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Abstract

Continual learning is essential for real-world
deployment when there is a need to quickly
adapt the model to new tasks without forget-
ting knowledge of old tasks. Existing work
on continual sequence generation either al-
ways reuses existing parameters to learn new
tasks, which is vulnerable to catastrophic for-
getting on dissimilar tasks, or blindly adds
new parameters for every new task, which
could prevent knowledge sharing between sim-
ilar tasks. To get the best of both worlds,
in this work, we propose continual sequence
generation with adaptive compositional mod-
ules to adaptively add modules in transformer
architectures and compose both old and new
modules for new tasks. We also incorporate
pseudo experience replay to facilitate knowl-
edge transfer in those shared modules. Exper-
iment results on various sequences of genera-
tion tasks show that our framework can adap-
tively add modules or reuse modules based on
task similarity, outperforming state-of-the-art
baselines in terms of both performance and pa-
rameter efficiency. We make our code pub-
lic at https://github.com/GT-SALT/
Adaptive-Compositional-Modules.

1 Introduction

Current state-of-the-art language generation mod-
els can achieve great performance on a wide range
of sequence generation tasks (Radford et al., 2019;
Lewis et al., 2020) with a static data distribution.
However, real-world scenarios are often changing
which requires the model to learn with dynamic
data distributions. In such cases of data distribu-
tions shift, current generation models often suf-
fer from catastrophic forgetting (Sun et al., 2019):
models completely and abruptly forget previously
learned information upon learning new information.
Continual learning (CL) (Ring, 1998; Thrun, 1998)
has been introduced to improve model’s ability to
learn tasks in a stream by mitigating forgetting

Figure 1: Comparison between previous methods (a
and b) and our proposed method (c), from a multi-layer
transformer model perspective. The blue blocks re-
fer to learnable modules and the yellow blocks refer
to frozen pretrained modules . a: retrain the whole
model every time when new tasks arrive. b: insert task-
specific modules for each task, while keeping the pre-
trained model frozen. c: detect reusable old modules
and add new modules adaptively.

and facilitating knowledge transfer (Lopez-Paz and
Ranzato, 2017), however, continual sequence gen-
eration is relatively under-investigated.

Comparing to continual learning on text classifi-
cation and question answering (Wang et al., 2020;
Holla et al., 2020; Huang et al., 2021), continual
sequence generation is more challenging, since the
output is no longer discrete labels but sequential
text data in different styles/domains. Based on how
to retain old knowledge while learning new tasks,
current continual sequence generation methods can
be categorized into two types. The first one con-
tinually learns new tasks on old parameters (Fig
1 a), with approaches like experience replay (Sun
et al., 2019; Chuang et al., 2020) and regulariza-
tion (Mi et al., 2020) to maintain old knowledge.
However, since all tasks share the same parameters,
some degree of interference between tasks is un-
avoidable. Another line of work continually inserts
new task-specific modules (adapters proposed by
Houlsby et al., 2019) into every transformer layer
for every new task while freezing pretrained mod-
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els and modules used by old tasks (Fig 1 b, Madotto
et al., 2021), which might prevent knowledge trans-
fer between tasks and introduce possible parameter
redundancy. In this work, we aim to get the best of
both worlds: how to encourage the models to reuse
modules from previous tasks as much as possible
and to only add new modules if needed?

To this end, we propose continual sequence gen-
eration with adaptive compositional modules, as
shown in Fig 1 c. Specifically, we introduce a
two-stage process for every new coming task: a
decision stage and a training stage. During deci-
sion stage, we decide which modules to reuse and
whether we need to add a new module. During
training stage, the model architecture is determined
and fixed. We augment new task’s training process
with pseudo experience replay (Sun et al., 2019) to
further mitigate forgetting and facilitate knowledge
transfer in those shared layers. Our model archi-
tecture is adaptive, as it can automatically add new
modules for dissimilar tasks and reuse modules
for similar tasks, thus making it robust to different
scenarios of continual learning. Furthermore, it is
compositional because for every new task, our new
architecture is composed of reused modules from
old tasks and newly added modules, which allows
knowledge reuse and transfer.

To evaluate the above adaptive compositional
framework, we experiment with four representative
sequence generation tasks following prior work
(Sun et al., 2019; Chuang et al., 2020): natural
language generation, SQL query generation, sum-
marization and task-oriented dialogue arriving in
a stream. Different from prior work that only tests
their methods on very short task sequences or long
task sequences with similar tasks only, we validate
our approach on longer sequences containing di-
verse tasks with different levels of similarity. We
believe this is a suitable scenario to validate both
the model’s ability to mitigate forgetting and its
ability to facilitate knowledge transfer. In summary,
this work makes two key contributions: (1) We
propose continual sequence generation with adap-
tive compositional modules, to maximize knowl-
edge transfer via module-reusing while adaptively
adding new modules to mitigate task-interference
and catastrophic forgetting. (2) Experiments with
longer and more task sequences show that our ap-
proach outperformed baselines with higher param-
eter efficiency.

2 Related Work

Continual Learning Without allocating new pa-
rameters for new tasks, prior work mainly lever-
ages experience replay (Wang et al., 2019; Sun
et al., 2019) and regularization to mitigate catas-
trophic forgetting. In experience replay, models
are retrained on old examples from previous tasks
while learning new tasks. Those old examples are
usually stored in a fixed size (Mi et al., 2020) or
expanding (Huang et al., 2021) memory buffer. Be-
sides replaying old examples, regularization on the
hidden states (Wang et al., 2019; Han et al., 2020;
Huang et al., 2021) or parameters (Mi et al., 2020)
could be further added to prevent severe distortion.
Another line of work is to create new parameters
for new tasks while freezing parameters used by
old tasks. In computer vision, progressive neu-
ral network (Rusu et al., 2016) continually adds
new branches of parameters for new image classi-
fication tasks with lateral connections to facilitate
forward knowledge transfer. Dynamically expand-
able network (Yoon et al., 2017) expands neural
networks at neuron level by using regularization to
restrict the number of added neurons. While allo-
cating a big network in advance, PackNet (Mallya
and Lazebnik, 2018) continually assigns a param-
eter subset to each task by network pruning.Li
et al. (2019) employ neural architecture search (Liu
et al., 2018) to optimize on new task’s structure
before learning new tasks. In language domain,
prior work often utilizes adapter (Houlsby et al.,
2019; Madotto et al., 2021; Ermis et al., 2022),
which could be considered as task-specific MLPs
inserted into frozen transformer layers. However,
since all adapter modules are designed for only one
specific task, no knowledge transfer is directly al-
lowed in this case. Extra modules like attention
module (Pfeiffer et al., 2021), capsule network (Ke
et al., 2021), and hypernetworks (Jin et al., 2021)
are demonstrated beneficial for knowledge transfer,
but they need to introduce extra parameters and fail
to consider any reusable or compositional modules.

Avoiding privacy concerns, this work also fol-
lows a line of work that doesn’t store real examples
for experience replay, such as generating examples
by GAN (Atkinson et al., 2018), synthesizing ex-
amples (Xu et al., 2022) by model-inversion (Smith
et al., 2021b), and using unlabeled data in the learn-
ing environment (Smith et al., 2021a). In language
domain, LAMOL (Sun et al., 2019) trains the lan-
guage model to solve current tasks and generate
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current training examples simultaneously, then this
model can generate “pseudo” old examples for re-
play before any new tasks. We adopt this pseudo
experience replay along to alleviate the forgetting
in the shared modules of our approach.

Continual Learning for Sequence Generation
Building on an auto-regressive language model,
LAMOL (Sun et al., 2019) makes initial explo-
ration on continual sequence generation. On the
basis of LAMOL, knowledge distillation (Chuang
et al., 2020; Sun et al., 2020) is shown to be ef-
fective via improving knowledge transfer while
changing tasks. ARPER (Mi et al., 2020) combines
regularization on parameters (Kirkpatrick et al.,
2017) with prioritized exemplar replay. Keeping
the pretrained model frozen, Madotto et al. (2021)
added task-specific modules for each task together
with a perplexity-based classifier, without taking
into account the potential for knowledge transfer
between different tasks. Instead of blindly adding
new modules for new tasks, our approach can de-
tect reusable modules and strategically add new
adapter modules in those layers in which reusing
old modules would lead to severe forgetting. With-
out introducing extra knowledge transfer modules,
our approach enables knowledge transfer via mod-
ule sharing.

Task-specific Modules Traditional finetuning
approaches (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019) usually modify all the param-
eters in large pretrained modules while learning
downstream tasks. Recently, a line of work has
been proposed to improve the parameter-efficiency
of finetuning by inserting task-specific modules
into freezing pretrained models. Adapter (Houlsby
et al., 2019) inserts MLP layers into each trans-
former layer. PrefixTuning (Li and Liang, 2021)
prepends key-value pairs to each transformer layer
as activations. Prior work also shows that these
task-specific modules might benefit from a more
adaptive usage. For example, AdapterDrop (Rücklé
et al., 2021) shows that removing adapters from
lower transformer layers can almost maintain the
original performance while reducing computational
overhead. Guo et al. (2021) leveraged latent vari-
ables to decide whether to skip adapter modules
in certain transformer layers to speed up decoding.
However, our approach goes beyond the notion of
“task-specific”, recomposes reusable modules from
different tasks, and learns compositional architec-

tures for new coming tasks.

3 Background

Continual Generation Formulation Assuming
multiple sequence generation tasks {T1...Tn} ar-
rive in a stream, each task Ti has a set of train-
ing examples {P i

1, P
i
2..., P

i
k}, where P i

j denotes a
(input, output) pair in Task i. While learning on
task Ti (i > 2), we have no access to examples
from previous tasks. The final goal is to optimize
the model’s average performance on all tasks after
training on the whole sequence.

Finetuning In order to integrate different se-
quence generation tasks into a single framework,
we use finetuning as a general strategy. On the
basis of an autoregressive language model, the
core idea is to feed the model input and train the
model to generate the corresponding output sub-
sequently. To distinguish between tasks, we add
an extra question following every input to de-
scribe the purpose of each task. For example, the
question for natural language generation tasks is
What is the natural language form? Formally, for
each (input, question, output) triple, the model
is optimized to generate the corresponding output
given input and question:

Lfinetune(x) =

n∑
t=m+1

− logP (xt|x<t)

where x = {x1, ..., xn} denotes the concatenation
of input, question and output, and {x1, ..., xm}
refers to input and question.

Adapter The module used in our framework
refers to adapter (Houlsby et al., 2019), which is a
task-specific module inserted into each frozen pre-
trained transformer layers (Vaswani et al., 2017).
In addition to residual connection (He et al., 2016)
and layer normalization (Ba et al., 2016), one trans-
former layer contains two primary sub-layers: an at-
tention layer and a feed forward layer. One adapter
module consists of two multi-layer perceptrons
(MLP ), one (MLPMH ) following the multi-head
attention layer and one (MLPFF ) following the
feed forward layer.

4 Two-Stage Methods

Motivated by prior continual sequence generation
work (Madotto et al., 2021) that uses Adapter
(Houlsby et al., 2019) to insert new adapter module
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into every transformer layer for each new coming
task, we propose to strategically decide whether
we can reuse some adapter modules from old tasks
before training on each new coming task, in a two-
stage manner: decision stage and training stage,
where the former determines the architecture for
new tasks and the later trains the model.

4.1 Decision Stage
The decision stage aims to answer two questions:
do we need to add a new module in this layer? If
not, which old modules should we reuse? Inspired
by interpolation-based data augmentation (Chen
et al., 2020, 2021) and neural architecture search
(Liu et al., 2018), we utilize Hidden State Mixing
for module selection. Assume that there are several
modules as potential candidates to be selected, after
calculating their output separately, we calculate
their weighted average as the overall output, which
is then passed to the next part of the model (See
the left part in Figure 2). After training the entire
model end-to-end, we assume that the module with
the largest learned weight is the most useful one,
and thus will be selected for the reuse.

Formally, assume that we already have inserted
k modules into the lth transformer layer, each
consisting of two MLPs: (MLP 1,l

MH ,MLP 1,l
FF )...

(MLP k,l
MH ,MLP k,l

FF ). At the beginning of
decision stage, we add one more module
(MLP k+1,l

MH ,MLP k+1,l
FF ). Given these learnable

weight coefficients [λ1,l, . . . , λk+1,l], multi-head
attention layer output olmh, the feed forward layer
output olff , we mix the hidden states as follow:

hlmh =

k+1∑
t=1

λt,lMLP t,l
MH(olmh)

hlff =
k+1∑
t=1

λt,lMLP t,l
FF (o

l
ff )

where both hlmh and hlff are then fed into
their following Add & Norm layers. To ensure∑k+1

t=1 λt,l = 1, we use softmax function to pro-
duce λ1,l, . . . , λk+1,l from c1,l, . . . , ck+1,l:

λi,l =
eci,l∑k+1
t=1 e

ct,l
, i = 1 . . . k + 1

Using this mixing approach in every transformer
layer, we optimize our model using Ltrain (see Sec
4.2) for the new task and find the most suitable mod-
ules for each layer. Note that (i) In this process, the

pretrained model and all old modules are frozen,
and only mixing coefficients and newly added mod-
ules will be learned. (ii) Calculating the weighted
average is a convenient approximation of using one
adapter at a time, which is the real setting during
training stage and inference. (iii) Comparing to
other baselines in Figure 1, introduced decision
stage to decide the architecture does introduce ex-
tra computation, while computation of different
MLPs at one position is parallelizable to speed up.

To avoid the learned weight coefficient
λ1,l, . . . , λk+1,l to be too close to a uniform dis-
tribution in certain layers, we further add an addi-
tional regularization term to Ltrain, which is the
sum of entropy of every discrete probability distri-
bution [λ1,l, . . . , λk+1,l]:

Lentropy = γ
∑
l

k+1∑
i=1

−λi,l log(λi,l)

where γ is a coefficient tuned as a hyper-parameter.
In this stage, a trivial solution could be allocating

a new module in every layer regardless of whether
old modules are reusable. To avoid this trivial so-
lution and reuse shareable modules as much as
possible, we design a prior using the initialization
of the coefficient weights. For every l, c1,l...ck,l
is initialized to c (c > 0), while ck+1,l is initial-
ized to −c. After softmax, the weight of each old
module is e2c times the weight of the new module,
increasing the tendency to reuse old modules.

4.2 Training Stage
We further incorporate pseudo experience replay
(Sun et al., 2019) to mitigate forgetting and facil-
itate knowledge transfer in those shared modules.
The main idea is to teach a generative model to
solve current task and to generate current task’s
examples simultaneously. Then before training
on each new task, we can generate a set of pseudo
old examples and replay them during training.

Thus, in addition to the finetuning loss to solve
each task, we introduce an extra loss Lgen for
the model to generate current task’s examples.
Formally, given the whole sequence of x =
{input, question, output}, we first add a special
token [GEN] at the beginning of x to form a new
sequence x′, and then optimize the model as fol-
lows:

Lgen(x
′) =

n+1∑
t=1

− logP (x′t|x′<t)
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Figure 2: Our proposed model architecture with adaptive compositional modules for transformer layers. Assume
after learning three tasks (1, 2, 3), we have one module for task 1, and another for task 2 and 3 in this layer. Left:
During decision stage for task 4, we first insert a new module at this position, then all inserted modules will be used
for selection using hidden state mixing. Right: Assume that we finally decide to add one module at this position,
then each task would use its own architecture during training stage and inference.

Note that we use different special tokens for dif-
ferent tasks, thus we can generate examples for
specified tasks afterwards. Combining with the
finetune loss, the overall training loss is:

Ltrain = Lfinetune + ηLgen

where η is the weight for the Lgen loss.
Once our model has the ability to generate

“pseudo“ examples from old tasks, another question
is When to generate “pseudo“ examples? Since
those “pseudo“ examples are for shared modules
between old tasks and the current task, we only
generate them while some old modules are reused
for the current task. In that case, we train our model
using Ltrain on the current dataset together with
the generated examples. Otherwise, there is no
need for pseudo experience replay and we just train
our model using Ltrain on the current dataset.

5 Experiments

5.1 Datasets

Following Sun et al. (2019) and Chuang et al.
(2020), we evaluate our approach on four represen-
tative sequence generation tasks: natural language
generation, SQL query generation, summarization
and task-oriented dialogue modeling. Specifically,

we test our proposed approach under two common
scenarios: (1) CL on similar tasks: in this case,
the new coming tasks often share the same task
pattern with learned tasks, but are from different
domains. We use E2ENLG (Novikova et al., 2017)
and four different domains (restaurant, hotel, tv,
laptop) from RNNLG (Wen et al., 2015) to form
five similar tasks. Then we use four different or-
ders of these tasks as our testing task sequences.
(2) CL on dissimilar tasks: in this case, the distribu-
tion shift between new tasks and old tasks could be
relatively large, so the major challenge is to retain
old knowledge as much as possible while learning
new tasks. In this case, we further incorporate Wik-
iSQL (SQL query generation, Zhong et al., 2017),
CNN/DailyMail (news article summarization See
et al., 2017), MultiWOZ (semantic state sequence
generation (Budzianowski et al., 2018)) into our
task sequences1. We randomly pick four different
orders as our testing task sequences. In total, we
use eight different task sequences (Table 1) to eval-
uate our models. The statistics/metrics for each
dataset and the finetuing results are in Appendix A.

1We use “e2e” for E2ENLG, “rest” for RNNLG (restau-
rant), “hotel” for RNNLG (hotel), “tv” for RNNLG (tv), “lap-
top” for RNNLG (laptop), “wiki” for WikiSQL, “cnn” for
CNN/DailyMail, “woz” for MultiWOZ.
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Order Task Sequence

1 e2e� rest� hotel� tv� laptop
2 laptop� tv� hotel� rest� e2e
3 rest� tv� e2e� laptop� hotel
4 hotel� e2e� rest� laptop� tv
5 woz� cnn� e2e� rest� hotel
6 e2e� wiki� hotel� woz� rest
7 hotel� e2e� woz� wiki� cnn
8 cnn� hotel� wiki� e2e� woz

Table 1: Eight random different task sequences. The
first 4 includes different orders of similar tasks, the last
4 includes different orders including dissimilar tasks.

5.2 Baselines
We compare our proposed model with the follow-
ing baselines: (i) Finetune (Yogatama et al., 2019):
We finetuned GPT-2 model on several tasks sequen-
tially. (ii) EWC (Kirkpatrick et al., 2017) added
regularization on parameters according to their im-
portance to old tasks. (iii) LAMOL (Sun et al.,
2019) finetuned the whole GPT-2 model contin-
ually with the help of pseudo experience replay.
(iv) Adapter+CL (Madotto et al., 2021) inserted
adapter (Houlsby et al., 2019) modules into every
GPT-2’s layer for each task. (v) Adapter+Drop
(Rücklé et al., 2021): We removed all those adapter
modules from the first three layers in GPT-2 based
on Adapter+CL. (vi) Adapter+LAMOL: We only
inserted adapter modules into every transformer
layer for the first task, then used those adapter
modules to learn the whole the task sequence with
pseudo experience replay. Note that ARPER (Mi
et al., 2020) also tackles the problem of continual
sequence generation, but it needs an extra memory
buffer to store examples from old tasks, which is
not comparable with ours.

Implementation Details We use GPT-2 (Rad-
ford et al., 2019) in HugginceFace Transformers
(Wolf et al., 2020) as our backbone and adapter im-
plementation by AdapterHub (Pfeiffer et al., 2020).
More details can be found in Appendix A.

6 Results and Analysis

To evaluate the overall performance on all tasks,
we use the mean of all tasks’ performance score fol-
lowing Sun et al. (2019); Mi et al. (2020); Madotto
et al. (2021). For each scenario (similar tasks and
dissimilar tasks), we report the average of mean
scores on all sequences as an overall metric. Be-

yond these, we also provide (i) evaluation results
using geometric mean and (ii) final performance
of each task in Appendix A. Table 2 summarizes
the final performance on all eight task sequences.
We observed that finetuning sequentially suffered
from very severe forgetting, no matter on similar
or dissimilar tasks, highlighting the importance of
continual learning work. Though EWC can signifi-
cantly increase the performance of finetuning, its
performance is still far behind LAMOL, highlight-
ing the importance of experience replay.

For sequences containing similar tasks, the
performance of Adapter+CL is inferior to
Adapter+LAMOL even with more learnable pa-
rameters. This indicates that sharing parameters
and experience replay can further facilitate knowl-
edge transfer when tasks are similar. On the
premise of pseudo experience replay, our method
performs better than Adapter+LAMOL, demon-
strating the effectiveness of our adaptive composi-
tional architecture. Our approach also achieves a
much higher parameter efficiency than Adapter+CL
and Adapter+Drop. For sequences containing
dissimilar tasks where the transferable knowl-
edge is limited and parameter sharing might cause
degradation, Adapter+CL and Adapter+Drop seem
more robust compared to Adapter+LAMOL and
LAMOL, since they avoid catastrophic forgetting
by parameter isolation. Using a similar number
of parameters to Adapter+Drop, our method out-
performs Adapter+CL consistently on all task se-
quences, confirming that our method can prevent
interference between dissimilar tasks while reduc-
ing parameter redundancy.

6.1 Ablation Studies

We randomly selected task sequence #1 from simi-
lar tasks and sequence #8 from sequences of dis-
similar tasks for our ablation studies.

Importance of Each Component To examine
the importance of each component in our method,
we experiment with different settings: not using
entropy loss (w/o Entropy Loss), initializing all
weight coefficients with zero (w/o Weight Ini), and
not replaying pseudo data (w/o Pseudo ER). As
shown in Table 3, we found that (i) After remov-
ing entropy loss, the performance on sequence #1
is almost maintained by using more parameters.
Meanwhile, the performance on sequence #8 drops
significantly while using the same number of pa-
rameters. This observation suggests that the en-
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Methods Finetune EWC LAMOL Adapter
+CL

Adapter
+Drop

Adapter
+LAMOL Ours

Pseudo
Experience Replay 7 7 3 7 7 3 3

Similar Tasks

# 1 43.0 56.9 66.3 64.2 63.9 65.9 66.1
# 2 37.0 47.9 67.0 64.2 63.9 66.2 66.5
# 3 51.7 61.4 66.6 64.2 63.9 65.6 65.8
# 4 45.0 58.3 66.6 64.2 63.9 65.2 65.7

Avg Performance 44.2 56.2 66.6 64.2 63.9 65.7 66.0
Avg Learnable Para. 124.45M 124.45M 124.45M 8.95M 6.71M 1.79M 2.44M

Dissimilar Tasks

# 5 33.6 37.5 57.0 57.5 57.4 54.3 58.2
# 6 32.6 37.9 62.5 64.9 64.5 62.2 65.9
# 7 19.7 37.5 56.7 57.3 56.7 54.6 58.3
# 8 26.3 38.8 56.8 57.3 56.7 53.8 58.2

Avg Performance 28.1 37.9 58.3 59.3 58.8 56.2 60.1
Avg Learnable Para. 124.45M 124.45M 124.45M 8.95M 6.71M 1.79M 6.60M

Table 2: The mean of final performance score on all tasks. We use two random seeds for each task sequence.
Note that the final performance of Adapter+CL and Adapter+Drop is not affected by task ordering within the same
group of tasks. For each sequence, we mark the best representation in bold, where LAMOL is not compared
due to the difference in the order of magnitude of the learnable parameters. For each scenario, the p-values of
paired t-test between 8 numbers of our approach and the second highest comparable baseline is smaller than 0.05,
demonstrating significant improvement.

Method Sequence #1 Sequence #8
Avg Avg L.P. Avg Avg L.P.

Ours 66.1 2.24M 58.2 6.49M
w/o Entropy loss 66.1 2.54M 57.6 6.49M
w/o Weight Ini 64.2 7.09M 57.7 8.65M
w/o Pseudo ER 43.2 2.08M 55.9 6.34M

Table 3: Ablation study on (i) entropy loss (ii) weight
initialization (iii) pseudo experience replay. The left
part includes results for sequence #1 while the right
part includes result for sequence #8. Note that “Avg“
refers to the mean of performance score on all tasks and
“Avg L.P.“ refers to the mean of learnable parameters.

tropy loss is beneficial to achieve a better trade-off
between adding parameters and maintaining good
performance. (ii) When we initialize all weight co-
efficients with zero, there is no explicit tendency to
reuse old examples. In this case, many redundant
modules are created thus preventing knowledge
transfer, which leads to performance drop on both
sequences. The drop on sequence #1 is more se-
vere due to there is more transferable knowledge
between similar tasks. We therefore conclude that
weight initialization is important to enable knowl-
edge transfer between similar tasks. (iii) Removing
pseudo experience replay leads to the most severe
performance drop on both sequences. Though our
approach strategically detect which modules can be
reused, directly training them on new tasks without
protecting old knowledge will lead to catastrophic

Length Adapter
+CL

Adapter
+LAMOL Ours

2 Tasks(#1) 56.8 (+0.0) 57.5 (+0.8) 57.7 (+0.9)
3 Tasks(#1) 59.5 (+0.0) 60.3 (+0.6) 60.1 (+0.5)
4 Tasks(#1) 62.3 (+0.0) 63.5 (+1.3) 63.7 (+1.6)
5 Tasks(#1) 64.2 (+0.0) 65.9 (+2.0) 66.1 (+2.1)
2 Tasks(#8) 45.4 (+0.0) 46.2 (+1.3) 46.0 (+1.2)
3 Tasks(#8) 51.3 (+0.0) 51.9 (+0.8) 52.3 (+0.9)
4 Tasks(#8) 50.9 (+0.0) 49.7 (-1.7) 51.8 (+0.6)
5 Tasks(#8) 57.3 (+0.0) 53.8 (-4.6) 58.2 (+0.5)

Table 4: Impact of the task sequence length. Note
that “n Tasks(#i)” refers to after sequentially training
on the first n tasks in sequence #i, we report the mean
of performance score on those n tasks and the backward
transfer in parentheses.

forgetting.

Impact of Task Sequence Length Prior work
in continual learning (Madotto et al., 2021; Huang
et al., 2021) suggests that the differences in se-
quence length could influence the performance of
continual learning. To this end, we further inves-
tigated the impact of sequence length in Table 4,
where we reported the average performance at ev-
ery step and calculated Backward Transfer follow-
ing Lopez-Paz and Ranzato (2017):

BWTk =
1

k − 1
Ei=1...k−1(Rk,i −Ri,i)

where Ri,j is the performance score on the jth task
after training on the ith task.
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Figure 3: The growing process of our model on sequence: hotel� e2e� rest� laptop� tv. The 1st layer is shown
at the bottom and the 12th layer is at the top of each figure. Note that here we only depict the architecture growing
process of our inserted modules: (i) Each rectangle represents a module added in that specific transformer layer.
(ii) Each module is painted with the corresponding color if it is used by a task. (iii) Modules with multiple colors
are shared by multiple tasks.

We found that, on sequence #1,
Adapter+LAMOL and our method consis-
tently outperform Adapter+CL in all stages, which
could be explained by better knowledge transfer
between multiple tasks. Beyond that, our method
outperforms Adapter+LAMOL in most cases,
demonstrating the benefits of adaptively adding
modules. On sequence #8, Adapter+LAMOL
struggles when the length of task sequence
becomes longer. As more and more tasks arrive,
the impact of task dissimilarity and distribution
shift gets larger that pseudo experience replay
cannot cope with. In that case, there is limited
backward transfer but severe forgetting. In contrast,
Adapter+CL and our method demonstrate their
robustness after learning more tasks in a stream.
Our method also outperforms Adapter throughout
the learning process, demonstrating we can enable
knowledge transfer even the similarity between
tasks is limited.

Case Study We selected e2e in sequence #1 and
wiki in sequence #8 as two representative tasks to
illustrate the final output generated by different ap-
proaches in Table 5. After training on the whole
sequence, Adapter+LAMOL cannot correctly con-

vey the information provided in the input, suffering
from generating grammar mistakes and missing
key points. This could be attributed to the inter-
ference from learning new coming tasks. While
Adapter+CL successfully mitigate this problem
by parameter isolation, our approach works sim-
ilarly using less parameters and generates better
sequences without redundant information.

6.2 The Growth of Compositional Modules

To illustrate the process of adding/reusing modules,
we depict the model architecture at each stage in
Fig 3 using sequence #4, which is the most chal-
lenging sequence containing similar tasks accord-
ing to Table 2. Since the similarity between the
second task (e2e) and the first task (hotel) is low
(see Figure 4 in Appendix A), our framework au-
tomatically learns to add extra adapter modules in
layer {6, 8, 9, 10, 11} before training on the second
task. When the third task (rest) arrives, given its
high similarity to the first task, our method cor-
rectly decides to reuse all modules used in the first
task. Interestingly, the architecture for the fourth
task is composed of shared modules with the first
3 tasks in layer {1, 2, 3, 4, 5, 7, 12}, shared module
with the second task in layer 6, shared the mod-
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E2E NLG (#1): name[Strada], eatType[coffee shop], area[city centre]

Reference There is a coffee shop in the city centre called the Strada.
Adapter+CL Strada serves coffee, is a nice coffee shop, in city centre.
Adapter+LAMOL Strada is a coffee shop serving city centre food
Ours Strada is a coffee shop located in the city centre.

WikiSQL (#8): which team has pick 13 in round 2 ?

Reference select team from table where round = 2 and pick = 13
Adapter+CL select team from table where pick = 13 and round = round 2
Adapter+LAMOL select team from table where round = 2 (missing: and pick = 13)
Ours select team from table where pick = 13 and round = 2

Table 5: Output comparison after training on sequence #1 and #8. We visualized e2e and wiki as two representative
tasks and color redundant information in red, missing information in blue and grammar mistakes in orange.

ule with the first and the third task in layer 8, and
also added new modules for the fourth task in layer
{9, 10, 11}. For the fifth task, our method reuses
all modules used by the fourth tasks due to their
high similarity. This demonstrates that our method
is adaptive to different incoming tasks and is able to
compose modules from different old tasks for new
tasks. We also provide a comparison in Appendix B
to demonstrate the effect of reusing modules from
different transformer layers.

7 Conclusion

This work examined continual sequence generation
with adaptive compositional modules, where we
proposed hidden state mixing to adaptively com-
pose old and new modules for new tasks and uti-
lized pseudo experience replay to facilitate knowl-
edge transfer. Experiments conducted on various
sequence generation tasks demonstrated that our
method achieves better performances with higher
parameter efficiency over previous state-of-the-art
baselines, both on similar task sequences and dis-
similar task sequences. Our work is also subject
to a few limitations such as the introduced extra
training time. In the future, we plan to investigate
how to further speed up the decision stage more
efficiently and generalize the current framework to
more diverse NLP tasks such as text classification
and machine translation.

Acknowledgment

We would like to thank the anonymous reviewers
for their helpful comments, and the members of
Georgia Tech SALT group for their feedback. This
work is funded in part by Salesforce and Cisco.

References
Craig Atkinson, Brendan McCane, Lech Szymanski,

and Anthony Robins. 2018. Pseudo-recursal: Solv-
ing the catastrophic forgetting problem in deep neu-
ral networks.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
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A Supplementary Details and Results

Data and Metric Table 6 summaries the datasets
and metrics we used, all datasets are using the
public version from prior work Sun et al. (2019);
Chuang et al. (2020)2. Note that some big datasets
(WikiSQL, CNN/DailyMail, E2E NLG, RNNLG
(laptop)) are reduced to a smaller size by random
sampling due to data imbalance.

Dataset Metric # Train # Test

E2E NLG

ROUGE

6000 2000
RNNLG(rest.) 6228 1039
RNNLG(hotel) 6446 1075
RNNLG(tv) 8442 1407
RNNLG(laptop) 7944 2649
WikiSQL lfEM 6525 15878
CNN/DailyMail ROUGE 6604 2250
MultiWOZ dsEM 2536 1646

Table 6: Dataset statistics and metrics. Note that
ROUGE refers to the mean of ROUGE-1, ROUGE-2
and ROUGE-L, lfEM stands for exact match of logical
forms, dsEM represents turn-based dialogue state exact
match.

Task Sequences In the scenario of CL on dissim-
ilar tasks, each task sequence also contains two
or three similar natural language generation tasks,
so the model cannot cheat by always adding new
modules without detecting reusable ones.

Implementation Details We use GPT-2 (Rad-
ford et al., 2019) in HugginceFace Transformers
(Wolf et al., 2020) as our backbone. We use the

2Datasets available at:
https://github.com/chho33/LAMOL
https://github.com/voidism/L2KD

architecture from Houlsby et al. (2019) in Adapter-
Hub (Pfeiffer et al., 2020) with its default setting,
in which the reduce factor for bottle-neck archi-
tecture is 16. All experiments are conducted on
NVIDIA RTX 2080 Ti with 11GB memory with
a maximum batch size of 4. Training on one task
sequence takes 5 to 9 hours.

We use AdamW (Loshchilov and Hutter, 2019)
as our optimizer. We select learning rate from
{1e − 4, 1.75e − 4, 3e − 4} and set the learning
rate lr = 1.75e− 4 for all tasks except WikiSQL,
and lr = 3e− 4 for WikiSQL. For decision stage,
we train 6 epochs to make decisions. For train-
ing stage, we select the best epoch number from
{9, 12, 15}, and use 9 for similar scenario and 12
for dissimilar scenario. Weight initialization pa-
rameter c is selected from {0.03, 0.05, 0.07} for
similar scenario and {0.12, 0.15, 0.17} for dissim-
ilar scenario. Loss coefficient γ is selected from
{0.01, 0.05}, η is set to 0.25. Following Sun et al.
(2019), we use top-k sampling where k = 20 and
set the pseudo-data sample rate to 0.2. In our pre-
liminary experiments, increasing the replay fre-
quency can further alleviate forgetting. Thus, for
those approaches using pseudo experience replay
in this work, we set half of the training batches as
pseudo-examples whenever learning a new task.

Note that the original design of Adapter+CL
(Madotto et al., 2021) uses perplexity to distin-
guish which task each testing example belongs to.
In this work, we ignore that part and assume that
the task-id of each testing example is given dur-
ing inference for all baselines and our approach to
ensure fair comparison.

Finetuning Results We provide the results of
finetuning GPT-2 (Radford et al., 2019) and fine-
tuning adapter (Houlsby et al., 2019) on all eight
datasets in Table 7. Since Chuang et al. (2020)
shows that the generation loss Lgen could slightly
increase the performance of finetuning on certain
tasks, we also include the finetuning results after
adding Lgen loss.

Our results confirm that finetuning adapter can
almost maintain the performance of finetuning the
whole model. We also demonstrated that the perfor-
mance of finetuning adapter could be improved by
simply integrating Lgen loss. This suggests that the
performance of Adapter+CL could be naively im-
proved by adding Lgen to training loss. In that case,
the average of mean score for Adapter+CL could
be improved to 64.3 on similar task sequences and
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59.6 on dissimilar task sequences, which are still
significantly worse than our approach.

Method e2e rest hotel tv laptop

GPT-2finetune† 48.8 64.0 65.4 70.8 73.0
GPT-2finetune+gen† 48.8 64.2 65.5 71.0 72.8
Adapterfinetune 49.8 64.0 64.9 70.6 71.7
Adapterfinetune+gen 49.9 64.3 65.1 70.6 71.8

Method woz cnn wiki

GPT-2finetune† 84.8 25.5 63.1
GPT-2finetune+gen† 82.2 25.9 63.7
Adapterfinetune 82.8 26.0 63.1
Adapterfinetune+gen 83.5 26.0 63.8

Table 7: Finetuning results, † means we fetch numbers
from Chuang et al. (2020)

Results using Geometric Mean While the mean
of all tasks’ performance score is always used (Sun
et al., 2019; Mi et al., 2020; Madotto et al., 2021)
to represent the overall performance on several
tasks, it could be largely influenced by the absolute
change of one single number. In this work, we
also leverage geometric mean as an supplementary
metric to measure the overall performance on dif-
ferent tasks, which provides another perspective to
consider relative change during comparison.

Table 8 summarizes the final performance using
geometric mean. We observed the same trend as
in Table 2, which demonstrates that our approach
does improve the performance of baselines compre-
hensively on all tasks, not just in favor of absolute
value increments on some tasks.

Ablation Study Table 9 summarizes the full de-
tails of ablation study conducted on sequence #1
and #8.

Detailed Final Performance Table 10 provide
the final performance of each task on every se-
quence for our approach and Adapter+LAMOL.
For Adapter+CL, the final results are in Table 7.

Task similarity Figure 4 illustrates task similar-
ity between five natural language generation tasks,
which is calculated by the cosine similarity be-
tween each task’s word frequency distribution.

B Module Comparison

In order to demonstrate the compositional nature of
our method, that is, each module contains different

Figure 4: Task Similarity calculated by the cosine simi-
larity between each task’s word frequency distribution.

knowledge required for solving each task, we also
study the performance difference to quantify the
effect of reusing different modules.

Method After training on task A, we specify a
layer k, k = 1, 2...12 to add a new module for task
B. Then we train the model on task B together with
pseudo experience replay. After training on task
B, we replace the new module with the old module
from task A in layer k, and compare the perfor-
mance difference on solving task B between the
modified architecture and the original architecture.
On one hand, if the new added module contains
specific knowledge of task B, then replacing it will
result in the absence of corresponding feature in
the generate output. On the other hand, if the old
module contains specific knowledge of task A, then
using it will result in some features of task A being
generated in the output.

Results Here we use laptop for task A and e2e for
task B. We quantify the task knowledge contained
in generated output by calculating the cosine simi-
larity of word frequency distribution between spe-
cific task’s data and generated output. In Table 11,
we see that replacing the new module in layer 11
results in the most severe information loss of task
B in the modified architecture, suggesting that the
module in layer 11 contains the most important in-
formation of word frequency for task B. In the same
way, we conclude that module in layer 3 contains
the least important information of word frequency
for task B. This is consistent with previous findings
(Jawahar et al., 2019) that bag-of-word information
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Methods Finetune EWC LAMOL Adapter
+CL

Adapter
+Drop

Adapter
+LAMOL Ours

Pseudo
Experience Replay 7 7 3 7 7 3 3

Similar Tasks

# 1 40.2 56.0 65.7 63.7 63.4 65.4 65.6
# 2 35.6 47.9 66.3 63.7 63.4 65.5 65.8
# 3 50.9 60.8 66.0 63.7 63.4 64.9 65.2
# 4 43.1 57.7 66.1 63.7 63.4 64.7 65.2

Dissimilar Tasks

# 5 – – 54.3 53.7 53.4 47.8 54.6
# 6 – 24.0 61.6 64.1 63.6 61.2 65.0
# 7 16.8 36.1 53.4 53.5 52.8 51.3 54.3
# 8 6.62 34.9 53.2 53.5 52.8 47.5 54.8

Table 8: Summary of final performance using geometric mean, where “–“ denotes no valid geometric mean due
to zero. We use two random seeds for each task sequence. Note that the final performance of Adapter+CL and
Adapter+Drop is not affected by task ordering within the same group of tasks. For each sequence, we mark the
best representation in bold, where LAMOL is not compared due to the difference in the order of magnitude of the
learnable parameters.

Method e2e rest hotel tv laptop Avg Avg L.P. cnn hotel wiki e2e woz Avg Avg L.P.

Ours 51.7 66.7 67.7 72.4 71.9 66.1 2.24M 27.8 65.3 62.9 51.7 83.3 58.2 6.49M
- Entropy loss 52.1 67.1 67.6 72.3 71.5 66.1 2.54M 27.8 64.8 62.6 49.8 82.9 57.6 6.49M
- Weight Ini 49.6 64.7 64.8 70.4 71.3 64.2 7.09M 26.7 64.7 64.6 49.9 82.4 57.7 8.65M
- Pseudo ER 25.6 36.6 39.9 42.8 71.2 43.2 2.08M 23.5 60.2 61.1 50.7 83.9 55.9 6.34M

Table 9: Ablation study on (i) entropy loss (ii) weight initialization (iii) pseudo experience replay. The left part
includes results for sequence #1 while the right part includes result for sequence #8. Note that “Avg“ refers to the
mean of performance score on all tasks and “Avg L.P.“ refers to the mean of learnable parameters.

is mainly captured by higher transformer layers,
while lower transformer layers capture surface and
syntactic information.

Similarly, by analyzing the cosine similarity of
word frequency distribution to task A, we find that
the old module in layer 9 contains the most impor-
tant information of word frequency for task A and
the old module in layer 5 contains the least. While
taking a closer look, we also find that modules
in different layers contain information of different
high-frequency words in task A. For example, mod-
ule in layer 9, 10 contains the most information of
the word “computing”, and “laptop”, respectively,
and module in layer 11 contains more informa-
tion of the word “business” than any other mod-
ules. This further demonstrates that different task-
specific knowledge is contained in different mod-
ules from different layers, which results in different
potential for reuse. By selectively reusing old mod-
ules to enable knowledge transfer and adding nec-
essary modules to mitigate knowledge interference,
our method derives a compositional architecture
for every new task, as depicted in Figure 3.
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Method - #1 e2e rest hotel tv laptop Avg

Adap+LAMOL 51.8 66.5 67.2 72.4 71.5 65.9
Ours 51.7 66.7 67.7 72.4 71.9 66.1

Method - #2 laptop tv hotel rest e2e Avg

Adap+LAMOL 74.8 75.2 65.9 66.0 49.3 66.2
Ours 64.7 74.5 51.5 73.5 49.7 66.5

Method - #3 rest tv e2e laptop hotel Avg

Adap+LAMOL 64.3 74.9 50.0 74.5 64.1 65.6
Ours 64.7 74.5 51.5 73.5 64.8 65.8

Method - #4 hotel e2e rest laptop tv Avg

Adap+LAMOL 66.4 50.9 65.8 73.0 70.0 65.2
Ours 66.4 51.3 66.2 74.2 70.6 65.7

Method - #5 woz cnn e2e rest hotel Avg

Adap+LAMOL 75.8 15.4 51.9 64.3 64.3 54.3
Ours 83.5 26.9 51.5 65.1 64.2 58.2

Method - #6 e2e wiki hotel woz rest Avg

Adap+LAMOL 53.4 47.9 64.6 80.4 64.7 62.2
Ours 50.9 64.3 65.1 84.1 64.8 65.9

Method - #7 hotel e2e woz wiki cnn Avg

Adap+LAMOL 66.0 48.5 77.5 55.4 25.8 54.6
Ours 67.0 50.9 83.5 64.1 25.9 58.3

Method - #8 cnn hotel wiki e2e woz Avg

Adap+LAMOL 16.5 65.2 52.5 51.4 83.4 53.8
Ours 27.8 65.3 62.9 51.7 83.3 58.2

Table 10: Final Performance of each task on every se-
quence. Adap+LAMOL refers Adapter+LAMOL.

Layer Task A Task B
O M O M

1 59.6 72.5 95.1 92.5
2 60.2 72.3 95.0 93.3
3 60.1 71.3 95.1 93.6
4 60.0 70.2 95.1 93.4
5 60.0 68.9 95.2 91.3
6 59.8 72.6 95.1 88.3
7 60.0 71.2 95.0 86.2
8 59.9 72.6 95.0 81.9
9 59.6 76.7 95.0 83.8

10 59.9 74.1 95.2 81.2
11 59.9 74.5 95.0 80.3
12 59.7 75.5 94.9 82.0

Table 11: Module Comparison: the effect of replac-
ing the new module with the old module in different
layers after sequentially learning Task A and B. Num-
bers in this table refer to the cosine similarity of word
frequency distribution between the data of a specific
task and the output generated from Task B’s input
(by original architecture - O, or modified architecture
- M). We highlight the most informative layers and the
least informative layers differently.
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