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Abstract
In data-to-text (D2T) generation, training on
in-domain data leads to overfitting to the data
representation and repeating training data noise.
We examine how to avoid finetuning pretrained
language models (PLMs) on D2T generation
datasets while still taking advantage of surface
realization capabilities of PLMs. Inspired by
pipeline approaches, we propose to generate
text by transforming single-item descriptions
with a sequence of modules trained on general-
domain text-based operations: ordering, aggre-
gation, and paragraph compression. We train
PLMs for performing these operations on a syn-
thetic corpus WIKIFLUENT which we build
from English Wikipedia. Our experiments on
two major triple-to-text datasets—WebNLG
and E2E—show that our approach enables D2T
generation from RDF triples in zero-shot set-
tings.1

1 Introduction

The aim of data-to-text (D2T) generation is to pro-
duce natural language descriptions of structured
data (Gatt and Krahmer, 2018; Reiter and Dale,
1997). Although pipelines of rule-based D2T gener-
ation modules are still used in practice (Dale, 2020),
end-to-end approaches based on PLMs recently
showed superior benchmark performance (Ke et al.,
2021; Chen et al., 2020a; Ferreira et al., 2020; Kale
and Rastogi, 2020b; Ribeiro et al., 2020), surpass-
ing pipeline systems (Ferreira et al., 2019) in both
automatic and human evaluation metrics.

Finetuning PLMs on human-written references
is widely accepted as a standard approach for adapt-
ing PLMs to the D2T generation objective and
achieving good performance on a given bench-
mark (Agarwal et al., 2021; Ke et al., 2021). How-
ever, finetuning a model on the domain-specific
data leads to overfitting to the particular bench-
mark, decreasing performance on out-of-domain

1Our code and data is available at https://github.
com/kasnerz/zeroshot-d2t-pipeline.
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Figure 1: A scheme of our pipeline for zero-shot data-
to-text generation from RDF triples: (1) ordering, (2)
aggregation, (3) paragraph compression. Individual
pipeline modules are trained on a large general-domain
text corpus and operate over text in natural language.
In-domain knowledge is included only in the simple
hand-crafted templates for each predicate.

data (Laha et al., 2019). Gathering a large set of ref-
erences for a particular domain is also costly and
time-consuming as it usually requires collecting
human-written references through crowdsourcing
(Dušek et al., 2020). These problems can be par-
tially mitigated using few-shot approaches (Chen
et al., 2020b; Ke et al., 2021; Su et al., 2021a),
which operate with only several dozens or hun-
dreds of annotated examples, but the robustness
of these approaches is questionable—selecting a
representative set of examples which would im-
prove performance is difficult (Chang et al., 2021a),
and the limited sample is often noisy, increasing
the chance of hallucinations and omissions (Dušek
et al., 2019; Harkous et al., 2020; Rebuffel et al.,
2022).

In this paper, we present a zero-shot alternative
to the traditional finetuning paradigm by formu-
lating the D2T generation from RDF triples as a
sequence of general-domain operations over text
in natural language. We start by transforming indi-
vidual triples to text using trivial templates, which

3914

https://github.com/kasnerz/zeroshot-d2t-pipeline
https://github.com/kasnerz/zeroshot-d2t-pipeline


we subsequently order, aggregate, and compress on
the paragraph level to produce the resulting descrip-
tion of the data. In constrast to traditional pipeline
systems, all our pipeline modules are built upon
PLMs and operate over sentences in natural lan-
guage. The modules are trained on our new WIKI-
FLUENT corpus, which contains 934k examples of
first paragraphs from the English Wikipedia, each
supplied with a synthesized set of simple template-
like sentences which together convey the meaning
of the original paragraph. Our approach allows
generating natural language descriptions from RDF
triples with a minimum amount of domain-specific
rules or knowledge and without using training data
from the D2T datasets. Although our approach is
primarily a probe into the territory of zero-shot ap-
proaches and cannot yet match the quality of state-
of-the-art models, we show that it can yield large
improvements upon simple baselines and match
older supervised systems on automatic metrics for
text fluency. Moreover, the semantic accuracy met-
rics and our manual error analysis suggest that our
approach offers a way to prevent omissions and
hallucinations common in few-shot approaches.

Our contributions are the following:
(1) We propose an alternative D2T generation ap-

proach based on general-domain text-to-text op-
erations (ordering, aggregation, and paragraph
compression).

(2) We introduce a synthetic WIKIFLUENT corpus
containing 934k sentences based on English
Wikipedia, providing training data for the oper-
ations in (1).

(3) We apply our system on two D2T datasets and
evaluate its performance both automatically
and manually, including the contribution of in-
dividual pipeline modules.

(4) We release our code, data, pretrained models,
and system outputs to ease future research.1

2 Related Work

D2T Generation with PLMs Large neural lan-
guage models pretrained on self-supervised tasks
(Lewis et al., 2020; Liu et al., 2019; Devlin et al.,
2019) have recently gained a lot of traction in D2T
generation research (Ferreira et al., 2020; Kasner
and Dušek, 2020b). Following Chen et al. (2020b),
other works adopted PLMs for few-shot D2T gen-
eration (Chang et al., 2021b; Su et al., 2021a).
Kale and Rastogi (2020b) and Ribeiro et al. (2020)
showed that PLMs using linearized representations

of data can outperform graph neural networks on
graph-to-text datasets, recently surpassed again by
graph-based models (Ke et al., 2021; Chen et al.,
2020a). Although the models make use of general-
domain pretraining tasks, all of them are eventually
finetuned on domain-specific data.

Pipeline-based D2T Generation Until the re-
cent surge of end-to-end approaches (Dušek et al.,
2020), using several modules connected in a
pipeline was a major approach for D2T genera-
tion (Gatt and Krahmer, 2018; Reiter, 2007; Reiter
and Dale, 1997). Our approach is inspired by the
pipeline approaches, in particular the pipelines uti-
lizing neural modules (Ferreira et al., 2019). In
contrast with these approaches, our pipeline works
with unstructured data in natural language and it
operates in zero-shot setting, i.e. without using any
training data from target D2T datasets.

Laha et al. (2019) introduce a three-step pipeline
for zero-shot D2T generation similar to ours. Un-
like the approach we describe here, they use a semi-
automatic template generation system,2 their sen-
tence fusion is rule-based, and they do not address
content planning.

Content Planning in D2T Generation Content
planning, i.e. the task of ordering input facts and
aggregating them into individual sentences, is one
of the steps of the traditional D2T pipeline (Gatt
and Krahmer, 2018). As shown by Moryossef et al.
(2019a,b) and confirmed by other works (Pudup-
pully et al., 2019; Zhao et al., 2020; Trisedya et al.,
2020; Su et al., 2021b), including a content plan
improves the quality of outputs in neural D2T
pipelines. Unlike the aforementioned planners,
which use predicates or keys from D2T datasets for
representing the data items, our planner is trained
on ordering sentences in natural language.

Sentence Ordering Sentence ordering is the task
of organizing a set of natural language sentences
to increase the coherence of a text (Barzilay et al.,
2001; Lapata, 2003). Several neural methods for
this task were proposed, using either interactions
between pairs of sentences (Chen et al., 2016; Li
and Jurafsky, 2017), global interactions (Gong
et al., 2016; Wang and Wan, 2019), or combination
of both (Cui et al., 2020). We base our ordering
module (§5.2) on the recent work of Calizzano et al.

2As we describe in §5.1, we opted for a simpler way
for generating the templates to showcase the results of our
approach independently of the template generator quality.
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(2021), who use a pointer network (Wang and Wan,
2019; Vinyals et al., 2015) on top of a PLM.

Aggregating Input into Sentences Typically,
multiple pieces of input information need to be
merged into a single sentence. Previous works
(Wiseman et al., 2018; Shao et al., 2019; Shen
et al., 2020; Xu et al., 2021) capture the segments
which correspond to individual parts of the input
as latent variables. Unlike these works, we adopt a
simpler scenario using an already ordered sequence
of facts (see §3.1), into which we selectively insert
delimiters to mark sentence boundaries.

Paragraph Compression We introduce para-
graph compression (PC) as a new task and the
final step in our D2T generation pipeline. This
task combines several standard natural-language
tasks including sentence fusion, rephrasing, and
coreference resolution. Unlike text summarization
or simplification (Zhang et al., 2020; Jiang et al.,
2020), we aim to convey the complete semantics
of the text without omitting any facts. In contrast
to sentence fusion (Geva et al., 2019; Barzilay and
McKeown, 2005) or sentence compression (Filip-
pova and Altun, 2013), we operate in the context
of multiple sentences in a paragraph. The task is
the central focus of our WIKIFLUENT corpus (§4).

3 Method

In this section, we provide the formal description
of our proposed approach. We focus on the task
of producing a natural language description Y for
a set of n RDF triples X “ tx1, . . . , xnu. Each
triple xi “ tsi, pi, oiu consists of subject si, predi-
cate pi, and object oi.

Our pipeline proceeds as follows. Given a set of
triples X on the input, we:
(1) transform the triples into facts, which are sen-

tences in natural language,
(2) sort the facts using an ordering module,
(3) insert sentence delimiters between the sorted

facts using an aggregation module,
(4) input the ordered sequence of facts with de-

limiters into a paragraph compression module,
which generates the final description Y .

The individual steps are described in the fol-
lowing sections: transforming individual triples to
text (§3.1), ordering (§3.2), aggregation (§3.3), and
paragraph compression (§3.4).

3.1 Transforming Triples to Facts

The first step in our pipeline involves transforming
each of the input triples xi P X into a fact fi P F
using a transformation T : X Ñ F . We define
a fact fi as a single sentence in natural language
describing xi. The transformation serves two pur-
poses: (a) preparing the data for the subsequent
text-to-text operations, (b) introducing in-domain
knowledge about the semantics of individual predi-
cates. This step can be realized e.g. using a simple
template for each predicate (cf. §5.1).

3.2 Ordering the Facts

We assume that the default order of triples X is ran-
dom and the same applies for the respective facts F .
Note, however, that that F is a indeed set of mean-
ingful sentences. We can use this to our advantage
and apply a sentence ordering model to maximize
the coherency of the paragraph resulting from their
concatenation. An example outcome of such oper-
ation may be grouping together facts mentioning
birth date and birth place of a person, followed
by their occupation (see Figure 1). The ordering
module allows downstream modules to only focus
on operations over neighboring sentences.

Formally, we apply the ordering model OpF q

to get an ordered sequence of facts: Fo “

tfo1 , . . . , fonu, where o1:n is a permutation of in-
dices. We describe our ordering model in §5.2.

3.3 Aggregating the Facts

Some facts will be typically mentioned together in
a single sentence. Considering the previous exam-
ple, occupation is likely to be mentioned separately,
while birth date and birth place are likely to be
mentioned together. Using an ordered sequence of
facts as input, we can apply an aggregation model
to decide which facts should be merged into a sin-
gle sentence.

Formally, the aggregation model takes a se-
quence of ordered facts Fo as input and pro-
duces a sequence of sentence delimiters ApFoq “

tδo1 , δo2 , . . . , δon´1u; δi P t0, 1u. The output
δi “ 1 means that the neighboring facts should
be mentioned separately, i.e. the neighboring sen-
tences should not be fused. Conversely, δi “ 0
means that the facts should be aggregated and their
corresponding sentences should be fused. We de-
scribe our aggregation model in §5.3.
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3.4 Paragraph Compression
The paragraph compression (PC) model is a gen-
erative model which outputs the final text descrip-
tion. It has two main objectives: (a) fusing re-
lated sentences, i.e., sentences i and j in between
which δi “ 0, and (b) rephrasing the text to im-
prove its fluency, e.g. fixing disfluencies in the
templates, replacing noun phrases with refering
expressions, etc. The goal of the task is to pre-
serve the semantics of the text which is an already
ordered sequence of sentences, so the edits will
typically be minor. Formally, the model takes as
input the ordered sequence of facts with delimiters
Fa “ tfo1 , δo1 , fo2 , . . . , δon´1 , fonu and produces
the final text Y . We describe our PC model in §5.4.

4 WIKIFLUENT Corpus

Here we descibe the process of building a large-
scale synthetic corpus WIKIFLUENT. The corpus
provides training data for the neural models which
we use in our implementation of the ordering, ag-
gregation, and paragraph compression modules
(cf. §5).

Our goal is to cover a broad range of domains
while capturing the sentence style in D2T gener-
ation with respect to both the input facts and the
target descriptions. In other words, we aim to build
a corpus in which (1) the input is a set of simple,
template-like sentences, (2) the output is a fluent
text in natural language preserving the semantics
of the input. As we describe below in detail, we
achieve that by using human-written paragraphs in
English Wikipedia and applying split-and-rephrase
and coreference resolution models to obtain syn-
thetic source texts. The process is illustrated in
Figure 2; corpus statistics are included in Appendix
A.

4.1 Data Source
For building the WIKIFLUENT corpus, we ex-
tracted 934k first paragraphs of articles from a
Wikipedia dump3 using WikiExtractor (Attardi,
2015). Wikipedia is commonly used for large-scale
pretraining of D2T generation models (Jin et al.,
2020; Chen et al., 2020a). Although it is not bias-
free, it provides more balanced sample of natural
language use than typical D2T generation datasets.
We used the first paragraphs of Wikipedia entries,
which contain mostly concise, fact-based descrip-
tions. We selected paragraphs with length between

3enwiki-20210401-pages-articles-multistream

The Westmeath Examiner is a weekly newspaper in Westmeath, Ireland.

It is located in Westmeath, Ireland. 

The Westmeath Examiner is a weekly newspaper.

original paragraph

The Westmeath Examiner is a weekly newspaper.  

It was founded in 1882. 

It was founded in 1882. 

split-and-rephrase

coreference replacement

The Westmeath Examiner is located in Westmeath, Ireland. 

The Westmeath Examiner was founded in 1882. 
processed paragraph

split 
successful

pronouns
resolved

Figure 2: The building process of the WIKIFLUENT
corpus. We apply a split-and-rephrase model on each
sentence in the paragraph and resolve coreferences in
the split sentences. The result is a set of simple sen-
tences which together convey the same meaning as the
original paragraph. The synthesized sentences are used
as input into our models, the original human-written
texts are used as ground truth.

30-430 characters; filtering out lists, disambigua-
tions, and repeated and malformed paragraphs. To
balance the length of inputs, we selected 250k ex-
amples each from 4 equally sized length ranges
(30-130 characters, etc.).

4.2 Split-and-Rephrase

To generate a set of simple sentences, we divide
each paragraph into sentences using NLTK (Bird,
2006) and apply a split-and-rephrase model on
each sentence. Split-and-rephrase is a task of split-
ting a complex sentence into a meaning preserv-
ing sequence of shorter sentences (Narayan et al.,
2017). The process is illustrated in the upper part
of Figure 2.

We train our split-and-rephrase model on the
large-scale WikiSplit corpus by Botha et al.
(2018), containing human-made sentence splits
from Wikipedia edit history. Following the same
setup as for a paragraph compression model (§3.4),
we train BART-base (Lewis et al., 2020) on the
WikiSplit dataset in a sequence-to-sequence set-
ting. Next, we apply the trained split-and-rephrase
model on each sentence in our Wikipedia-based
corpus, uniformly randomly choosing between 0-2
recursive calls to ensure that the splits are not de-
terministic. If the sentence cannot be meaningfully
split, the model tends to duplicate the sentence on
the output; in that case, we use only the original
sentence and do not proceed with the splitting.
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4.3 Coreference Replacement

As the next step, we concatenate the split sentences
and apply a coreference resolution model (Gardner
et al., 2018; Lee et al., 2018) in order to replace
referring expressions with their antencendents (e.g.,
pronouns with noun phrases). The motivation for
this step is to match the style of the facts (see §3.1),
which do not use pronouns since each fact describes
a single triple only. Note that this procedure re-
places the referring expressions only in the synthe-
sized sentences (which are used as input) and keeps
them in the original paragraphs (which are used as
ground truth). As a consequence, the paragraph
compression module is implicitly trained to gener-
ate referring expressions in the final description.

4.4 Filtering

To ensure that the generated sentences convey
the same semantics as the original paragraph, we
use a pretrained RoBERTa model4 (Liu et al.,
2019) trained on the MultiNLI dataset (Williams
et al., 2018) for checking the semantic accuracy
of the generated text. Following Dušek and Kas-
ner (2020), we test if the original paragraph en-
tails each of the synthesized sentences (checking
for omissions), and if the set of concatenated syn-
thesized sentences entails the original paragraph
(checking for hallucinations). In a filtered version
of the WIKIFLUENT corpus, we include only the
examples without omissions or hallucinations (as
computed by the model), reducing it to 714k exam-
ples (approximately 75% of the original size).

5 Implementation

In this section, we describe how we implement
our pipeline modules (§3) using simple template
transformations (§5.1) and neural models trained
on the WIKIFLUENT dataset (§5.2-5.4).5

5.1 Templates

We transform triples into facts (§3.1) using a single-
triple template ti for each predicate. For exam-
ple, if pi “ instrument, then T ppiq “ “si plays oi”
(cf. Table 1). We follow previous work in which
simple hand-crafted templates have been used as
an efficient way of introducing domain knowl-
edge (Kale and Rastogi, 2020a; Kasner and Dušek,
2020a). Compared to more complex rule-based

4https://huggingface.co/roberta-large-mnli
5Our training setup details are included in Appendix C.

dataset predicate template

WebNLG
instrument <s> plays <o>.
countryOrigin <s> comes from <o>.
width <s> is <o> wide.

E2E
eatType <s> is a <o>.
food <s> serves <o> food.
area <s> is in the <o>.

Table 1: Examples of templates for predicates in the
WebNLG and E2E datasets with placeholders for the
subject (<s>) and the object (<o>).

template generation engines (Laha et al., 2019; Hei-
dari et al., 2021; Mehta et al., 2021), the approach
may produce less fluent outputs, but it minimizes
manual workload and makes it easier to control the
quality of the input for the subsequent steps.

5.2 Ordering Model

For our ordering model (§3.2), we use the Sim-
ple Pointer model from Calizzano et al. (2021).
The model is based on a pretrained BART-base
extended with a pointer network from Wang and
Wan (2019). We provide a short description of the
model here; for details please refer to Calizzano
et al. (2021).

In the encoding phase, facts F are concatenated
and tokenized. Each fact is surrounded by spe-
cial tokens denoting the beginning (<s>) and the
end (</s>) of the fact. The sequence is processed
by the BART encoder, generating a sequence of
encoder states E for each end token </s> repre-
senting the preceding fact.

The decoding proceeds autoregressively. To
bootstrap the decoding process, the pair of tokens
<s></s> is fed into the decoder, producing the
decoder state d1. The pointer network (attend-
ing to d1 and E), selects the first ordered fact
fo1 , which is fed into the decoder in the next step
(d2 “<s>fo1</s>). The process is repeated until
the all the facts are decoded in a particular order.

The pointer network computes the probability of
a fact to be on the j-th position, using the encoder
output E and the decoder output state dj . The net-
work is based on the scaled dot product attention,
where dj is the query and encoder outputs Ei are
the keys:

Q “ djWQ

K “ EWK

Pj “ softmax

ˆ

QKT

?
b

˙

.
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A dam is a barrier obstructing
flowing water.

A dam is a barrier. 3-stage

2-stage

1-stage

A dam obstructs flowing water.
src

tgt

a
aggord PC+

PC+agg

PC+ord+agg

b

b a b ba a

Figure 3: An example illustrating how the individual modules are trained and subsequently applied as the parts of
the pipeline. See §5.2 for description of the ordering model (ORD), §5.3 for the aggregation model (AGG), and §5.4
and §6 for the paragraph compression model (PC, PC+AGG, PC+ORD+AGG).

Here WQ and WK P Rbˆb, b is the dimension of
BART hidden states, and Pj P Rn`1 is the proba-
bility distribution for the j-th position (i.e., Pji is
the probability that fact fi is on the j-th position).

We train the model using the synthesized simple
sentences in the WIKIFLUENT corpus, randomly
shuffling the order of the sentences and training the
model to restore their original order.

5.3 Aggregation Model

We base our aggregation model (§3.3) on
RoBERTa-large (Liu et al., 2019) with a token clas-
sification head.6 Similarly to the ordering model
(§5.2), we input the sequence of (now ordered)
facts Fo into the model, separating each pair of
facts foi with a special token </s> (used by the
model as a separator). Subsequently, the token
classification layer classifies each separator </s>i
position into two classes t0, 1u corresponding to
the delimiter δi. We ignore the outputs for the non-
separator tokens while computing cross-entropy
loss.

We create the training examples using the syn-
thesized sentences in the WIKIFLUENT corpus, in
which we set δi “ 0 for the sentences i, i`1 which
were originally aggregated (i.e., are the result of
splitting a single sentence) and δi “ 1 otherwise.

5.4 Paragraph Compression Model

We adopt BART-base for our paragraph compres-
sion model. We finetune the model on the WIK-
IFLUENT corpus, concatenating the synthesized
sentences on the input. We add delimiters between
the sentences i and i ` 1 where δi “ 1 using a
special token <sep>, which we add to the model
vocabulary. As shown in Keskar et al. (2019), in-
cluding control codes for training the model can
steer the model towards producing certain outputs.
Here we expect that the model will learn to fuse the
sentences between which there are no delimiters

6https://huggingface.co/transformers/model_
doc/roberta.html#robertafortokenclassification

on the input. We evaluate how the model learns to
respect the order and aggregation markers in §7.3.

6 Experiments

We train our pipeline modules on the WIKIFLU-
ENT corpus as described in §5. Next, we use these
modules without finetuning for generating descrip-
tions for RDF triples on two English D2T datasets,
WebNLG and E2E.

Datasets The datasets differ in domain, size, tex-
tual style, and number of predicates (see Appendix
A for details):

• WebNLG (Gardent et al., 2017; Ferreira et al.,
2020) contains RDF triples from DBPedia
(Auer et al., 2007) and their crowdsourced de-
scriptions. We use version 1.4 of the dataset
for comparison to prior work. We hand-crafted
templates for all 354 predicates, including un-
seen predicates in the test set.7

• E2E (Novikova et al., 2017; Dušek et al.,
2020) contains restaurant recommendations in
the form of attribute-value pairs. We use the
cleaned version of the dataset (Dušek et al.,
2019). Following previous work, we transform
the attribute-value pairs into RDF triples (using
the restaurant name as a subject) and then apply
the same setup as for WebNLG. We created a
template for each of the 8 attributes manually.

Pipeline versions In order to evaluate individual
components of our pipeline, we train three versions
of the paragraph compression model (see §5.4).
The models share the same architecture and targets,
but differ in their inputs:

• PC – the model takes as an input ordered facts
with delimiters (as described in §3.4),

• PC+AGG – the model takes as an input ordered
facts without delimiters (i.e., the aggregation is
left implicitly to the model),

• PC+ORD+AGG – the model takes as an input
facts in random order and without delimiters
7See Appendix B for details on template creation.
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(i.e., both ordering and aggregation are left im-
plicitly to the model).

Correspondingly, we test three versions of the
pipeline in our ablation study (see Figure 3):

• 3-STAGE – a full version of the pipeline consist-
ing of the ordering model (ORD), the aggrega-
tion model (AGG) and the PC model (following
the full pipeline from §3),

• 2-STAGE – a pipeline consisting of the ORD

model and the PC+AGG model,
• 1-STAGE – a single stage consisting of the

PC+ORD+AGG model.
We evaluate all versions of the pipeline with PC

models trained on the full and filtered versions of
the WIKIFLUENT dataset (see §4).

7 Evaluation and Discussion

Our main aim is the evaluation of our pipeline on
the downstream task of D2T generation. We eval-
uate outputs from the {1,2,3}-STAGE variants of
our pipeline using automatic metrics (§7.1), and
we perform a detailed manual error analysis of the
model outputs (§7.2). We also evaluate the per-
formance of the content planning modules and the
ability of the PC module to follow the content plan
(§7.3). In §7.4, we include an intrinsic evaluation
of our modules on the WIKIFLUENT test set.

7.1 Automatic Metrics

Following prior work, we use BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005) to evaluate the outputs against the human
references.8 We also evaluate the number of omis-
sion and hallucination errors (i.e., facts missing
or added, respectively) using a metric from Dušek
and Kasner (2020) based on a RoBERTa model
(Liu et al., 2019) pretrained on natural language
inference (NLI).9

We include a diverse set of baselines for compar-
ison. For WebNLG (see Table 3), we compare our
systems with the results of:

• UPF-FORGe and MELBOURNE – systems
(grammar-based and supervised, respectively)
from the first run of WebNLG Challenge (Gar-
dent et al., 2017),

• Ke et al. (2021) – a state-of-the-art system with

8We use the implementation from https://github.
com/tuetschek/e2e-metrics.

9We additionally evaluated the outputs on the E2E dataset
using the provided pattern-based slot error script. See Ap-
pendix D for details.

a structure-aware encoder and task-specific pre-
training,

• Laha et al. (2019) – the only other (to our
knowledge) zero-shot D2T generation system
applied to WebNLG.

For E2E (see Table 4), we compare our systems
with the results of:

• TGEN (Dušek and Jurčíček, 2015) – the base-
line system for the E2E Challenge (Dušek et al.,
2020),

• Harkous et al. (2020) – a state-of-the-art super-
vised system on cleaned E2E data.

For both datasets, COPY denotes the baseline of
copying the facts without further processing.

The automatic evaluation shows that our sys-
tems consistently outperform the COPY baseline
(e.g., „12 BLEU points for E2E), which is already
strong thanks to our manually curated set of tem-
plates.10 Automatic scores also suggest that our
systems are comparable with some older super-
vised systems. Nevertheless, our systems still un-
derperform the state-of-the-art supervised systems.
For this reason, we further focus on manual error
analysis in §7.2 to pinpoint the current shortcom-
ings of our approach.

The 2-STAGE system is generally on par with
the 3-STAGE system or better, which indicates that
explicit aggregation using the AGG model may not
be necessary. However, an advantage of having a
separate aggregation module is the possibility to
control the aggregation step explicitly. The models
using the filtered version of the corpus generally
produce better results, although they also bring in
a larger number of omissions.

7.2 Manual Error Analysis
Since automatic performance metrics do not pro-
vide insights into specific weaknesses of the system
(van Miltenburg et al., 2021), we manually exam-
ined 100 outputs of the models. We counted the
number of errors: factual (hallucinations, omis-
sions, incorrect fact merging, redundancies) and
grammatical. The results are summarized in Ta-
ble 5.

The 1-STAGE model (which has to order the facts
implicitly) tends to repeat the facts in the text (es-
pecially in E2E) and produces frequent hallucina-
tions. These problems are largely eliminated with
the 2-STAGE and 3-STAGE models, which produce

10On WebNLG, our COPY baseline achieves 37.18 BLEU
points, compared to 24.80 BLEU points of the full system of
Laha et al. (2019), which uses automatic template generation.
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Input (Allen Forrest; background; solo singer), (Allen Forrest; genre; Pop music), (Allen Forrest; birthPlace;
Dothan, Alabama)

Templ. Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan,
Alabama.

Model Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.
Human Born in Dothan, Alabama, Allen Forrest has a background as a solo singer and was a pop artist.
Input name[Wildwood], eatType[restaurant], food[French], area[riverside], near[Raja Indian Cuisine]
Templ. Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside. Wildwood is

near Raja Indian Cuisine.
Model Wildwood is a restaurant serving French food. It is in the riverside near Raja Indian Cuisine.
Human A amazing French restaurant is called the Wildwood. The restaurant is near the Raja Indian Cuisine in

riverside. They love kids.

Table 2: Example outputs of our model (3-STAGE, filtered). See Appendix E for more examples.

B M O H

UPF-FORGe˚ 38.65 39.00 0.075 0.101
MELBOURNE˚ 45.13 37.00 0.237 0.202
Ke et al. (2021):˚ 66.14 47.25 - -
Laha et al. (2019): 24.80 34.90 - -
COPY 37.18 38.77 0.000 0.000

full
3-STAGE 42.92 39.07 0.051 0.148
2-STAGE 42.90 39.28 0.043 0.125
1-STAGE 39.08 38.94 0.071 0.204

filtered
3-STAGE 43.19 39.13 0.152 0.073
2-STAGE 43.49 39.32 0.146 0.096
1-STAGE 42.99 38.81 0.202 0.093

Table 3: Automatic metrics on WebNLG. B = BLEU, M
= METEOR, O = omissions / # facts, H = hallucinations
/ # examples. The systems marked with asterisk (*) are
trained on the WebNLG dataset. Results for the systems
marked with : are taken from the respective works.

almost no hallucinations or omissions. However,
the outputs on WebNLG for all systems suffer from
semantic errors resulting from merging of unrelated
facts. This mostly happens with unrelated predi-
cates connected to the same subject/object (e.g. “X
was born in Y”, “X worked as Z” expressed as “X
worked as Z in Y”; see Appendix E for examples).
This behavior is the main obstacle to ensure factual
consistency of the output. As a possible remedy,
we propose explicitly controlling the semantics of
sentence fusion (Ben-David et al., 2020), e.g. us-
ing a variant of constrained decoding (Balakrishnan
et al., 2019; Wang et al., 2021).

On the E2E data, which has a simpler triple struc-
ture (all predicates share the same subject), the out-
puts are generally consistent and the 2-STAGE and
3-STAGE models exhibit almost no semantic er-
rors. Grammar errors and disfluencies stem mainly
from over-eager paragraph compression or from
artifacts in our templates and are relatively mi-
nor (e.g., missing “is” in “serves French food and

B M O H

TGEN˚ 40.73 37.76 0.016 0.083
Harkous et al. (2020)˚ 43.60 39.00 - -
COPY 24.19 34.89 0.000 0.000

full
3-STAGE 36.04 36.95 0.001 0.001
2-STAGE 35.84 36.91 0.001 0.001
1-STAGE 30.81 36.01 0.009 0.122

filtered
3-STAGE 35.88 36.95 0.001 0.001
2-STAGE 36.01 36.99 0.001 0.001
1-STAGE 34.08 36.32 0.012 0.050

Table 4: Automatic metrics on E2E. B = BLEU, M =
METEOR, O = omissions / # facts, H = hallucinations /
# examples. The systems marked with asterisk (*) are
trained on the E2E dataset. The results for Harkous et al.
(2020) are taken from their work.

WebNLG E2E
H I O R G H I O R G

fu
ll

3-STAGE 3 39 2 2 16 0 1 0 0 17
2-STAGE 8 36 1 5 16 1 1 0 1 23
1-STAGE 28 27 6 10 20 17 0 1 79 45

fil
te

re
d 3-STAGE 2 37 2 1 15 0 0 0 0 17
2-STAGE 5 32 1 2 14 0 0 0 0 11
1-STAGE 8 40 6 6 16 11 2 1 41 22

Table 5: Number of manually annotated errors on 100
examples: H = hallucinations, I = incorrect fact merging,
O = omissions, R = redundancies, G = grammar errors
or disfluencies.

family-friendly”).

7.3 Content Planning

Following Su et al. (2021b) and Zhao et al. (2020),
we report the accuracy and BLEU-2 score of our
ordering model on WebNLG against the human-
generated plans from Ferreira et al. (2018). The
results are listed in Table 6 and compared against
a RANDOM baseline (random ordering) and prior
work. The results show that although our approach
again lags behind state-of-the-art supervised ap-
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B-2 Acc

Transformer (Ferreira et al., 2019): 52.20 0.35
Step-by-step (Moryossef et al., 2019b): 70.80 0.47
PLANENC (Zhao et al., 2020): 80.10 0.62
Plan-then-generate (Su et al., 2021b): 84.97 0.72
RANDOM 47.00 0.29

Ours (BART+ptr) 59.10 0.48

Table 6: Evaluation of our zero-shot ordering model
based on Calizzano et al. (2021). B-2 = BLEU-2, Acc
= accuracy. The results marked with : are copied from
the respective papers.

proaches, it can outperform both the random base-
line and the Transformer-based approach from Fer-
reira et al. (2019) while not using any in-domain
examples.

We also evaluate the accuracy of our aggrega-
tion model, using triples ordered according to the
plans from Ferreira et al. (2018) as input. The ac-
curacy is 0.33 per example and 0.62 per sentence
boundary (random baseline is 0.23 and 0.50, re-
spectively). The results show that although our
approach is better than the random baseline, there
is still room for improvement.

Finally, we manually evaluate how the PC
model follows the content plan (i.e., keeping the
predefined order and aggregating the sentences ac-
cording to the delimiters) using 100 randomly cho-
sen examples with more than 1 triple on WebNLG
and E2E. We find that the model follows the content
plan in 95% and 100% of cases, respectively. The
incorrect cases include a fact not properly men-
tioned or an extra boundary between sentences
without a separator. We can thus conclude that
the pretraining task successfully teaches the PC
model to follow a given content plan.

7.4 Intrinsic Evaluation
Aside from the main D2T generation results, we
also provide an intrinsic evaluation of our pipeline
modules on the WIKIFLUENT test sets. We evalu-
ated the ordering, aggregation, and paragraph com-
pression modules trained on the full WIKIFLUENT

corpus. The results for both full and filtered test
sets are summarized in Table 7. The PC model
achieves high scores, which follows from the fact
that we provide it with ground truth content plans
(i.e., the ordering and aggregation plan correspond-
ing to the original paragraph). Accuracy of the
ordering and aggregation modules is comparable
to their performance on D2T datasets.

test (full) test (filt.)

ORD
BLEU-2 64.8 71.9
Accuracy 0.70 0.77

AGG
Acc. per example 0.68 0.68
Acc. per sent. bound. 0.93 0.93

PC BLEU 90.72 91.60
METEOR 63.89 65.03

Table 7: Result of individual pipeline modules on the
WIKIFLUENT test sets (full / filtered). The metrics cor-
respond to the metrics used for evaluating the modules
for D2T generation.

8 Future Work

Our experiments outline several possible future re-
search directions. Automatic generation of facts
without using hand-crafted templates (cf. §5.1)
could allow applying zero-shot generation systems
to datasets with a large number of predicates, such
as ToTTo (Parikh et al., 2020). The task of para-
graph compression could be used as a task-specific
pretraining (Gururangan et al., 2020) for more effi-
cient finetuning of D2T models, e.g., with a small
amount of clean data. Consistency checks may
be introduced in the pipeline to control the output
from the modules, and individual modules may be
improved by using more efficient model architec-
tures.

More research is also needed regarding the main
shortcoming of our approach, i.e., the semantic er-
rors stemming from merging of facts in improper
ways. As we suggested in §7.2, explicitly control-
ling the semantics of sentence fusion could help to
mitigate this issue, while still keeping the advan-
tages of a zero-shot approach.

9 Conclusion

We presented an approach for zero-shot D2T gen-
eration. The approach uses a pipeline of PLMs
trained on general-domain lexical operations over
natural language. The pipeline builds upon tra-
ditional approaches and consists of three inter-
pretable intermediate steps. By avoiding noisy
human-written references from the D2T datasets,
our models produce more semantically consitent
output. We believe that training models for zero-
shot D2T generation using large cross-domain cor-
pora will help to build D2T generation systems
with good performance across various domains.
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10 Limitations and Broader Impact

We study zero-shot D2T generation with the focus
on generating descriptions for RDF triples. Al-
though the task of D2T generation has numerous
applications, using neural models for D2T gener-
ation (especially in the zero-shot context) is still
limited to experimental settings (Dale, 2020). Simi-
larly to other recent approaches for D2T generation,
our approach relies on PLMs, which are known to
reflect the biases in their pretraining corpus (Ben-
der et al., 2021; Rogers, 2021). Our system may
therefore rely on spurious correlations for verbaliz-
ing e.g. gender or occupation of the entities. Since
we cannot guarantee the factual correctness of the
outputs of our system, the outputs should be used
with caution.

On the flip side, our approach helps to reduce the
number of omissions and hallucinations stemming
from noise in human-written references. Our work
thus contributes to the general aim of D2T gener-
ation in conveying the data semantics accurately
and without relying on implicit world knowledge.
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A Data Statistics

Statistics for the datasets described in the paper are
listed in Table 9.

B Templates

The templates for our datasets are single-sentence
and mostly clear-cut verbalizations of the predi-
cates. The templates were created by one of the
authors who had only the input data at their dis-
posal, i.e. without using human references.

We have also considered extracting the templates
for WebNLG from the training data by delexicaliz-
ing single-triple examples. However, the examples
are noisy and such data would not be available in
a zero-shot setup, which is why we decided not to
use this option.

Although the templates were mostly unambigu-
ous, we had to opt for the most general version
in certain cases (e.g., using country Ñ "<s> is
from <o>", even though "<s> is a food from <o>."
would be possible in case the object is food).

Filling the templates also often results in minor
disfluencies, e.g. nationality Ñ "<s> is from <o>"
will produce a missing definite article for <o> =
"United States" and ungrammatical sentence for
<o> = "French people". In principle, the disfluen-
cies may be fixed by rephrasing in the final step of
the pipeline.

We provide all the templates we used in our
experiments in our repository.
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C Experimental Setup

We implemented the models for split-and-rephrase,
aggregation, and paragraph compression in Py-
Torch Lightning (Paszke et al., 2019), using the
PyTorch (Falcon et al., 2019) version of the BART
and RoBERTa models from the Huggingface li-
brary (Wolf et al., 2019).

We use the Adam (Kingma and Ba, 2015) opti-
mizer (β1 “ 0.9, β2 “ 0.997, ε “ 1´9) with learn-
ing rate 2´5, linear scheduling and 0.1 warmup
proportion; batches of size 8 and accumulating gra-
dients with factor 4. We train the models for 1
epoch on a single GeForce RTX 3090 GPU with 24
GB RAM. Training times were approximately 24
hours for the ordering model and 3 hours for the ag-
gregation and paragraph compression models. We
use greedy decoding in all our experiments.

For training the ordering model, we used the
implementation from Calizzano et al. (2021) 11 in-
cluding their training parameters. We will integrate
the ordering model into our framework.

D Additional Results

We provide evaluation of semantic accuracy on the
E2E dataset as evaluated with the slot-error script
based on matching regular expressions in Table
8.12

miss add miss+add

TGEN 0.0060 0.0433 0.0016
COPY 0.0000 0.0000 0.0000

full
3-STAGE 0.0238 0.0698 0.0060
2-STAGE 0.0054 0.0363 0.0000
1-STAGE 0.0043 0.0330 0.0000

filtered
3-STAGE 0.0444 0.0487 0.0076
2-STAGE 0.0043 0.0368 0.0000
1-STAGE 0.0043 0.0347 0.0000

Table 8: Proportion of output examples with missed
only, added only, and both missed and added facts, ac-
cording to the regex-based E2E slot error script.

However, please note that our manual investiga-
tion of a sample of the data shows that the majority
of the errors identified in our model outputs are
false. For example, the following regular expres-
sion used in the slot-error script:

prices?(?: range)?(?:w+)0,3 high
11https://github.com/airKlizz/

passage-ordering
12https://github.com/tuetschek/e2e-cleaning/

blob/master/slot_error.py

matches "(...) price range and high customer rat-
ing (...)", incorrectly classifying the presence of
the extra slot priceRange[high]. This problem is
magnified by the consistent outputs of our models,
which tend to repeat certain patterns. However, we
also manually identified several cases in which an
error was found correctly, e.g. the model halluci-
nating "3 out of 4 customer rating" instead of "3
out of 5 customer rating".

E Example Outputs

Tables 10, 11, 12, and 13 show examples of behav-
ior of our models on the WebNLG dataset. Tables
14 and 15 show examples of behavior of our models
on the E2E dataset.

The green color marks the model outputs which
are completely correct, the red color marks the
errors. For better readability of the input format,
we add numeric order identifiers for the individ-
ual facts (bold, in squared brackets). These are
subsequently used as references in the Order and
Aggregation rows. Note that zero-th input in E2E
is used as a subject in the RDF triples.

3928

https://github.com/airKlizz/passage-ordering
https://github.com/airKlizz/passage-ordering
https://github.com/tuetschek/e2e-cleaning/blob/master/slot_error.py
https://github.com/tuetschek/e2e-cleaning/blob/master/slot_error.py


#train #dev #test tok/src tok/tgt sent/src sent/tgt #temp.

WebNLG 18,102 870 1,862 26.8 22.6 3.0 1.4 354
Clean E2E 33,236 4,299 1,847 29.2 22.3 4.2 1.5 8

WIKIFLUENT-full 915,855 9,346 9,346 52.9 41.1 3.9 2.0 -
WIKIFLUENT-filtered 700,517 7,149 7,149 45.6 35.4 3.4 1.8 -

Table 9: Number of examples (train / dev / test), average number of tokens per source and target, average number of
sentences per source and target (after filling the templates for the D2T datasets), total number of templates.

Input [1] (Andrews County Airport; elevationAboveTheSeaLevel (in metres); 973.0)
[2] (Andrews County Airport; runwayLength; 896.0)
[3] (Andrews County Airport; location; Texas)

Facts Andrews County Airport is 973.0 metres above the sea level.
Andrews County Airport runway is 896.0 m long.
Andrews County Airport is located in Texas.

Order 3 2 1
Aggregation 3 <sep> 2 1
Models (all) Andrews County Airport is located in Andrews County, Texas. Its runway is 896.0 m

long and 973.0 metres above the sea level.
Human The runway length of Andrews County Airport (located in Texas and 973.0 above sea

level) is 896.

Table 10: Correct behavior of the models on WebNLG. All the models ({1,2,3}-STAGE full/filtered) produce the
same output.

Input [1] (Akron, Ohio; country; United States)
[2] (United States; language; English language)

Facts Akron, Ohio is from United States.
English language is spoken in United States.

Order 1 2
Aggregation 1 <sep> 2
3-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio, United

States, which is located in the U.S. state of Ohio.
2-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio.
1-stage full English language is spoken in the United States. Akron, Ohio is from the state of Ohio

in the U.S. state of Illinois.
3-stage filtered Akron, Ohio is from United States. English language is spoken in the United States of

America.
2-stage filtered Akron, Ohio is from United States. English language is spoken in Akron, Ohio.
1-stage filtered English language is spoken in the United States. Akron, Ohio is from the United

Kingdom.
Human The country of Akron, Ohio, is United States, where English is the language spoken.

Table 11: Incorrect behavior on WebNLG: besides the minor disfluencies caused by the templates ("Akron, Ohio is
from..."), the models (except for 3-STAGE filtered) tend to hallucinate and merge the facts incorrectly.
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Input [1] (Juan Perón; party; Labour Party (Argentina))
[2] (Alberto Teisaire; inOfficeWhilePresident; Juan Perón)
[3] (Alberto Teisaire; nationality; Argentina)
[4] (Argentina; language; Spanish language)

Facts Juan Perón belongs to the Labour Party Argentina.
Alberto Teisaire was in office while Juan Perón was a president.
Alberto Teisaire is from Argentina.
Spanish language is spoken in Argentina.

Order 3 2 1 4
Aggregation 3 2 <sep> 1 <sep> 4
3-stage full Alberto Teisaire is from Argentina, who was in office while Juan Perón was a president.

He belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
2-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president.

He belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
1-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president.

Spanish language is spoken in Argentina. Perón belongs to the Labour Party Argentina.
3-stage filtered Alberto Teisaire is from Argentina, in office while Juan Perón was a president. He

belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
2-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president.

He belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
1-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president.

Spanish language is spoken in Argentina. Juan belongs to the Labour Party Argentina.
Human Alberto Teisaire, is a national of Argentina, where Spanish is spoken. Alberto Teisaire,

was in office while Juan Perón was president. Juan Perón was a member of the Labour
Party in Argentina.

Table 12: Incorrect behavior on WebNLG: by using a pronoun "He", the models tend to imply that Alberto Teisaire
(instead of Juan Perón) belongs to the Labour Party.

Input [1] (Alfa Romeo 164; relatedMeanOfTransportation; Fiat Croma)
[2] (Alfa Romeo 164; assembly; Italy)
[3] (Italy; capital; Rome)

Facts Alfa Romeo 164 is related to Fiat Croma.
Alfa Romeo 164 was assembled in Italy.
Italy’s capital is Rome.

Order 2 3 1
Aggregation 2 3 <sep> 1
3-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
2-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
1-stage full Alfa Romeo 164 was assembled in Italy and related to Fiat Croma. Italy’s capital is

Rome.
3-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
2-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
1-stage filtered Alfa Romeo 164 was assembled in Italy. It is related to Fiat Croma. It was assembled

at the Italian capital is Rome.
Human The Fiat Croma and the Alfa Romeo 164 are both cars. The latter was built in Italy

where the capital is Rome.

Table 13: Incorrect behavior on WebNLG: the models tend to merge the country of vehicle’s assembly and its
capital.
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Input [0] name[The Cricketers]
[1] eatType[restaurant]
[2] near[All Bar One]
[3] priceRange[cheap]
[4] food[Chinese]
[5] customerRating[average]
[6] familyFriendly[yes]

Facts The Cricketers is a restaurant.
The Cricketers is near All Bar One.
The Cricketers has cheap price range.
The Cricketers serves Chinese food.
The Cricketers has average customer rating.
The Cricketers is family-friendly.

Order 1 4 2 6 3 5
Aggregation 1 4 2 <sep> 6 3 5
3-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-

friendly, has cheap price range and average customer rating.
2-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-

friendly with cheap price range and average customer rating.
1-stage full The Cricketers is a restaurant serving Chinese food. It is family-friendly and has cheap

price range. It serves Chinese food near All Bar One. It has average customer rating.
3-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-

friendly with cheap price range and average customer rating.
2-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-

friendly with cheap price range and average customer rating.
1-stage filtered The Cricketers is a restaurant serving Chinese food. It is family-friendly and has

average customer rating. It serves Chinese food near All Bar One. It has cheap price
range.

Human For a central family friendly venue serving cheap Chinese food, try The Cricketers
restaurant. It has average customer ratings and is near All Bar One.

Table 14: Correct behavior of the models on E2E: the models can deal even with a higher amount of input values.
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Input [0] name[The Phoenix]
[1] area[riverside]
[2] priceRange[cheap]
[3] familyFriendly[yes]
[4] near[Raja Indian Cuisine]
[5] eatType[restaurant]

Facts The Phoenix is in the riverside.
The Phoenix has cheap price range.
The Phoenix is family-friendly.
The Phoenix is near Raja Indian Cuisine.
The Phoenix is a restaurant.

Order 5 1 4 <sep> 3 2
Aggregation 5 1 4 3 2
3-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-

friendly with cheap price range.
2-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-

friendly with cheap price range.
1-stage full The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-

friendly and has cheap price range. It has cheap food range.
3-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-

friendly with cheap price range.
2-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-

friendly with cheap price range.
1-stage filtered The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-

friendly and has cheap price range. It has cheap food.
Human Cheap food and a family friendly atmosphere at The Phoenix restaurant. Situated

riverside near the Raja Indian Cuisine.

Table 15: Incorrect behavior on E2E: the 1-STAGE models add redundant information to the output.
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