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Abstract
While pretrained language models achieve ex-
cellent performance on natural language un-
derstanding benchmarks, they tend to rely on
spurious correlations and generalize poorly
to out-of-distribution (OOD) data. Recent
work has explored using counterfactually-
augmented data (CAD)—data generated by
minimally perturbing examples to flip the
ground-truth label—to identify robust features
that are invariant under distribution shift. How-
ever, empirical results using CAD during train-
ing for OOD generalization have been mixed.
To explain this discrepancy, through a toy theo-
retical example and empirical analysis on two
crowdsourced CAD datasets, we show that: (a)
while features perturbed in CAD are indeed ro-
bust features, it may prevent the model from
learning unperturbed robust features; and (b)
CAD may exacerbate existing spurious corre-
lations in the data. Our results thus show that
the lack of perturbation diversity limits CAD’s
effectiveness on OOD generalization, calling
for innovative crowdsourcing procedures to
elicit diverse perturbation of examples.

1 Introduction

Large-scale datasets have enabled tremendous
progress in natural language understanding (NLU)
(Rajpurkar et al., 2016; Wang et al., 2019) with the
rise of pretrained language models (Devlin et al.,
2019; Peters et al., 2018). Despite this progress,
there have been numerous works showing that mod-
els rely on spurious correlations in the datasets, i.e.
heuristics that are effective on a specific dataset
but do not hold in general (McCoy et al., 2019;
Naik et al., 2018; Wang and Culotta, 2020). For
example, BERT (Devlin et al., 2019) trained on
MNLI (Williams et al., 2018) learns the spurious
correlation between world overlap and entailment
label.

A recent promising direction is to collect
counterfactually-augmented data (CAD) by ask-
ing humans to minimally edit examples to flip their

ground-truth label (Kaushik et al., 2020). Figure
1 shows example edits for Natural Language In-
ference (NLI). Given interventions on robust fea-
tures that “cause” the label to change, the model is
expected to learn to disentangle the spurious and
robust features.

Despite recent attempt to explain the efficacy of
CAD by analyzing the underlying causal structure
of the data (Kaushik et al., 2021), empirical results
on out-of-distribution (OOD) generalization using
CAD are mixed. Specifically, Huang et al. (2020)
show that CAD does not improve OOD generaliza-
tion for NLI; Khashabi et al. (2020) find that for
question answering, CAD is helpful only when it
is much cheaper to create than standard examples
— but Bowman et al. (2020) report that the cost is
actually similar per example.

In this work, we take a step towards bridging
this gap between what theory suggests and what
we observe in practice in regards to CAD. An in-
tuitive example to illustrate our key observation
is shown in Figure 1 (a), where the verb ‘eating’
is changed to ‘drinking’ to flip the label. While
there are many other words that could have been
changed to flip the label, given only these two ex-
amples, the model learns to use only the verbs (e.g.
using a Naive Bayes model, all other words would
have zero weights). As a result, this model would
fail when evaluated on examples such as those in
(b) where the quantifier ‘two’ is changed to ‘three’,
while a model trained on the unaugmented data
may learn to use the quantifiers.

First, we use a toy theoretical setting to formal-
ize counterfactual augmentation, and demonstrate
that with CAD, the model can learn to ignore the
spurious features without explicitly intervening on
them. However, we find that without perturbing
all robust features to generate CAD, perturbations
of one robust feature can prevent the model from
learning other unperturbed robust features. Moti-
vated by this, we set up an empirical analysis on
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Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)
Revised Hypothesis: The two children near the lady are drinking something. (Contradiction)

Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)
Revised Hypothesis: The three children near the lady are eating something. (Contradiction)

(a)

(b)

Figure 1: Illustration of counterfactual examples in natural language inference. Augmenting examples like (a)
hurts performance on examples like (b) where a different robust feature has been perturbed, since the first example
encourages the model to exclusively focus on the highlighted words.

two crowdsourced CAD datasets collected for NLI
and Question Answering (QA). In the empirical
analysis, we identify the robust features by cate-
gorizing the edits into different perturbation types
(Wu et al., 2021) (e.g. negating a sentence or chang-
ing the quantifiers), and show that models do not
generalize well to unseen perturbation types, some-
times even performing worse than models trained
on unaugmented data.

Our analysis of the relation between perturbation
types and generalization can help explain other
observations such as CAD being more beneficial
in the low-data regime. With increasing data size,
improvement from using CAD plateaus compared
to unaugmented data, suggesting that the number
of perturbation types in existing CAD datasets does
not keep increasing.

Another consequence of the lack of diversity in
edits is annotation artifacts, which may produce
spurious correlations similar to what happens in
standard crowdsourcing procedures. While CAD is
intended to debias the dataset, surprisingly, we find
that crowdsourced CAD for NLI exacerbates word
overlap bias (McCoy et al., 2019) and negation
bias (Gururangan et al., 2018a) observed in existing
benchmarks.

In sum, we show that while CAD can help the
model ignore spurious feature, its effectiveness in
current CAD datasets is limited by the set of ro-
bust features that are perturbed. Furthermore, CAD
may exacerbate spurious correlations in existing
benchmarks. Our results highlight the importance
of increasing the diversity of counterfactual pertur-
bations during crowdsourcing: We need to elicit
more diverse edits of examples that make models
more robust to the complexity of language.

2 Toy Example: Analysis of a Linear
Model

In this section, we use a toy setting with a linear
Gaussian model and squared loss to formalize coun-
terfactual augmentation and discuss the conditions
required for it’s effectiveness. The toy example
serves to motivate our empirical analysis in Sec-
tion 3.

2.1 Learning under Spurious Correlation
We adopt the setting in Rosenfeld et al. (2021):
each example consists of robust features xr ∈ Rdr
whose joint distribution with the label is invari-
ant during training and testing, and spurious fea-
tures xs ∈ Rds whose joint distribution with the
label varies at test time. Here dr and ds denote the
feature dimensions. We consider a binary clas-
sification setting where the label y ∈ {−1, 1}
is drawn from a uniform distribution, and both
the robust and spurious features are drawn from
Gaussian distributions. Specifically, an example
x = [xr, xs] ∈ Rd is generated by the following
process (where d = dr + ds):

y =

{
1 w.p. 0.5

−1 otherwise
(1)

xr | y ∼ N (yµr, σ
2
rI) , (2)

xs | y ∼ N (yµs, σ
2
sI) , (3)

where µr ∈ Rdr ; µs ∈ Rds ; σr, σs ∈ R; and I
is the identity matrix.1 The corresponding data
distribution is denoted by D. Note that the relation
between y and the spurious features xs depends
on µs and σs, which may change at test time, thus
relying on xs may lead to poor OOD performance.

1This model corresponds to the anti-causal setting
(Scholkopf et al., 2012), i.e. the label causing the features. We
adopt this setting since it is consistent with how most data is
generated in tasks like NLI, sentiment analysis etc.
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Intuitively, in this toy setting, a model trained
with only access to examples from D would not
be able to differentiate between the spurious and
robust features, since they play a similar role in the
data generating process for D. Formally, consider
the setting with infinite samples from D where we
learn a linear model (y = wTx where w ∈ Rd)
by least square regression. Let ŵ ∈ Rd be the
optimal solution on D (without any counterfactual
augmentation). The closed form solution is:

Cov(x, x)ŵ = Cov(x, y)

ŵ = Cov(x, x)−1µ (4)

where µ = [µr, µs] ∈ Rd and Cov(·) denotes the
covariance matrix:

Cov(x, x) =

[
Σr µrµ

T
s

µsµ
T
r Σs

]
, (5)

where Σr,Σs are covariance matrices of xr and
xs respectively. This model relies on xs whose
relationship with the label y can vary at test time,
thus it may have poor performance under distribu-
tion shift. A robust model winv that is invariant to
spurious correlations would ignore xs:

winv =
[
Σ−1r µr, 0

]
. (6)

2.2 Counterfactual Augmentation

The counterfactual data is generated by editing an
example to flip its label. We model the perturbation
by an edit vector z that translates x to change its
label from y to −y (i.e. from 1 to -1 or vice versa).
For instance, the counterfactual example of a posi-
tive example (x,+1) is (x+ z,−1). Specifically,
we define the edit vector to be z = [yzr, yzs] ∈ Rd,
where zr ∈ Rdr and zs ∈ Rds are the displace-
ments for the robust and spurious features. Here, z
is label-dependent so that examples with different
labels are translated in opposite directions. There-
fore, the counterfactual example (xc,−y) gener-
ated from (x, y) has the following distribution:

xcr | −y ∼ N (y(µr + zr), σ
2
rI) , (7)

xcs | −y ∼ N (y(µs + zs), σ
2
sI) . (8)

The model is then trained on the combined set of
original examples x and counterfactual examples
xc, whose distribution is denoted by Dc.

Optimal edits. Ideally, the counterfactual data
should de-correlate xs and y, thus it should only
perturb the robust features xr, i.e. z = [yzr, 0]. To
find the displacement zr that moves x across the
decision boundary, we maximize the log-likelihood
of the flipped label under the data generating distri-
bution D:

z∗r = arg max
zr∈Rdr

E(x,y)∼D log p(−y | x+ [yzr, 0])

= −2µr. (9)

Intuitively, it moves the examples towards the mean
of the opposite class along coordinates of the robust
features.

Using the edits specified above, if the model
trained on Dc has optimal solution ŵc, we have:

Cov(x, x)ŵc = Cov(x, y)

ŵc =
[
Σ−1r µr, 0

]
= winv. (10)

Thus, the optimal edits recover the robust model
winv, demonstrating the effectiveness of CAD.

Incomplete edits. There is an important assump-
tion made in the above result: we have assumed all
robust features are edited. Suppose we have two
sets of robust features xr1 and xr2,2 then not edit-
ing xr2 would effectively make it appear spurious
to the model and indistinguishable from xs.

In practice, this happens when there are multi-
ple robust features but only a few are perturbed
during counterfactual augmentation (which can be
common during data collection if workers rely on
simple patterns to make the minimal edits). Con-
sidering the NLI example, if all entailment exam-
ples are flipped to non-entailment ones by inserting
a negation word, then the model will only rely on
negation to make predictions.

More formally, consider the case where the orig-
inal examples x = [xr1, xr2, xs] and counterfac-
tual examples are generated by incomplete edits
z = [zr1, 0, 0] that perturb only xr1. Using the
same analysis above where zr1 is chosen by maxi-
mum likelihood estimation, let the model learned
on the incompletely augmented data be denoted
by ŵinc. We can then show that the error of the
model trained from incomplete edits can be more
than that of the model trained without any coun-
terfactual augmentation under certain conditions.
More formally, we have the following:

2We assume they are conditionally independent given the
label.
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Type Definition Example # examples
(NLI/BoolQ)

negation Change in negation modifier A dog is not fetching anything. 200/683
quantifier Change in words with numeral POS tags The lady has many → three children. 344/414
lexical Replace few words without changing the POS tags The boy is swimming → running. 1568/1737
insert Only insert words or short phrases The tall man is digging the ground. 1462/536
delete Only delete words or short phrases The lazy person just woke up. 562/44

resemantic
Replace short phrases without affecting rest of the
parsing tree

The actor saw → had just met the
director. 2760/1866

Table 1: Definition of the perturbation types and the corresponding number of examples in the NLI CAD dataset
released by (Kaushik et al., 2020) and the BoolQ CAD dataset released by Khashabi et al. (2020). In the example
edits, the deleted words are shown in red and the newly added words are shown in green.

Proposition 1. Define the error for a model as
`(w) = Ex∼F

[
(wTinvx− wTx)2

]
where the distri-

bution F is the test distribution in which xr and
xs are independent: xr | y ∼ N (yµr, σ

2
rI) and

xs ∼ N (0, I).
Assuming all variables have unit variance (i.e.

σr = 1 and σs = 1), ‖µr‖ = 1, and ‖µs‖ = 1, we
get `(ŵinc) > `(ŵ) if ‖µr1‖2 < 1+

√
13

6 ≈ 0.767,
where ‖ · ‖ denotes the Euclidean norm, and µr1 is
the mean of the perturbed robust feature r1.

Intuitively, this statement says that if the norm of
the edited robust features (in the incomplete-edits
model) is sufficiently small, then the test error for
a model with counterfactual augmentation will be
more than a model trained with no augmentation.

Proof Sketch. The proof mainly follows from alge-
bra and using the fact that Cov(x, x)−1 is a block
matrix consisting of rank-one perturbations of the
identity matrix. We refer the reader to Appendix
A for the detailed proof.

Thus, Proposition 1 implies that perturbing only
a small subset of robust features could perform
worse than no augmentation, indicating the impor-
tance of diversity in CAD. Next, we show that the
problem of incomplete edits is exhibited in real
CAD too.

3 Diversity and Generalization in CAD

In this section, we test the following hypothesis
based on the above analysis: models trained on
CAD are limited to the specific robust features that
are perturbed and may not learn other unperturbed
robust features. We empirically analyze how aug-
menting counterfactual examples by perturbing one
robust feature affects the performance on examples
generated by perturbing other robust features.

3.1 Experiment Design

Perturbation types. Unlike the toy example, in
NLU it is not easy to define robust features since
they typically correspond to the semantics of the
text (e.g. sentiment). Following Kaushik et al.
(2021) and similar to our toy model, we define ro-
bust features as spans of text whose distribution
with the label remains invariant, whereas spans of
text whose dependence on the label can change
during evaluation are defined as spurious features.
We then use linguistically-inspired rules (Wu et al.,
2021) to categorize the robust features into sev-
eral perturbation types: negation, quantifier,
lexical, insert, delete and resemantic. Ta-
ble 1 gives the definitions of each type.

Train/test sets. Both the training sets and the test
sets contain counterfactual examples generated by
a particular perturbation type. To test the general-
ization from one perturbation type to another, we
use two types of test sets: aligned test sets where
examples are generated by the same perturbation
type as the training data; and unaligned test sets
where examples are generated by unseen perturba-
tion types (e.g. training on examples from lexical

and testing on negation).

3.2 Experimental Setup

Data. We experiment on two CAD datasets col-
lected for SNLI (Kaushik et al., 2020) and BoolQ
(Khashabi et al., 2020). The size of the paired data
(seed examples and edited examples) for each per-
turbation type in the training dataset is given in Ta-
ble 1. Since some types (e.g. delete) contain too
few examples for training, we train on the top three
largest perturbation types: lexical, insert, and
resemantic for SNLI; and lexical, negation,
and resemantic for BoolQ.

For SNLI, to control for dataset sizes across all
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Train Data lexical insert resemantic quantifier negation delete

SNLI seed 75.160.32 74.941.05 76.770.74 74.360.21 69.252.09 65.762.34
lexical 79.702.07 68.615.26 71.463.07 69.903.83 66.002.99 61.765.27
insert 67.833.96 79.300.39 70.532.19 66.313.10 55.004.10 69.752.43

resemantic 77.142.12 76.431.05 75.311.10 71.260.36 66.751.69 70.161.09

Table 2: Accuracy of NLI CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 1400 examples. On average models perform worse on
unaligned test sets (i.e. unseen perturbation types).

Train Data lexical negation resemantic quantifier insert

BoolQ seed 65.792.11 62.612.65 68.971.83 61.001.65 57.110.67
lexical 77.381.04 64.322.18 80.781.46 70.752.03 66.771.35
negation 63.181.46 72.912.31 66.742.22 61.752.44 65.421.45

resemantic 72.290.72 64.921.56 75.602.11 70.002.85 64.912.31

Table 3: Accuracy of BoolQ CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 9427 examples. On average models perform worse on
unaligned test sets (i.e. unseen perturbation types).

experiments, we use 700 seed examples and their
corresponding 700 perturbations for each perturba-
tion type. As a baseline (‘SNLI seed’), we subsam-
ple examples from SNLI to create a similar sized
dataset for comparison.3

For BoolQ (Clark et al., 2019a), our initial exper-
iments show that training on only CAD does not
reach above random-guessing. Thus, we include
all original training examples in BoolQ (Khashabi
et al., 2020), and replace part of them with CAD
for each perturbation type. This results in a train-
ing set of 9427 examples of which 683 are CAD
for each perturbation type. The size 683 is cho-
sen to match the the smallest CAD type for BoolQ.
As a baseline (‘BoolQ seed’), we train on all the
original training examples, consisting of 9427 ex-
amples. For both datasets, the training, dev and test
sets are created from their respective splits in the
CAD datasets. The size of the dev and test sets is
reported in Appendix B.2.

Model. We use the Hugging Face implementa-
tion (Wolf et al., 2020) of RoBERTa (Liu et al.,
2019) to fine-tune all our models. To account for
the small dataset sizes, we run all our experiments
with 5 different random seeds and report the mean
and standard deviation. Details on hyperparameter
tuning are reported in Appendix B.1.4

3We observe similar trends when using different subsets
of the SNLI data. We report the mean and standard deviation
across different subsets in Appendix B.3.

4Our code can be found at: https://github.com/
joshinh/investigation-cad

3.3 Generalization to Unseen Perturbation
Types

We discuss results for the main question in this
section—how does adding CAD generated from
one perturbation type affect performance on ex-
amples generated from other perturbation types?
Table 2 and 3 show results for SNLI and BoolQ.

CAD performs well on aligned test sets. We
see that on average models perform very well on
the aligned test sets (same perturbation type as
the training set), but do not always do well on un-
aligned test sets (unseen perturbation types), which
is consistent with our analysis in Section 2. On
SNLI, one exception is resemantic, which per-
forms well on unseen perturbation types. We be-
lieve this is because it is a broad category (replac-
ing any constituent) that covers other types such
as lexical (replacing any word). Similarly, on
BoolQ, lexical and resemantic both perform
better than the baseline on some unaligned test sets
(e.g. quantifier), but they perform much better
on the aligned test sets.

CAD sometimes performs worse than the base-
line on unaligned test sets. For example, on
SNLI, training on insert does much worse than
the seed baseline on lexical and resemantic,
and SNLI seed performs best on quantifier and
negation. On BoolQ, training on negation does
slightly worse than the baseline on lexical and
resemantic. This suggests that augmenting per-
turbations of one particular robust feature may re-
duce the model’s reliance on other robust features,
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Figure 2: OOD accuracy (mean, std. deviation) on
MNLI of models trained on SNLI CAD and SNLI seed
(baseline) with increasing number of perturbation types
and fixed training set size. More perturbation types in
the training data leads to higher OOD accuracy.

that could have been learned without augmentation.

3.4 Generalization to Out-of-Distribution
Data

In Section 3.3, we have seen that training on CAD
generated by a single perturbation type does not
generalize well to unseen perturbation types. How-
ever, in practice CAD contains many different per-
turbation types. Do they cover enough robust fea-
tures to enable OOD generalization?

Increasing Diversity. We first verify that in-
creasing the number of perturbed robust features
leads to better OOD generalization. Specifically,
we train models on subsets of SNLI CAD with
increasing coverage of perturbation types and eval-
uate on MNLI as the OOD data. Starting with
only insert, we add one perturbation type at a
time until all types are included; the total number
of examples are fixed throughout the process at
1400 (which includes 700 seed examples and the
corresponding 700 perturbations).

Figure 2 shows the OOD accuracy on MNLI
when trained on CAD and SNLI seed examples
of the same size. We observe that as the number
of perturbation types increases, models generalize
better to OOD data despite fixed training data size.
The result highlights the importance of collecting a
diverse set of counterfactual examples, even if each
perturbation type is present in a small amount.

A natural question to ask here is: If we continue
to collect more counterfactual data, does it cover
more perturbation types and hence lead to better
OOD generalization? Thus we investigate the im-

BERT RoBERTa

SNLI seed 59.70.3 73.81.2
CAD 60.21.0 70.01.1

Table 4: Accuracy (mean and std. deviation across
5 runs) on MNLI of different pretrained models fine-
tuned on SNLI seed and CAD. CAD seems to be less
beneficial when using better pretrained models.

pact of training data size next.5

Role of Dataset Size. To better understand the
role dataset size plays in OOD generalization, we
plot the learning curve on SNLI CAD in Figure 3,
where we gradually increase the amount of CAD
for training. The baseline model is trained on SNLI
seed examples of the same size, and all models are
evaluated on MNLI (as the OOD dataset). We also
conduct a similar experiment on BoolQ in Figure 4,
where a subset of MultiRC (Khashabi et al., 2018)
is used as the OOD dataset following Khashabi
et al. (2020). Since the test set is unbalanced, we
report F1 scores instead of accuracy in this case.

For SNLI, CAD is beneficial for OOD general-
ization only in low data settings (< 2000 examples).
As the amount of data increases, the comparable
SNLI baseline performs better and surpasses the
performance of CAD. Similarly for BoolQ, we ob-
serve that CAD is comparable to the baseline in the
low data setting (∼ 1000 examples). Surprisingly,
more CAD for BoolQ leads to worse OOD perfor-
mance. We suspect this is due to overfitting to the
specific perturbation types present in BoolQ CAD.

Intuitively, as we increase the amount of data,
the diversity of robust features covered by the seed
examples also increases. On the other hand, the
benefit of CAD is restricted to the perturbed robust
features. The plateaued performance of CAD (in
the case of NLI) shows that the diversity of pertur-
bations may not increase with the data size as fast
as we would like, calling for better crowdsourcing
protocols to elicit diverse edits from workers.

Role of Pretraining. Tu et al. (2020) show that
larger pretrained models generalize better from mi-
nority examples. Therefore, in our case we would
expect CAD to have limited benefit on larger pre-
trained models since they can already leverage the

5The results in Figure 2 when all perturbation types are
included indicate that CAD performs better than the SNLI
baseline. This is not in contradiction with the results found in
Huang et al. (2020), since our models are trained on only a
subset of CAD. This further motivates the study of how CAD
data size affects generalization.

3673



1000 2000 3000 4000 5000
Training Data Size

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0
Ac

cu
ra

cy

Train: CAD, Eval: MNLI
Train: SNLI, Eval: MNLI

Figure 3: Accuracy on the OOD set (MNLI) for mod-
els trained on increasing amounts of NLI CAD. CAD is
more beneficial in the low data regime, but its benefits
taper off (compared to SNLI baseline of same size) as
the dataset size increases.
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Figure 4: F1 score on the OOD set (MultiRC) for mod-
els trained on increasing amounts of QA CAD. CAD per-
forms comparable to the baseline in the low data regime,
but surprisingly performs worse with increasing dataset
sizes, probably due to overfitting to a few perturbation
types.

diverse (but scarce) robust features revealed by
SNLI examples. We compare the results of BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) trained on SNLI CAD in Table 4 — both
models are fine-tuned on the SNLI CAD dataset
and are evaluated on the OOD set (MNLI). For the
RoBERTa model (pretrained on more data), CAD
no longer improves over the SNLI baseline, sug-
gesting that current CAD datasets may not have
much better coverage of robust features than what
stronger pretrained models can already learn from
benchmarks like SNLI.

4 CAD Exacerbates Existing Spurious
Correlation

An artifact of underdiverse perturbations is the
newly introduced spurious correlations. As an
example, in the extreme case where all entail-
ment examples are flipped to non-entailment by the
negation operation in Table 1, the model would
learn to exclusively rely on the existence of nega-
tion words to make predictions, which is clearly
undesirable. In this section, we study the impact
of CAD on two known spurious correlations in
NLI benchmarks: word overlap bias (McCoy et al.,
2019) and negation bias (Gururangan et al., 2018b).

Negation bias. We take examples where there is
a presence of a negation word (i.e. "no", "not",
"n’t") in the hypothesis, and plot the fraction of
examples in each class in both the seed and the

Stress Test MNLI subset

SNLI Seed 57.54.6 63.33.8
CAD 49.61.5 55.74.2

Table 5: Accuracy of models on challenge examples
in the stress test and MNLI, where non-contradiction
examples contain a negation word in the hypothesis.
Models trained on CAD perform worse on both sets,
implying that it exacerbates the negation bias.

corresponding CAD examples in Figure 5a. As
expected, contradiction is the majority class in the
seed group, but surprisingly, including CAD ampli-
fies the fraction of contradiction examples! As a re-
sult, training on CAD leads to worse performance
on challenge sets that counter the negation bias
compared to training on seed examples of the same
size. Specifically, we test on the ‘negation’ part of
the Stress Tests (Naik et al., 2018)6 and challenge
examples in the combined MNLI development set
which contain negation words in the hypothesis but
are not contradictions. Table 5 shows that models
trained on CAD perform worse on both test sets,
implying that they rely more on the negation bias.

Word-overlap bias. Similarly, in Figure 5b, we
show that CAD amplifies the fraction of entail-
ment examples among those with high word over-
lap (i.e. more than 90% of words in the hypoth-

6Synthetic examples where the phrase “and false is not
true” is appended to the hypothesis of MNLI examples.
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Figure 5: Fraction of entailment/neutral/contradiction examples in the SNLI seed set and CAD where (a) negation
words are present in the hypothesis; (b) word overlap bias is observed. We observe that the distribution is more
skewed in CAD compared to the seed examples, towards contradiction for the negation bias (a) and towards
entailment for the word overlap bias (b).

esis are present in the premise). Models trained
on SNLI and CAD both perform poorly (< 10%
accuracy) on the non-entailment subset of HANS
challenge set (McCoy et al., 2019), which exploits
the word overlap bias.

Takeaway. This section reveals that in the pro-
cess of creating CAD, we may inadvertently exacer-
bate existing spurious correlations. The fundamen-
tal challenge here is that perturbations of the robust
features are only observed through word change in
the sentence—it is hard to surface the underlying
causal variables without introducing (additional)
artifacts to the sentence form.

5 Related Work

Label-Preserving Data Augmentation. A com-
mon strategy to build more robust models is to
augment existing datasets with examples similar to
those from the target distribution. Min et al. (2020)
improve accuracy on HANS challenge set (McCoy
et al., 2019) by augmenting syntactically-rich ex-
amples. Jia and Liang (2016) and Andreas (2020)
recombine examples to achieve better composi-
tional generalization. There has also been a re-
cent body of work using task-agnostic data aug-
mentation by paraphrasing (Wei and Zou, 2019),
back-translation (Sennrich et al., 2016) and masked
language models (Ng et al., 2020). The main dif-
ference between these works and CAD is that the
edits in these works are label-preserving whereas
they are label-flipping in CAD—the former pre-
vents models from being over-sensitive and the
latter alleviates under-sensitivity to perturbations.

Label-Changing Data Augmentation. Lu et al.
(2020) and Zmigrod et al. (2019) use rule-based
CAD to mitigate gender stereotypes. Gardner et al.
(2020) build similar contrast sets using expert edits
for evaluation. In contrast, Kaushik et al. (2020)
crowdsource minimal edits. Recently, Teney et al.
(2020) also use CAD along with additional auxil-
iary training objectives and demonstrate improved
OOD generalization.

Kaushik et al. (2021) analyze a similar toy model
(linear Gaussian model) demonstrating the bene-
fits of CAD, and showed that noising the edited
spans hurts performance more than other spans.
Our analysis complements theirs by showing that
while spans identified by CAD are useful, a lack of
diversity in these spans limit the effectiveness of
CAD, thus better coverage of robust features could
potentially lead to better OOD generalization.

Robust Learning Algorithms. Another direc-
tion of work has explored learning more robust
models without using additional augmented data.
These methods essentially rely on learning debi-
ased representations—Wang et al. (2018) create a
biased classifier and project its representation out
of the model’s representation. Along similar lines,
Belinkov et al. (2019) remove hypothesis-only bias
in NLI models by adversarial training. He et al.
(2019) and Clark et al. (2019b) correct the condi-
tional distribution given a biased model. Utama
et al. (2020) build on this to remove ‘unknown’
biases, assuming that a weak model learns a biased
representations. More recently, Veitch et al. (2021)
use ideas from causality to learn invariant predic-
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tors from counterfactual examples. The main dif-
ference between these methods and CAD is that the
former generally requires some prior knowledge
of what spurious correlations models learn (e.g.
by constructing a biased model or weak model),
whereas CAD is a more general human-in-the-loop
method that leverages humans’ knowledge of ro-
bust features.

6 Conclusion and Future Directions

In this work, we first analyzed CAD theoretically
using a linear model and showed that models do not
generalize to unperturbed robust features. We then
empirically demonstrated this issue in two CAD
datasets, where models do not generalize well to un-
seen perturbation types. We also showed that CAD
amplifies existing spurious correlations, pointing
out another concern. Given these results, a natural
question is: How can we fix these problems and
make CAD more useful for OOD generalization?
We discuss a few directions which we think could
be helpful:

• We can use generative models (Raffel et al.,
2020; Lewis et al., 2020) to generate diverse
minimal perturbations and then crowdsource
labels for them (Wu et al., 2021). We can
improve the diversity of the generations by
masking different spans in the text to be in-
filled, thus covering more robust features.

• An alternative to improving the crowdsourc-
ing procedure is to devise better learning algo-
rithms which mitigate the issues pointed out
in this work. For example, given that we know
the models do not always generalize well to
unperturbed features, we can regularize the
model to limit the reliance on the perturbed
features.

We hope that this analysis spurs future work on
CAD, making them more useful for OOD general-
ization.

Acknowledgements

We thank Divyansh Kaushik, Tatsunori Hashimoto
and members of the NYU ML2 group for discus-
sion and feedback on the work. The first author
is supported by a NSF Graduate Research Fellow-
ship under grant number 1839302. This work was
partly supported by Samsung Advanced Institute

of Technology (Next Generation Deep Learning:
From Pattern Recognition to AI).

References
Jacob Andreas. 2020. Good-enough compositional

data augmentation. In ACL.

Yonatan Belinkov, Adam Poliak, Stuart Shieber, Ben-
jamin Van Durme, and Alexander Rush. 2019.
Don’t take the premise for granted: Mitigating arti-
facts in natural language inference. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, Florence, Italy. Associa-
tion for Computational Linguistics.

Samuel R. Bowman, Jennimaria Palomaki, Livio Bal-
dini Soares, and Emily Pitler. 2020. New protocols
and negative results for textual entailment data col-
lection. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Online. Association for Computational
Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Christopher Clark, Mark Yatskar, and Luke Zettle-
moyer. 2019b. Don’t take the easy way out: En-
semble based methods for avoiding known dataset
biases. In EMNLP/IJCNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

M. Gardner, Y. Artzi, V. Basmova, J. Berant, B. Bo-
gin, S. Chen, P. Dasigi, D. Dua, Y. Elazar, A. Got-
tumukkala, N. Gupta, H. Hajishirzi, G. Ilharco,
D. Khashabi, K. Lin, J. Liu, N. F. Liu, P. Mulcaire,
Q. Ning, S. Singh, N. A. Smith, S. Subramanian,
R. Tsarfaty, E. Wallace, A. Zhang, and B. Zhou.
2020. Evaluating NLP models via contrast sets. In
Empirical Methods in Natural Language Processing
(EMNLP).

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz,
S. R. Bowman, and N. A. Smith. 2018a. Annotation
artifacts in natural language inference data. In North
American Association for Computational Linguistics
(NAACL).

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018b. Annotation artifacts in natu-
ral language inference data. In NAACL-HLT.

3676

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


H. He, S. Zha, and H. Wang. 2019. Unlearn dataset
bias for natural language inference by fitting the
residual. In Proceedings of the EMNLP Workshop
on Deep Learning for Low-Resource NLP.

William Huang, Haokun Liu, and Samuel R. Bowman.
2020. Counterfactually-augmented SNLI training
data does not yield better generalization than unaug-
mented data. In Proceedings of the First Workshop
on Insights from Negative Results in NLP, pages 82–
87, Online. Association for Computational Linguis-
tics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lip-
ton. 2020. Learning the difference that makes a dif-
ference with counterfactually-augmented data. In
International Conference on Learning Representa-
tions (ICLR).

Divyansh Kaushik, Amrith Setlur, Eduard H Hovy, and
Zachary Chase Lipton. 2021. Explaining the effi-
cacy of counterfactually augmented data. In Inter-
national Conference on Learning Representations.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface:a challenge set for reading com-
prehension over multiple sentences. In NAACL.

Daniel Khashabi, Tushar Khot, and Ashish Sabharwal.
2020. More bang for your buck: Natural perturba-
tion for robust question answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 163–
170, Online. Association for Computational Linguis-
tics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv, abs/1907.11692.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Aman-
charla, and A. Datta. 2020. Gender bias in neural
natural language processing. In Logic, Language,
and Security.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Junghyun Min, R. Thomas McCoy, Dipanjan Das,
Emily Pitler, and Tal Linzen. 2020. Syntactic
data augmentation increases robustness to inference
heuristics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
Seattle, Washington. Association for Computational
Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi.
2020. SSMBA: Self-supervised manifold based data
augmentation for improving out-of-domain robust-
ness. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Online. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Elan Rosenfeld, Pradeep Kumar Ravikumar, and An-
drej Risteski. 2021. The risks of invariant risk min-
imization. In International Conference on Learning
Representations.

B. Scholkopf, D. Janzing, J. Peters, E. Sgouritsa,
K. Zhang, and J. Mooij. 2012. On causal and anti-
causal learning. In International Conference on Ma-
chine Learning (ICML).

3677

https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://openreview.net/forum?id=HHiiQKWsOcV
https://openreview.net/forum?id=HHiiQKWsOcV
https://doi.org/10.18653/v1/2020.emnlp-main.12
https://doi.org/10.18653/v1/2020.emnlp-main.12
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://www.aclweb.org/anthology/C18-1198
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=BbNIbVPJ-42
https://openreview.net/forum?id=BbNIbVPJ-42


Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Damien Teney, Ehsan Abbasnedjad, and Anton van den
Hengel. 2020. Learning what makes a difference
from counterfactual examples and gradient supervi-
sion. In Computer Vision – ECCV 2020, pages 580–
599, Cham. Springer International Publishing.

Lifu Tu, Garima Lalwani, Spandana Gella, and He He.
2020. An empirical study on robustness to spuri-
ous correlations using pre-trained language models.
Transactions of the Association for Computational
Linguistics, 8:621–633.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna
Gurevych. 2020. Towards debiasing NLU models
from unknown biases. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Online. Association for
Computational Linguistics.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky,
and Jacob Eisenstein. 2021. Counterfactual invari-
ance to spurious correlations in text classification.
In Advances in Neural Information Processing Sys-
tems.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Y. Wang, B. Dai, L. Kong, X. Ma, S. M. Erfani, J. Bai-
ley, S. Xia, L. Song, and H. Zha. 2018. Learn-
ing deep hidden nonlinear dynamics from aggregate
data. In Uncertainty in Artificial Intelligence (UAI).

Zhao Wang and Aron Culotta. 2020. Identifying spu-
rious correlations for robust text classification. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3431–3440, Online.
Association for Computational Linguistics.

Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
mentation techniques for boosting performance on
text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6382–6388, Hong Kong,
China. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume

1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2021. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving
models. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
Online. Association for Computational Linguistics.

Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and
Ryan Cotterell. 2019. Counterfactual data augmen-
tation for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1651–1661, Florence, Italy.
Association for Computational Linguistics.

3678

https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://openreview.net/forum?id=BdKxQp0iBi8
https://openreview.net/forum?id=BdKxQp0iBi8
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161


A Toy Example Proof

In this section, we give the proof for Proposition 1 for the toy example. For clarity, we also reproduce the
statement of the proposition in this section:

Proposition 1. Define the error for a model as `(w) = Ex∼F
[
(wTinvx− wTx)2

]
where the distribution

F is the test distribution in which xr and xs are independent: xr | y ∼ N (yµr, σ
2
rI) and xs ∼ N (0, I).

Assuming all variables have unit variance (i.e. σr = 1 and σs = 1), ‖µr‖ = 1, and ‖µs‖ = 1, we get
`(ŵinc) > `(ŵ) if ‖µr1‖2 < 1+

√
13

6 ≈ 0.767, where ‖ · ‖ denotes the Euclidean norm, and µr1 is the mean
of the perturbed robust feature r1.

Proof for Proposition 1. Given the definition of error we have,

`(ŵ) = Ex∼F
[
(wTinvx− ŵTx)2

]
(11)

According to equation (6), we have winv =
[
Σ−1r µr, 0

]
where

Σr = Cov(xr, xr) = Ex∼D
[
xrx

T
r

]
= Ey∼D

[
Ex∼D

[
xrx

T
r |y
]]

= Ey∼D
[
I + y2µrµ

T
r

]
= I + µrµ

T
r (12)

This gives us Σ−1r = (I + µrµ
T
r )−1 = I −αµrµTr using the Sherman-Morrison formula since we have

a rank-one perturbation of the identity matrix. Here α = 1
1+|µr|2 = 1

2 , giving winv =
[µr

2 , 0
]
.

Now note that according to equation (4), ŵ = M−1µ where M, the covariance matrix can be written as
a block matrix as in equation (5). Hence we can formula for inverse of block matrix to get:

M−1 =

[
I − 1

3µrµ
T
r −1

3µrµ
T
s

−1
3µsµ

T
r I − 1

3µsµ
T
s

]
(13)

Note that we have not shown the actual plugging in the formula of block matrix inverse, and simplifying
but it is to verify that MM−1 = I . Therefore, we get

ŵ = M−1µ

=

[
I − 1

3µrµ
T
r −1

3µrµ
T
s

−1
3µsµ

T
r I − 1

3µsµ
T
s

] [
µr
µs

]
(14)

=
1

3
µ (15)

since ‖µr‖ = 1 and ‖µs‖ = 1. Plugging all these back into equation (11), we get:

`(ŵ) = Ex∼F
[
(
µTr xr

2
− µTx

3
)2
]

= Ex∼F
[
µTr xrx

T
r µr

4
+
µTxxTµ

9
− µTr xrx

Tµ

3

]
(16)

For the distributionF we have, Ex∼F
[
xrx

T
r

]
= I+µrµ

T
r (since xr is distributed similarly inD andF ),

Ex∼F
[
xrx

T
]

=
[
I + µrµ

T
r , 0
]

(since xr and xs are independent in F ) and Ex∼F
[
xxT

]
=
(
I+µrµTr 0

0 I

)
.

Plugging all these back and again using ‖µr‖ = 1, ‖µs‖ = 1, we get
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Test Set Size (NLI) Size (QA)

lexical 406 314
resemantic 640 332
negation 80 268

quantifier 206 80
insert 376 118
delete 250 -

Table 6: Size of the tests sets corresponding to the different perturbation types for both NLI and QA. For QA, the
number of examples in delete were extremely small and hence we do not use that perturbation type for QA.

`(ŵ) =
1

2
+

2 + 1

9
− 2

3

=
1

6
(17)

For the incomplete edits, we have ŵinc = [Σ−1r1 µr1, 0] where Σ−1r1 = (I + µr1µ
T
r1)
−1 = I − γµr1µTr1,

γ = 1
1+‖µr1‖2 using the Sherman-Morrison formula again, since we have a rank-one perturbation

of the identity matrix. This gives ŵinc = 1
1+‖µr1‖2 [µr1, 0]. Note that Ex∼F

[
xrx

T
r

]
= I + µrµ

T
r ,

Ex∼F
[
xr1x

T
r1

]
= I + µr1µ

T
r1 and Ex∼F

[
xrx

T
r1

]
=
[
I + µr1µ

T
r1, 0

]T . Thus the error for incomplete
edits is:

`(ŵinc) = Ex∼F
[
µTr xrx

T
r µr

4
+
µTr1xr1x

T
r1µr1

(1 + ‖µr1‖2)2
− µTr xrx

T
r1µr1

1 + ‖µr1‖2

]
=

1

2
+
‖µr1‖2

1 + ‖µr1‖2
− ‖µr1‖2 (18)

Thus using equation (17) and (18), we get `(ŵinc) > `(ŵ) if 3‖µr1‖4 − ‖µr1‖2 − 1 < 0 which is
exactly satisfied when ‖µr1‖2 < 1+

√
13

6 .

B Additional Experiments & Results

Here, we report more details on the experiments as well as present some additional results.

B.1 Experiment Details

For NLI, models are trained for a maximum of 10 epochs, and for QA all models are trained for a
maximum of 5 epochs (convergence is faster due to the larger dataset size). The best model is selected by
performance on a held-out development set, that includes examples from the same perturbation type as in
the training data.

B.2 Dataset Details

The size of the training datasets and how they are constructed are described in Section 3.2. Here, we give
more details on the size of the various test sets used in the experiments. The size of the CAD datasets
for the different perturbation types are given Table 6 for both NLI and QA. Note that all test sets contain
paired counterfactual examples, i.e. the seed examples and their perturbations belonging to that specific
perturbation type.

3680



B.3 Accounting for small dataset sizes
The experiments in Section 3.2 were run for 5 different random initializations, and we report the mean
and standard deviation across the random seeds. For completeness, we also report results when using
different subsamples of the SNLI dataset. Table 7 shows the mean and standard deviation across 5 different
subsamples, along with the rest of the results which were presented in Section 3.3. We observe that even
though there is variance in results across the different subsamples, majority of the trends reported in 3.3
are consistent across the different subsamples — CAD performs well on aligned test sets, but does not
necessarily generalize to unaligned test sets.

Train Data All types lexical insert resemantic quantifier negation delete

SNLI seed 67.840.84 75.160.32 74.941.05 76.770.74 74.360.21 69.252.09 65.762.34
SNLI seed (subsamples) 64.871.02 75.061.89 71.382.30 73.841.60 69.123.17 66.752.87 63.602.44

lexical 70.441.07 81.810.99 74.041.04 74.931.16 72.421.58 68.752.16 67.043.00
insert 66.001.41 71.082.53 78.981.58 71.741.53 68.150.88 57.754.54 68.802.71

resemantic 70.801.68 77.232.35 76.591.12 75.401.44 70.771.04 67.252.05 70.401.54

Table 7: Results for the different perturbation types in NLI with multiple subsamples of the dataset. ( denotes
aligned test sets). We observe that there is variance across different subsamples, but the majority of the trends
reported in Section 3.3 still hold true.

Train Data All types lexical insert resemantic quantifier negation delete

SNLI seed 71.410.40 79.901.00 78.080.49 79.841.17 75.921.17 77.252.42 70.880.68
lexical 73.100.56 83.540.91 77.280.64 80.810.47 75.720.86 78.001.69 70.721.46
insert 72.910.54 80.390.88 78.930.66 80.560.76 76.890.84 77.252.66 71.432.40

resemantic 73.440.33 81.230.64 77.970.51 81.060.49 76.601.42 75.752.03 73.841.25

Table 8: Results for the different perturbation types in NLI with larger dataset sizes, with 10% of the data being
the perturbations ( denotes aligned test sets).

To account for the small dataset sizes, we also ran an experiment using the NLI CAD dataset analogous
to the QA setup—using a larger number of SNLI examples (7000) and replace a small percentage of them
(10%) with perturbations of the corresponding perturbation type. We ensure that the original examples
from which the perturbations were generated are also present in the dataset. Thus, all experiments will
have much larger dataset sizes than before (7000 vs 1400), while still using counterfactual examples
generated only by one specific perturbation type. The results for this experiment are reported in Table 8.
We observe that CAD still performs best on aligned test sets but only marginally — this happens since
a large fraction of the dataset (90%) is similar across all experiments. Although CAD performs worse
on unaligned test sets than the aligned test sets, it does not necessarily perform worse than the SNLI
baseline — this happens since the larger number of seed examples will implicitly regularize the model
from overfitting to that specific perturbation type.
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