified in-
dividuals who hurled a
bomb ... passing vehicle

group of unidentified indi-
viduals

Table 4: Span Errors in early models. The differences
between the predicted mention and its best gold men-
tion match according to our analysis tool are in bold.

The early models have more span errors than
the modern DyGIE++ and GTT models. The
representative kinds of span errors from the 1992
model outputs are shown in Table 4. One inter-
esting difference between the span errors in the
early models and the modern models is that the
predicted mentions include longer spans with more
information than is indicated in the best gold men-
tion match. Some could be due to errors in dataset
annotation; for example, maoist shining path group
versus shining path but a significant number of the
span errors occur as the early models seem to ex-
tract the entire sentence or clause which contains
the desired role filler mention. The modern models
tend to leave off parts of the desired spans, and if
they do predict larger spans than required, are only
off by a few words.

The early models have fewer Missing Template
and Missing Role Filler errors as compared to
the modern models. However, the former also
have more Spurious Template and Spurious Role
Filler errors than the latter, indicating these models
mitigate the issue of Missing Templates through
over-generation.

The early models have fewer Incorrect Role er-
rors as compared to modern models. However,
since all the models make relatively few such er-
rors, it suggests that role classification for predicted
mentions is not a major problem for modern mod-
els.

The main source of error for both early and
modern models is missing recall due to miss-
ing templates and missing role fillers. This
strongly suggests future systems can maximize
their performance by being less conservative in

3967

Error Counts for Models on the MUC - 4 Dataset

M
od

el
s

DyGIE++
 (BERT)

GTT
(BERT)

GE

NYU

SRI

UMass

Number of Errors

0 250 500 750 1000

Span Error
Duplicate Role Filler
Duplicate ParLally Matched Role Filler
Spurious Role Filler
Missing Role Filler
Incorrect Role
Incorrect Role + ParLally Matched Filler
Wrong Template Role Filler
Wrong Template For ParLally Matched Role Filler
Wrong Template + Wrong Role
Wrong Template + Wrong Role + ParLally Matched Filler
Spurious Template
Spurious Template Role Filler
Missing Template
Missing Template Role Filler

W
ith

in

Te
m

pl
at

e
W

ith
in

 +
 C

ro
ss

Te

m
pl

at
e

Te
m

pl
at

e
De

te
ct

io
n

Span Error
Duplicate Role Filler
Duplicate Partially Matched Role Filler
Spurious Role Filler
Missing Role Filler
Incorrect Role
Incorrect Role
 + Partially Matched Filler
Wrong Template Role Filler
Wrong Template
 For Partially Matched Role Filler
Wrong Template + Wrong Role
Wrong Template + Wrong Role
 + Partially Matched Filler
Spurious Template
Spurious Template Role Filler
Missing Template
Missing Template Role Filler

1

Figure 4: Automated Error Analysis Results (Error Counts) for Models on the MUC-4 dataset.

role filler detection and focusing on improvement
of the recall, even at the expense of potentially
decreasing some precision.

8 Limitations and Future Work

This work explores subtypes of Spurious Role
Filler errors extensively, however, we would like to
further analyze Missing Role Filler and template-
level errors for more fine-grained error subtypes
and the linguistic reasons behind why they occur.

Due to the pairwise comparisons between all
predicted and gold mentions in a role for all pairs
of predicted and gold templates in an example, the
error analysis tool is slow when the number of
both the predicted and gold templates as well as the
number of role fillers in the templates is high. Thus,
we would also like to improve the time complexity
of our template (and mention) matching algorithms
using an approach like bipartite matching (Yang
et al., 2021).

Currently, the error analysis tool reports exact
match precision/recall/F1 which is more suitable
for string-fill roles. We would like to extend the
tool to further analyze set-fill roles by implement-
ing metrics such as false-positive rate.

We used a limited number of models in this paper
as we aimed to develop and test the usability of
our error analysis tool. In the future, however, we
would like to test our tool on a wider range of
models, in addition to running more experiments
in order to reach more generalizable conclusions
about the behavior of IE models.

9 Conclusion

As new models for information extraction continue
to be developed, we find that their predicted error
types contain insights regarding their shortcomings.
Analyzing error patterns within model predictions
in a more fine-grained manner beyond scores pro-
vided by commonly used metrics is important for
the progress of the field. We introduce a framework
for the automatic categorization of model predic-
tion errors for document-level IE tasks. We used
the tool to analyze the errors of two state-of-the-
art models on three datasets from varying domains
and compared the error profiles of these models to
four of the earliest systems in the field on a dataset
from that era. We find that state-of-the-art models,
when compared to the earlier manual feature-based
models, perform better at span extraction but worse
at template detection and role assignment. With
a better balance between precision and recall, the
best early model outperforms the relatively high-
precision, low-recall modern models. Missing role
fillers remain the main source of errors, and scien-
tific corpora are the most difficult for all systems,
suggesting that improvements in these areas should
be a priority for future system development.

Acknowledgments

We thank the anonymous reviewers and Ellen Riloff
for their helpful comments(!) and Sienna Hu for
converting the 1992 model outputs to a format
compatible with our error analysis tool. Our re-
search was supported, in part, by NSF CISE Grant
1815455 and the Cornell CS Department CSURP
grants for undergraduate research.

3968

References
Alan Akbik, Tanja Bergmann, and Roland Vollgraf.

2019. Pooled contextualized embeddings for named
entity recognition. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 724–728, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Christoph Alt, Aleksandra Gabryszak, and Leonhard
Hennig. 2020. TACRED revisited: A thorough eval-
uation of the TACRED relation extraction task. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1558–
1569, Online. Association for Computational Lin-
guistics.

Dustin Arendt, Zhuanyi Shaw, Prasha Shrestha, Ellyn
Ayton, Maria Glenski, and Svitlana Volkova. 2021.
CrossCheck: Rapid, reproducible, and interpretable
model evaluation. In Proceedings of the Second
Workshop on Data Science with Human in the Loop:
Language Advances, pages 79–85, Online. Associa-
tion for Computational Linguistics.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1797–1807,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Nancy Chinchor. 1991. MUC-3 evaluation metrics. In
Third Message Uunderstanding Conference (MUC-
3): Proceedings of a Conference Held in San Diego,
California, May 21-23, 1991.

Xinya Du. 2021. Towards More Intelligent Extraction
of Information from Documents. Ph.D. thesis, Cor-
nell University. Copyright - Database copyright Pro-
Quest LLC; ProQuest does not claim copyright in
the individual underlying works.

Xinya Du and Claire Cardie. 2020. Event extrac-
tion by answering (almost) natural questions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 671–683, Online. Association for Computa-
tional Linguistics.

Xinya Du, Alexander Rush, and Claire Cardie.
2021a. GRIT: Generative role-filler transformers for
document-level event entity extraction. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 634–644, Online. Association
for Computational Linguistics.

Xinya Du, Alexander Rush, and Claire Cardie. 2021b.
Template filling with generative transformers. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 909–914, Online. Association for Computa-
tional Linguistics.

Mireia Farrús, Marta R. Costa-jussà, José B. Mar-
iño, and José A. R. Fonollosa. 2010. Linguistic-
based evaluation criteria to identify statistical ma-
chine translation errors. In Proceedings of the 14th
Annual conference of the European Association for
Machine Translation, Saint Raphaël, France. Euro-
pean Association for Machine Translation.

Ralph Grishman. 2019. Twenty-five years of infor-
mation extraction. Natural Language Engineering,
25(6):677–692.

Sarthak Jain, Madeleine van Zuylen, Hannaneh Ha-
jishirzi, and Iz Beltagy. 2020. SciREX: A chal-
lenge dataset for document-level information extrac-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 7506–7516, Online. Association for Compu-
tational Linguistics.

Daniel Jurafsky and James H. Martin. 2021. Speech
and language processing, 3rd ed. draft, chapter 17,
information extraction.

Ahmed Kholy and Nizar Habash. 2011. Automatic er-
ror analysis for morphologically rich languages.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
Wall Street corral: An empirical investigation of er-
ror types in parser output. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1048–1059, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Jonathan K. Kummerfeld and Dan Klein. 2013. Error-
driven analysis of challenges in coreference resolu-
tion. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 265–277, Seattle, Washington, USA. Associa-
tion for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gener-
ation. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 894–908, Online. Association for Com-
putational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

3969

https://doi.org/10.18653/v1/N19-1078
https://doi.org/10.18653/v1/N19-1078
https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://doi.org/10.18653/v1/2020.acl-main.142
https://doi.org/10.18653/v1/2020.acl-main.142
https://doi.org/10.18653/v1/2021.dash-1.13
https://doi.org/10.18653/v1/2021.dash-1.13
https://aclanthology.org/D13-1185
https://aclanthology.org/D13-1185
https://aclanthology.org/M91-1002
https://www.proquest.com/dissertations-theses/towards-more-intelligent-extraction-information/docview/2581838694/se-2?accountid=10267
https://www.proquest.com/dissertations-theses/towards-more-intelligent-extraction-information/docview/2581838694/se-2?accountid=10267
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://aclanthology.org/2021.eacl-main.52
https://aclanthology.org/2021.eacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.70
https://aclanthology.org/2010.eamt-1.12
https://aclanthology.org/2010.eamt-1.12
https://aclanthology.org/2010.eamt-1.12
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670
https://web.stanford.edu/~jurafsky/slp3/17.pdf
https://web.stanford.edu/~jurafsky/slp3/17.pdf
https://web.stanford.edu/~jurafsky/slp3/17.pdf
https://aclanthology.org/D12-1096
https://aclanthology.org/D12-1096
https://aclanthology.org/D12-1096
https://aclanthology.org/D13-1027
https://aclanthology.org/D13-1027
https://aclanthology.org/D13-1027
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3036–3046, Minneapolis, Minnesota.
Association for Computational Linguistics.

Sebastian Martschat, Thierry Göckel, and Michael
Strube. 2015. Analyzing and visualizing corefer-
ence resolution errors. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 6–10, Denver, Colorado. Associa-
tion for Computational Linguistics.

Sebastian Martschat and Michael Strube. 2014. Re-
call error analysis for coreference resolution. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2070–2081, Doha, Qatar. Association for
Computational Linguistics.

MUC-3. 1991. Third Message Understanding Confer-
ence (MUC-3): Proceedings of a conference held in
San Diego, California, May 21-23, 1991.

MUC-4. 1992. Fourth message understanding confer-
ence (MUC-4). In Proceedings of FOURTH MES-
SAGE UNDERSTANDING CONFERENCE (MUC-
4), McLean, Virginia.

Siddharth Patwardhan and Ellen Riloff. 2009. A uni-
fied model of phrasal and sentential evidence for in-
formation extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–160, Singapore. Asso-
ciation for Computational Linguistics.

Maja Popović and Hermann Ney. 2011. Towards au-
tomatic error analysis of machine translation output.
Computational Linguistics, 37(4):657–688.

Chris Quirk and Hoifung Poon. 2017. Distant super-
vision for relation extraction beyond the sentence
boundary. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
1171–1182, Valencia, Spain. Association for Com-
putational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Olga Uryupina. 2008. Error analysis for learning-
based coreference resolution. In Proceedings of
the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech, Mo-
rocco. European Language Resources Association
(ELRA).

Josep Valls-Vargas, Jichen Zhu, and Santiago Ontañón.
2017. Error analysis in an automated narrative in-
formation extraction pipeline. IEEE Transactions
on Computational Intelligence and AI in Games,
9(4):342–353.

David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error analysis of statistical ma-
chine translation output. In Proceedings of the Fifth
International Conference on Language Resources
and Evaluation (LREC’06), Genoa, Italy. European
Language Resources Association (ELRA).

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 747–763, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Hang Yang, Dianbo Sui, Yubo Chen, Kang Liu, Jun
Zhao, and Taifeng Wang. 2021. Document-level
event extraction via parallel prediction networks.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6298–6308, Online. Association for Computational
Linguistics.

Daniel Zeman, Mark Fishel, Jan Berka, and Ondrej Bo-
jar. 2011. Addicter: What is wrong with my transla-
tions? In Prague Bull. Math. Linguistics.

Junchi Zhang, Yanxia Qin, Yue Zhang, Mengchi Liu,
and Donghong Ji. 2019. Extracting entities and
events as a single task using a transition-based neural
model. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, pages
5422–5428. ijcai.org.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency

3970

https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.3115/v1/N15-3002
https://doi.org/10.3115/v1/N15-3002
https://doi.org/10.3115/v1/D14-1221
https://doi.org/10.3115/v1/D14-1221
https://aclanthology.org/M91-1000
https://aclanthology.org/M91-1000
https://aclanthology.org/M91-1000
https://www.aclweb.org/anthology/M92-1000
https://www.aclweb.org/anthology/M92-1000
https://aclanthology.org/D09-1016
https://aclanthology.org/D09-1016
https://aclanthology.org/D09-1016
https://doi.org/10.1162/COLI_a_00072
https://doi.org/10.1162/COLI_a_00072
https://aclanthology.org/E17-1110
https://aclanthology.org/E17-1110
https://aclanthology.org/E17-1110
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://www.lrec-conf.org/proceedings/lrec2008/pdf/487_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/487_paper.pdf
https://doi.org/10.1109/TCIAIG.2016.2575823
https://doi.org/10.1109/TCIAIG.2016.2575823
http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.24963/ijcai.2019/753
https://doi.org/10.24963/ijcai.2019/753
https://doi.org/10.24963/ijcai.2019/753
https://doi.org/10.18653/v1/D18-1244

trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Ming Zhou, Bo Wang, Shujie Liu, Mu Li, Dongdong
Zhang, and Tiejun Zhao. 2008. Diagnostic eval-
uation of machine translation systems using auto-
matically constructed linguistic check-points. In
Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
1121–1128, Manchester, UK. Coling 2008 Organiz-
ing Committee.

3971

https://doi.org/10.18653/v1/D18-1244
https://aclanthology.org/C08-1141
https://aclanthology.org/C08-1141
https://aclanthology.org/C08-1141

A Detailed Error Types Mappings

The specific list of transformations applied in the error correction process.

(1) Span Error. Each singleton Alter Span transformation is mapped to a Span Error. A Span Error
occurs when a predicted role filler becomes an exact match to the a gold role filer only upon span alteration.

(2) Duplicate Role Filler. Each singleton Remove Duplicate Role Filler transformation is mapped to a
Duplicate Role Filler error. A Duplicate Role Filler error occurs when a spurious role filler is coreferent
to an already matched role filler and is treated as a separate entity. This happens when the system fails at
coreference resolution.

(3) Duplicate Partially Matched Role Filler (Spurious). Same as (2) above, but with an added Alter
Span transformation applied first to account for partial matching. This happens when the system fails at
correct span extraction and coreference resolution.

(4) Spurious Role Filler. Each singleton Remove Spurious Role Filler transformation is mapped to a
Spurious Role Filler error. A Spurious Role Filler error occurs when a mention is extracted from the text
with no connection to the gold templates.

(5) Missing Role Filler. Each singleton Introduce Role Filler transformation is mapped to a Missing
Role Filler error. A Missing Role Filler error occurs when a role filler is present in the gold template but
not the predicted template for a given role.

(6) Incorrect Role. Each singleton Alter Role transformation is mapped to an Incorrect Role. An
Incorrect Role occurs when a spurious role filler is assigned to the incorrect role within the same template,
i.e. the role filler would have been correct if present filled in another slot/role in the same template. This
happens when the system fails at correct role assignment.

(7) Incorrect Role + Partially Matched Filler. Same as (4) above, but with an added Alter Span
transformation applied first to account for partial matching. This happens when the system fails at correct
span extraction and role assignment.

(8) Wrong Template for Role Filler. Each singleton Remove Cross Template Spurious Role Filler
transformation is mapped to a Wrong Template for Role Filler error. A Wrong Template for Role Filler
occurs when a spurious role filler in one template can be assigned to the correct role in another template,
i.e. it would be correct if it had been placed in another template. This happens when the system fails at
correct event assignment.

(9) Wrong Template for Partially Matched Role Filler. Same as (6) above, but with an added Alter
Span transformation applied first to account for partial matching. This happens when the system fails at
correct span extraction and event assignment.

(10) Wrong Template + Wrong Role. An Alter Role and Remove Cross Template Spurious Role
Filler transformation are applied to the same predicted role filler in that order to be mapped to a Wrong
Template + Wrong Role error. A Wrong Template + Wrong Role error occurs when a spurious role filler
can be assigned to another role in another template. This happens when the system fails at correct role
assignment and event assignment.

(11) Wrong Template + Wrong Role + Partially Matched Filler. Same as (8) above, but with an
added Alter Span transformation applied first to account for partial matching. This happens when the
system fails at correct span extraction, role assignment and event assignment.

(12) Spurious Template.13 Each singleton Remove Template is mapped to a Spurious Template error.
A Spurious Template error occurs when an extra predicted template is present that cannot be matched to a
gold template.

(13) Missing Template.14 Each singleton Introduce Template transformation is mapped to a Missing
Template error. A Missing Template error occurs when there is a gold template remaining that has no
matching predicted template.

13The role fillers in the Spurious Templates are not added to the Spurious Role Filler error counts but are accounted for in the
Spurious Template Role Filler counts.

14The role fillers in the Missing Templates are not added to the Missing Role Filler error counts but are accounted for in the
Missing Template Role Filler counts.

3972

B Example Error Types with ProMED

We also provide example error types with the ProMED dataset.

Error Types Transformations(s) Predicted Gold
i) Span Error Alter Span Victims: [young fattening cat-

tle]
Victims: [young fattening cattle
and sheep]

ii) Duplicate Role Filler Remove Duplicate Role
Filler

Disease: [west nile fever], [west
nile virus]

Disease: [west nile fever, west
nile virus]

iii) Within Template Incor-
rect Role

Alter Role
T1:
Disease: [2 humans]
Victims: —

T1:
Disease: —
Victims: [2 humans]

iv) Wrong Template For
Role Filler

Remove Cross Template
Spurious Role Filler T1:

Country: [netherlands]
Victims: [770 cases]

T1:
Country: [netherlands]
Victims: [its 11th case]

T2:
Country: [united king-
dom]
Victims: [770 cases]

v) Spurious Template Remove Spurious Tem-
plate T1: Country: [china]

—

vi) Missing Template Introduce Missing Tem-
plate

—
T1:
Country: [germany]
Disease: [fmd]
Victims: [2 pigs]

Table 5: Some examples of the Error Types taken from the ProMED dataset. For each template, in every role, the
role fillers within brackets refer to the same entity, while role fillers in different brackets refer to different entities.
The text in bold black indicates the error in the prediction.

C Precision, Recall, and F1 Scores for All Models on all Three Datasets

We also provide additional precision, recall scores along with the F1 scores.

Models SciREX ProMED MUC-4

DyGIE++ (BERT) 27.85 / 18.83 / 22.47 51.13 / 26.62 / 35.01 61.90 / 36.33 / 45.79
DyGIE++ (SciBERT) 30.47 / 21.76 / 25.39 52.55 / 29.94 / 38.15 -
GTT (BERT) 52.86 / 13.53 / 21.54 68.58 / 33.09 / 44.64 63.18 / 40.02 / 49.00
GTT (SciBERT) 53.68 / 18.65 / 27.68 64.68 / 32.16 / 42.96 -

Table 6: Precision, Recall and F1 Scores (%).

D Computational Budget

The GTT (BERT) model on the MUC-4 dataset took 1 hour and 21 minutes to train and around 11 minutes
to test on Google Colab (GPU).

The GTT (BERT) model on the ProMED dataset took around 24 minutes to train and 4 minutes to test,
while the GTT (SciBERT) model on the ProMED dataset took around 13 minutes to train and 4 minutes
to test, both on Google Colab (GPU). The DyGIE++ (BERT) model on the ProMED dataset took around
50 minutes to train, while the DyGIE++ (SciBERT) model on the ProMED dataset took around 1 hour
and 30 minutes to train, both on a NVIDIA V100 GPU.

For the SciREX dataset, it took around 10-20 minutes to run the GTT (BERT) and GTT (SciBERT)
models on a NVIDIA V100 GPU. It is worth noting that since the GTT model embeds all inputs before
training and SciREX documents are extremely long, more than 25 GB of memory needs to be allocated at
the embedding phrase. The training process has normal memory usage. The DyGIE++ (BERT) model
took around 2 hours to train, while the DyGIE++ (SciBERT) model took around 4 hours to train, both on
a NVIDIA V100 GPU.

Our error analysis tool can be run completely on a CPU and takes a couple of minutes to run, depending
on the size of the dataset and the predicted outputs.

3973

E Hyperparameters and Model Configurations

We did not run the DyGIE++ model on the MUC-4 dataset as the model output was made available to us
by Xinya Du.

GTT (BERT)

Hyperparameter Name Value

number of gpus 1
number of tpu cores 0

max_grad_norm 1.0
gradient_accumulation_steps 1

seed 1
base_model bert_base_uncased
learning_rate 5e-05
weight_decay 0.0
adam_epsilon 1e-08
warmup_steps 0

num_train_epochs 20
train_batch_size 1
eval_batch_size 1

max_seq_length_src 435
max_seq_length_tgt 75

threshold 80.0

Table 7: GTT on the MUC-4 dataset

GTT (BERT) GTT (SciBERT)

Hyperparameter Name Value Value

number of GPUs 1 1
number of TPU cores 0 0

max_grad_norm 1.0 1.0
gradient_accumulation_steps 1 1

seed 1 1
base_model bert_base_uncased allenai_ scibert_

scivocab_uncased
learning_rate 5e-05 5e-05
weight_decay 0.0 0.0
adam_epsilon 1e-08 1e-08
warmup_steps 0 0

num_train_epochs 36 36
train_batch_size 1 1
eval_batch_size 1 1

max_seq_length_src 435 435
max_seq_length_tgt 75 75

threshold 80.0 80.0

Table 8: GTT Models on the ProMED dataset

3974

GTT (BERT) GTT (SciBERT)

Hyperparameter Name Value Value

number of GPUs 1 1
number of TPU cores 0 0

max_grad_norm 1.0 1.0
gradient_accumulation_steps 1 1

seed 1 1
base_model bert_base_uncased allenai_ scibert_

scivocab_uncased
learning_rate 5e-05 5e-05
weight_decay 0.0 0.0
adam_epsilon 1e-08 1e-08
warmup_steps 0 0

num_train_epochs 20 20
train_batch_size 1 1
eval_batch_size 1 1

max_seq_length_src 435 435
max_seq_length_tgt 75 75

threshold 80.0 80.0

Table 9: GTT Models on the SciREX dataset

DyGIE++ (BERT) DyGIE++ (SciBERT)

Hyperparameter Name Value Value

number of GPUs 1 1
max_span_width 11 11

base_model bert_base_cased allenai_ scibert_
scivocab_cased

learning_rate 5e-04 5e-04
patience 5 5

num_train_epochs 20 20
train_batch_size 32 32

num_dataloader_workers 2 2
max seq length 512 512
ner loss weight 1.0 1.0

relation loss weight 0.0 0.0
coreference loss weight 0.2 0.2

events loss weight 0.0 0.0
target task ner ner

Table 10: DyGIE++ Models on the ProMED dataset

DyGIE++ (BERT) DyGIE++ (SciBERT)

Hyperparameter Name Value Value

number of GPUs 1 1
max_span_width 8 8

base_model bert_base_cased allenai_ scibert_
scivocab_cased

learning_rate 5e-04 5e-04
patience 5 5

num_train_epochs 20 20
train_batch_size 32 32

num_dataloader_workers 2 2
max seq length 512 512
ner loss weight 1.0 1.0

relation loss weight 0.0 0.0
coreference loss weight 0.2 0.2

events loss weight 0.0 0.0
target task ner ner

Table 11: DyGIE++ Models on the SciREX dataset

3975

