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Abstract

We describe a Question Answering (QA)
dataset that contains complex questions with
conditional answers, i.e. the answers are only
applicable when certain conditions apply. An-
swering the questions requires compositional
logical reasoning across complex context. We
call this dataset ConditionalQA. In addition to
conditional answers, the dataset also features:
(1) long context documents with information
that is related in logically complex ways; (2)
multi-hop questions that require compositional
logical reasoning; (3) a combination of extrac-
tive questions, yes/no questions, questions with
multiple answers, and not-answerable ques-
tions; (4) questions asked without knowing the
answers. We show that ConditionalQA is chal-
lenging for many of the existing QA models,
especially in selecting answer conditions. We
believe that this dataset will motivate further
research in understanding complex documents
to answer hard questions.1

1 Introduction

Many reading comprehension (RC) datasets have
been recently proposed (Rajpurkar et al., 2016,
2018; Kwiatkowski et al., 2019; Yang et al., 2018;
Dasigi et al., 2021; Ferguson et al., 2020). In a
reading comprehension task, models are provided
with a document and a question and asked to find
the answers. Questions in existing reading compre-
hension datasets generally have a unique answer
or a list of answers that are equally correct, e.g.
“Who was the president of the US?” with the an-
swers “George Washington”, “Thomas Jefferson”,
etc. We say that these questions have deterministic
answers. However, questions in the real world do
not always have deterministic answers, i.e. answers
to the questions are different under different con-
ditions. For example, in Figure 1, the document

1https://haitian-sun.github.io/
conditionalqa/

Figure 1: An example of question and document in Condi-
tionalQA dataset. The left side is a snapshot of the document
discussing the eligibility of the benefit “Funeral Expense Pay-
ment”. The text span “Her husband” satisfies the requirement
on the “relationship with the decease” (in yellow). Text pieces
in green and red are requirements that must be satisfied and
thus selected as conditions for the “Yes” and “No” answers.

discusses “Funeral Expense Payment” and a ques-
tion asks an applicant’s eligibility. This question
cannot be deterministically answered: the answer
is “yes” only if “you’re arranging a funeral in the
UK”, while the answer is “no”, if “... another close
relative of the deceased is in work” is true. We call
answers that are different under different conditions
conditional answers.

A conditional answer consists of an answer and
a list of conditions. An answer is only true if its
conditions apply. In the example above, “you are ar-
ranging a funeral in the UK” is the condition for the
answer “yes”. An answer can have multiple con-
ditions. Conditional answers are commonly seen
when the context so complex so asking a complete
question with a deterministic answer is impractical;
for example, when a person asks a question with
some prior knowledge in mind but cannot enumer-
ate all necessary details. A practical way to answer
incomplete questions is to find all possible answers
to the question – and if some answers are only true
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under certain conditions, the conditions should be
output as well. Answering such questions gener-
ally requires the models to understand the complex
logic in the context and perform extensive reason-
ing to identify the answers and conditions.

We present the ConditionalQA dataset, which
contains questions with conditional answers. We
take documents from the UK government website2

as our corpus. Documents in this corpus discuss
public policies in the UK and were first used in
the ShARC dataset (Saeidi et al., 2018). It is par-
tically interesting for constructing the Condition-
alQA dataset because it contains complex contents
with complex internal logic such as conjunction,
disjunction, and exception (see the example in Fig-
ure 1). Questions in ConditionalQA are asked by
human annotators. Each example contains a ques-
tion, a scenario when the question is asked, and a
document that discusses the policy that the question
asks about. The task is to find all possible answers
to the questions that apply to the user’s scenario.
If an answer is only true under certain conditions,
the model should return the list of conditions along
with the answer. Answers and conditions are anno-
tated by human annotators with the exact input, i.e.
the question, the scenario, and the associated docu-
ment. We provide supporting evidences labeled by
human annotators as additional supervision.

In addition to having conditional answers, Con-
ditionalQA also features the following properties.
First, the documents in ConditionalQA have com-
plex structure. As opposed to Wikipedia pages,
where most sentences or paragraphs contain stand-
alone information, documents in ConditionalQA
usually have complex internal logic that is crucial
for answering the questions. Second, many ques-
tions in the dataset are naturally multi-hop, as illus-
trated in the example on Figure 1, e.g. being “the
partner of the deceased” satisfied the requirement
on “your relationship with the deceased” which is
one of high-level requirements to obtain the ben-
efit. Answering those question requires models
that understand the internal logic within the docu-
ment and reason over the it to find correct answers.
Third, we decouple the asking and answering pro-
cess when annotating questions, as suggested by
Ferguson et al. (2020); Dasigi et al. (2021); Clark
et al. (2020), so questions are asked without know-
ing the answers. Forth, ConditionalQA contains
various types of questions including yes/no ques-

2https://www.gov.uk/parental-leave

tions and extractive questions. Questions can have
one or multiple answers, or can be not answerable,
as a result of the decoupled annotation process.

We experimented with several strong baseline
models on ConditionalQA (Ainslie et al., 2020;
Sun et al., 2021; Izacard and Grave, 2021). The
best performing model achieves only 64.9% accu-
racy on yes/no questions, marginally better than
the majority baseline (62.2% if always predicting
“yes”), and 25.2% exact match (EM) on extrac-
tive answers. We further measure the accuracy of
jointly predicting answers and conditions, in which
case the accuracy drops to 49.1% and 22.5%. The
best metrics with conditions are obtained if no con-
dition is predicted, showing how challenging it is
for existing models to predict conditional answers.

2 Related Works

Many question answering datasets have been pro-
posed in the past few years (Rajpurkar et al., 2016,
2018; Yang et al., 2018; Dasigi et al., 2021; Fergu-
son et al., 2020; Kwiatkowski et al., 2019) and re-
search on these has significantly boosted the perfor-
mance of QA models. As large pretrained language
models (Devlin et al., 2019; Liu et al., 2019; Ainslie
et al., 2020; Beltagy et al., 2020; Guu et al., 2020;
Verga et al., 2020) achieved better performance on
traditional reading comprehension and question an-
swering tasks, efforts have been made to make the
questions more complex. Several multi-hop QA
datasets were released (Yang et al., 2018; Ferguson
et al., 2020; Talmor and Berant, 2018; Welbl et al.,
2018) to test models’ ability to solve complex ques-
tions. However, most questions in these datasets
are answerable by focusing on a small piece of
evidence at a time, e.g. a sentence or a short pas-
sage, leaving reasoning through long and complex
contents a challenging but unsolved problem.

Some datasets have been recently proposed
for question answering over long documents.
QASPER (Dasigi et al., 2021) contains questions
asked from academic papers, e.g. “What are the
datasets experimented in this paper?”. To answer
those questions, the model should read several sec-
tions and collect relevant information. NarrativeQA
(Mou et al., 2021) requires reading entire books or
movie scripts to answer questions about their char-
acters or plots. Other datasets, e.g. HybridQA
(Chen et al., 2021b), can also be viewed as ques-
tion answering over long documents if tables with
hyper-linked text from the cells are flattened into
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a hierarchical document. ShARC (Saeidi et al.,
2018) is a conversational QA dataset that also use
UK government websites as its corpus. However,
the ShARC dataset only contains yes/no questions
and the conversation history is generated by anno-
tators with the original rule text in hand, making
the conversation artificial. The length of context in
ShARC is usually short, such as a few sentences
or a short paragraph. While using the same corpus,
ConditionalQA contains completely different ques-
tions and new types of answers. It focuses on a new
problem that has not been previously studied.

Most of the existing datasets, including the ones
discussed above, contain questions with unique
answers. Answers are unique because questions
are well specified, e.g. “Who is the president of
the US in 2010?”. However, questions can be am-
biguous if not all information is provided in the
question, e.g. “When was the Harry Potter movie
released?” does not specify which Harry Potter
movie. AmbigQA (Min et al., 2020) contains ques-
tions that are ambiguous, and requires the model
to find all possible answers of an ambiguous ques-
tion and rewrite the question to make it well speci-
fied. Similar datasets Temp-LAMA (Dhingra et al.,
2021), TimeQA (Chen et al., 2021a) and Situat-
edQA (Zhang and Choi, 2021) have been proposed
that include questions that require resolving tempo-
ral or geographic ambiguity in the context to find
the answers. They are similar to ConditionalQA in
that questions are incomplete, but ConditionalQA
focuses on understanding documents with complex
logic and answering questions with conditions. It’s
usually not possible to disambiguate questions in
ConditionalQA as rewriting the questions (or sce-
narios) to reflect all conditions of answers to make
the questions deterministic is impractical.

We create ConditionalQA in the public policy
domain. There are some existing domain specific
datasets, including PubMedQA and BioAsq (Nen-
tidis et al., 2018; Jin et al., 2019) in medical domain,
UDC (Lowe et al., 2016) in computer software do-
main, QASPER (Dasigi et al., 2021) in academic
paper domain, PrivacyQA and PolicyQA (Ahmad
et al., 2020; Ravichander et al., 2019) in legal do-
main, etc. PrivacyQA and PolicyQA have similar
context as ConditionalQA, but the questions do not
require compositional reasoning and the answers
are short text spans. We use a corpus in the public
policy domain because it is easy to understand by
non-experts while being complex enough to sup-

port challenging questions. ConditionalQA is not
designed to be a domain specific dataset.

3 The Task
In our task, the model is provided with a long doc-
ument that describes a public policy, a question
about this document, and a user scenario. The
model is asked to read the document and find all
answers and their conditions if any.

3.1 Corpus

Documents in ConditionalQA describe public poli-
cies in the UK, e.g. “Apply for Visitor Visa” or
“Punishment of Driving Violations”. Each docu-
ment covers a unique topic and the contents are
grouped into sections and subsections. Contents in
the same section are closely related but may also
be referred in other sections. We create Condition-
alQA in this domain because these documents are
rather complex with internal logic, yet annotators
are familiar with the content so they can ask natural
yet challenging questions, compared to formal le-
gal or financial documents with more sophisticated
terms and language.

3.2 Input

The input to a reading comprehension model con-
sists of a document, a question, and a user scenario:

• A document describes a public policy in the
UK. Content of a document is coherent and
hierarchical, structured into sections and sub-
sections. Documents are crawled from the
website and processed by serializing the DOM
trees of the web pages into lists of HTML ele-
ments with tags, such as <h1>, <p>, <li>, and
<tr>. Please see more information in §4.1.

• A question asks about a specific aspect of the
document, such as eligibility or other aspects
with “how”, “when”, “what”, “who”, “where”,
etc. Questions are relevant to the content in
the document, even though they may be “not
answerable”.

• A user scenario provides background infor-
mation for the question. Some information
will be used to restrict the answers that can
be possibly correct. Not all information in
the user scenario is relevant because they are
written by crowd source workers without see-
ing the full document or knowing the answers.
Information in the scenario is also likely to
be incomplete. This setup simulates the real
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information seeking process of having both
irrelevant and incomplete information.

3.3 Output

A reading comprehension model is asked to predict
the answers and the list of conditions if there is any.

• An answer to the question has three different
types: (1) “yes” or “no” for questions such
as “Can I get this benefit?”; (2) an extracted
text span for questions asking “how”, “when”,
“what”, etc.; (3) “not answerable” if an answer
does not exist in the document. Since the infor-
mation to get a definite answer is sometimes
incomplete, besides predicting the answers,
the model is asked to identify their conditions.

• A condition contains information that must
be satisfied in order to make the answer cor-
rect but is not mentioned in the user scenario.
In ConditionalQA, we restrict a condition to
be one of the HTML elements in the docu-
ment instead of the exact extracted text span.3

Selected conditions are then evaluated as a
retrieval task with F1 at the element level, i.e.
the model should retrieve all HTML elements
with unsatisfied information to get a perfect F1
score. If no condition is required, the model
must return an empty list. Please see §3.4 for
more details on evaluation.

3.4 Evaluation

We evaluate performance of models on the Condi-
tionalQA dataset as a reading comprehension (RC)
task. Answers are measured with exact match (EM)
and F1. Some questions have multiple answers.
The model should correctly predict all possible
answers to get the full score. Since the order of an-
swers does not matter, to compute the metrics, we
compare all possible permutations of the predicted
answers to the list of correct answers. We take
the best result among all permutations as the result
for this example. Let {â1, . . . , âm} be the list of
predicted answer and {a1, . . . , an} the reference
answers. The EM of the predicted answers is

EM = max
{ã1,...,ãm}

1

n

min(m,n)∑
i=1

sem(ãi, ai) · γm,n

(1)

3We argue that selecting HTML elements as conditions
is already very challenging (see experimental results in §5.2)
and leave extracting the exact text spans as future work.

γm,n =

{
e1−m/n if m > n
1 if m ≤ n

where {ã1, . . . , ãm} is a permutation of the pre-
dicted answers {â1, . . . , âm} and sem(·, ·) is the
scoring function that measures EM between two
text spans. γm,n is a penalty term that is smaller
than 1 if more answers than the reference answers
are predicted, i.e. m > n. We compute token-level
F1 in the similar way using the scoring function
sf1(·, ·) on the extracted answer spans. For not
answerable questions, EM and F1 are 1.0 if and
only if no answer is predicted.

We additionally measure the performance of an-
swers with conditions. We adopt the same permu-
tation strategy as above, except that the scoring
function will also take into account the accuracy
of predicted conditions. Let Ĉi be the set of pre-
dicted conditions for the predicted answer âi and
Ci be the oracle conditions for the answer ai. The
new scoring function for the predicted answer with
conditions is

sem+c(ãi, C̃i, ai, Ci) = sem(ãi, ai) · F1(Ĉi, Ci)

where F1(·, ·) measures the accuracy of the set of
predicted conditions at HTML element level. Re-
call that conditions are restricted to select from
HTML elements in the document. F1(Ĉi, Ci)
equals to 1 if and only if all required conditions are
selected. This is different from sf1(·, ·) that mea-
sures token level F1 of the extracted answers. If the
answer does not require any conditions, the model
should predict an empty set. We simply replace the
scoring function sem(·, ·) in Eq. 1 with sem+c(·, ·)
to compute EM with conditions.

4 Data Collection
4.1 Documents
Documents are originally presented on the UK gov-
ernment website in the HTML format. We crawled
the pages from the website and processed it to only
keep the crucial tags, that include:

• Headings <h1, h2, h3, h4>: We keep headings
at different levels. This can be used to identify
the hierarchical structure in the documents.

• Text <p>: This tag is used for general contents.
We replace descriptive tags, e.g. <strong>,
with the plain tag <p> for simplicity.

• List <li>: We keep the tags for list items, but
drop their parent tags <ul> or <ol>. We ob-
serve that very few ordered lists (<ol>) have
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been used in the dataset, so we will not distin-
guish them.

• Table <tr>: Again, we drop their parent tags
<table> to simplify the document format. We
further remove the <td> and <th> tags from
cells and concatenate cells in the same row
with the separation of “ | ”.

A processed document contains a list of strings that
starts with a tag, follows with its content, and ends
with the tag, e.g. [“<h1> Overview </h1>”, “<p>
You can apply for ... </p>”, . . . ].

We drop some common sections that do not con-
tain any crucial information, e.g. “How to Apply”,
to make sure that questions are specific to the topic
of the documents. We further require that the docu-
ment should contain at least 3 sections. We end up
with 652 documents as our corpus. The max length
of the documents is 9230 words (16154 sub-words
in T5 (Raffel et al., 2020)).

4.2 Questions

We collect questions from crowd source workers
on Amazon Mechanical Turk. To encourage work-
ers asking questions not be restricted to a specific
piece of text, we hide the full document but instead
provide a snippet of the document to the workers.
A snippet includes a table of content that contains
section and subsection titles (from <h1> and <h2>
tags), and the very first subsection in the document
that usually provides a high level overview of the
topic. The snippet lets workers get familiar with
the topic of this document so they can ask closely
relevant questions. We observe that restricting the
geographic location of workers to the UK can sig-
nificantly improve the quality of questions because
local residents are more familiar with their policies.

We ask the workers to perform three sub-tasks
when coming up with the questions. First, we ask
the workers to provide three attributes that can iden-
tify the group of people who may benefit from or
be regulated by the policy discussed in the docu-
ment. Second, they are asked to come up with a
scenario when they will want to read this document
and a question about what they would like to know.
Third, workers are asked to mark which attributes
have been mentioned in their question and scenario.
When assessing the annotation quality, we find
that asking workers to provide attributes makes
the questions and scenarios much more specific,
significantly improving the quality of the dataset.

We assign 3 workers to documents with four or
more sections and 2 workers to documents with
three sections. Each worker is asked to give two
questions and the two questions have to be diverse.
We collect 3617 questions in this stage.

4.3 Find Answers

We hire another group of workers to work on the
answer portion of this task. Finding answers is
very challenging to crowd source workers because
it requires the workers to read the full document
carefully to understand every piece of information
in the document. We provide one-on-one training
for the workers to teach them how to select sup-
porting evidences, answers, and conditions.

Workers are asked to perform three sub-tasks.
The first step is to select supporting evidences from
the document. Supporting evidences are HTML
elements that are closely related to the questions,
including elements that have content that directly
justify the answers and the ones that will be se-
lected as conditions in the next step. In the second
step, workers are asked to type answers and select
associated conditions. Workers can input as many
answers as possible or mark the question as “not
answerable”. For each answer, they can select one
or more supporting evidences as the answer’s con-
ditions if needed. Workers are asked not to select
conditions if there is sufficient information in the
scenario to answer the question. We give workers
permission to slightly modify the questions or sce-
narios if the questions are not clearly stated, or they
can mark it as a bad question (different from not
answerable) so we will drop it from the dataset.

We additionally perform a revise step to improve
the annotation quality. We provide the union of
selected evidences and answers from multiple an-
notations of a question to an additional group of an-
notators and let them deselect unrelated evidences
and merge answers. As the amount of information
provided to workers at this step is significantly less
than in the previous answer selection stage, the an-
notation quality improves significantly. We end up
with 3102 questions with annotated answers.

4.4 Move Conditions to Scenario

To encourage the model of learning subtle differ-
ence in user scenarios that affects the answers and
conditions, we create new questions by modify-
ing existing questions with conditional answers by
moving one of the conditions to their scenarios.
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Type Scenario & Question Answer w/ [Conditions]

Single answer
Scenario: "My father has recently appealed for
a traffic ticket."
Question: "How long will it take to get a decision?"

• "4 weeks"

Single answer
w/ conditions

Scenario: "I applied to cut down a tree on
my land but it was rejected 20 days ago"
Question: "Am I still able to appeal against it?"

• "yes"
["<p>You can appeal before the date the tree

replacement notice comes into effect.</p>"]

Multiple answers
Scenario: "I will get my first paycheck tomorrow."
Question: "What information should be on
my pay split?"

• "earnings before and after any deductions"
• "the amount of any deductions"
• "the number of hours you worked"

Multiple yes/no
w/ conditions

Scenario: "I am looking at buying a new build
home. I am 26 and a first-time buyer."
Question: "Am I eligible to get an Equity Loan?"

• "yes"
["<li>able to afford fees and interest<li>",

"<li>sold by an eligible homebuilder</li>"]
• "no"

["<p>You can not apply if you had any
form of sharia mortgage finance</p>"]

Multiple extractive
w/ conditions

Scenario: "I always walk my labrador in open
spaces. I forgot to clean up his mess yesterday."
Question: "How much can I be fined for this?"

• "$100"
["<li>$100 on the spot</li>"]

• "up to $1000"
[ "<li>up to $1,000 if it goes to court</li>"]

Multiple extractive
one w/ condition

Scenario: "I am about to apply for a Parent of a
Child Student Visa to stay with my child for
a year in the UK"
Question: "What documents are needed to apply
for this visa?"

• "a current passport or other travel document"
• "proof that you have enough fund"
• "your tuberculosis (tb) test results"

["<li>your tuberculosis (TB) test results
if you are from a country where you
have to take the TB test</li>"]

Table 1: Example of questions in ConditionalQA. Text pieces that follows the answers in the brackets are [conditions]. Some
answers are deterministically correct so they are not followed by conditions.

Specifically, we show the workers the original
questions, scenarios, and the annotated answers
and conditions. Evidences are also provided for
workers to get them familiar with the background
of the questions and reasoning performed to get the
original answers. Workers are asked to pick one
of the conditions and modify the original scenario
to reflect this condition. The modified questions
and scenarios are sent back to the answering stage
to get their annotations. We randomly select a
small portion of the questions that have conditional
answers as inputs to this stage so as to not affect the
original distribution of the dataset. We collected
325 additional examples from this stage.

4.5 Train / Dev / Test Splits

We partition the dataset by documents to prevent
leaking information between questions from the
same document. The dataset contains 436 docu-
ments and 2338 questions in the training set, 59
documents and 285 questions in the development
set, and 136 documents and 804 questions in the
test set. Please see Appendix A for more statistics
on ConditionalQA.

5 Evaluation
5.1 Baselines
Evaluating existing models on ConditionalQA is
challenging. In addition to predicting answers to
questions, the ConditionalQA task also asks the
model to find the answers’ conditions if any of
them applies. To the best of our knowledge, no
existing model fits the purpose of this task. We
modified three competitive QA models as baselines
to the ConditionalQA dataset. In addition to the
new form of answers, traditional reading compre-
hension models also face the challenge that the
context of questions in ConditionalQA is too long
to fit into the memory of many Transformer-based
models like BERT (Devlin et al., 2019) and even
ETC (Ainslie et al., 2020). The baseline models
we implemented are described below.
ETC: ETC (Ainslie et al., 2020) is a pretrained
Transformer-based language model that is designed
for longer inputs (up to 4096 tokens). ETC
achieved the state-of-the-art on several challenging
tasks, e.g. HotpotQA and WikiHop (Yang et al.,
2018; Welbl et al., 2018). Since ETC cannot fit
the entire document (with up to 16154 tokens) into
its memory, we cannot let ETC to jointly predict
answers and conditions, we designed a two stage
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Yes / No Extractive Conditional Overall
answer w/ conds answer w/ conds answer w/ conds* answer w/ conds

majority 62.2 / 62.2 42.8 / 42.8 – / – – / – – / – – / – – / – – / –
ETC 63.1 / 63.1 47.5 / 47.5 8.9 / 17.3 6.9 / 14.6 39.4 / 41.8 2.5 / 3.4 35.6 / 39.8 26.9 / 30.8
DocHopper 64.9 / 64.9 49.1 / 49.1 17.8 / 26.7 15.5 / 23.6 42.0 / 46.4 3.1 / 3.8 40.6 / 45.2 31.9 / 36.0
FiD 64.2 / 64.2 48.0 / 48.0 25.2 / 37.8 22.5 / 33.4 45.2 / 49.7 4.7 / 5.8 44.4 / 50.8 35.0 / 40.6

human 91.4 / 91.4 82.3 / 82.3 72.6 / 84.9 62.8 / 69.1 74.7 / 86.9 48.3 / 56.6 82.6 / 88.4 73.3 / 76.2

Table 2: Experiment results on ConditionalQA (EM / F1). Numbers are obtained by re-running the open-sourced codes of the
baselines. “majority” reflects the accuracy of always predicting “yes” without conditions. *See discussion in text.

pipeline to run ETC on ConditionalQA.
In the first stage, ETC is trained as a normal

reading comprehension model to predict answers
from the document by jointly encoding the ques-
tions and documents. We adopt a sequential read-
ing approach that reads one section at a time. The
answer with the highest probability among all sec-
tions will be considered as the final answer. We ap-
pend three special tokens “yes”, “no”, and “not
answerable” for the yes/no and not answerable
questions. Since it is not clear how to extract multi-
ple answers with the Transformer-based extractive
QA model, we restrict to the number of predicted
answers to one. The second stage in the pipeline is
to select conditions. Questions, answers, and docu-
ments are concatenated together into a single input
for ETC. We then use the embeddings of global
tokens for sentences in ETC to predict conditions.
Since the number of conditions for the answer is
unknown, we train the condition selection process
with a binary classification target, by labeling each
global token as positive or negative. The threshold
of selecting conditions is a hyper-parameter.
DocHopper: DocHopper (Sun et al., 2021) is an
iterative attention method that extends ETC for
reading long documents to answer multi-hop ques-
tions. It reads the full documents at once and jointly
predicts answers and conditions. The model itera-
tively attends to information at different levels in
the document to gather evidences to predict the
final answers. We modify the iterative process in
DocHopper for the purpose of this task: specifi-
cally, DocHopper is trained to run three iterative
attention steps: (1) attend to the supporting evi-
dences; (2) attend to the sentence that contains the
answer; and (3) attend to the conditions. Since the
query vector in each attention step is updated with
information from the previous steps, conditions at-
tended at the third step are aware of the previously
predicted answers. Unfortunately, DocHopper is
still restricted to predicting one answer for each
question. The condition selection step in DocHop-

per is also trained with binary classification loss.
Different from the ETC pipeline, the three attention
steps are jointly optimized.
FiD: FiD (Izacard and Grave, 2021) is a gen-
erative model with an encoder-decoder architec-
ture. The encoder reads multiple contexts inde-
pendently and generates their embeddings. The
decoder attends to all embeddings of the context
to generate the final answers. In this task, we
train FiD to sequentially generate the answers with
conditions, i.e. [a1, c11, c12, . . . , a2, c21, c22, . . . ]
where {a1, . . . , an} are the correct answers and
{C1, . . . , Cn} are their conditions, i.e., cij ∈ Ci is
the j’th condition for the answer ai. If Ci is empty,
the model is trained to predict “NA” as the only
condition for the i’th answer. FiD can predict mul-
tiple answers as opposed to ETC and DocHopper.
Human We randomly sample 80 questions and ask
human annotators to answer them. Annotators are
provided with the full instructions and 10 additional
annotated examples to clarify the task. We do not
provide additional training to the annotators.

5.2 Results

Experiment results are shown in Table 2. We report
the numbers on yes/no questions and extractive
questions separately. The numbers in Table 2 show
that the ConditionalQA task is very challenging—
the performance of the best model on yes/no ques-
tions is 64.9% (marginally higher than always pre-
dicting the majority answer “yes”), and the perfor-
mance on extractive questions is 25.2% EM. FiD
has the best performance on extractive questions
because FiD can predict multiple answers while
ETC-pipeline and DocHopper only predict one.

The performance drops significantly if answers
and conditions are jointly evaluated. The best per-
formance on jointly evaluating answers and con-
ditions (“w/ conditions”) in Table 2 is only 49.1%
for yes/no questions and 22.5% EM for extractive
questions. Even worse, this best result is obtained
when no condition is selected, i.e. the threshold
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Error types % Examples Correct answers Predictions

Not answerable 7.6 "Am I eligible for a tax
reduction?" not_answerable "yes"

Wrong answer type
(yes/no vs. extractive) 4.2

"How can I check if
this design has been
registered?"

"ask the intellectual
property office to
search for you"

"no"

Wrong answer
(yes/no) 19.5 "Will it be classed as

a small vessel?" "yes" "no"

Wrong answer
(extractive, right type) 20.3 "How many points will

I receive on my license?" "6" "3"

Wrong answer
(extractive, wrong type) 9.3

"What is the account
number should I send
the money to?"

"12001020" "hmrc"

Correct answer
w/ wrong conditions 14.4

"Can I still send simpler
annual accounts as a
micro-entity?"

"yes",
["$316,000 or less
on its balance sheet"]

"yes", []

Partial answer 24.5 "What will not need to
be repeated for each trip?"

"a microchip",
"rabies vaccination" "a microchip"

Table 3: Error analysis on the predictions of the best performed model (FiD). The percentage is the fraction of errors made in
that category over all errors.

of selecting conditions is 1.0. The difficulty of
selecting conditions is more obvious if we focus
on the subset of questions that have at least one
conditional answer. The accuracy drops by 90% if
answers and conditions are jointly evaluated.4

We also study how the threshold on the con-
fidence scores of selecting conditions affects the
evaluation results. Results are shown in Figure
2. As we decrease the threshold for selecting con-
ditions, the EM with conditions on the subset of
questions that have conditional answers slightly im-
proves, but the overall EM with conditions drops
dramatically due to the false positive conditions.
FiD is a generative model so we can not evaluate
it in the same way. In our evaluation, predictions
from the best performing FiD checkpoint also do
not select any conditions.

Table 4 shows the best results on the subset of
questions that have conditional answers. Hyper-
parameters are tuned on the subset of questions.
We could possibly get better results on questions
with conditional answers with threshold ϵ < 1.0,
but the improvement is still marginal.

5.3 Error Analysis

We manually check 200 examples in the prediction
of the best performed model FiD and label the type

4The EM/F1 w/ conditions* is non-zero on this subset of
questions even if no condition is ever selected, because some
questions have both conditional and deterministic answers.
Models get partial credits if they predicts the deterministic
answers correctly.

Figure 2: EM of answers with conditions with different
thresholds of confidence (eps) on conditions. Dotted lines
represent experiment results on the subset of questions that
have conditional answers.

of errors made. The numbers are shown in Table
3. The most errors are made when only a subset
of correct answers is predicted. This is due to the
fact that the model (FiD) has a tendency to predict
one answer for each question. The second most
common errors are made by predicting answers
with the correct type but wrong value. Such errors
are commonly made by reading comprehension
models in many tasks. The model made a lot of
errors in yes/no questions because they consist of
around 50% of the questions. The model is good
at distinguishing yes/no questions and extractive
question as producing the wrong kind of answer
only makes up of 4.2% of the errors.

6 Conclusion
We propose a challenging dataset ConditionalQA
that contains questions with conditional answers.
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Best Overall Best Conditional

ETC 2.5 / 3.4 4.4 / 4.6
DocHopper 3.1 / 3.8 5.9 / 7.1
FiD 4.7 / 5.8 4.7 / 5.8

Table 4: EM/F1 w/ conditions on the subset of questions
with conditional answers. “Best Overall” uses the best
checkpoints/hyper-parameters on the full dataset, while “Best
Conditional” uses the best ones on the subset of questions.

The dataset requires models to understand complex
logic in a document in order to find correct answers
and conditions to the questions. Experiments on
state-of-the-art QA models show that their overall
performance on ConditionalQA is relatively poor.
This also suggests that current QA models lack
the reasoning ability to understand complex doc-
uments and answer hard questions with answers
beyond single span extraction. We hope that this
dataset will stimulate further research in building
NLP models with better reasoning abilities.

7 Ethics Statements

This dataset should be ONLY used for NLP re-
search purpose. Questions are artificial and do not
contain any personal information. Answers are
NOT provided by legal professionals and should
NOT be used for any legal purposes.
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Type #

Answer type yes / no 1751
extractive 1527

Condition type deterministic 2475
conditional 803

Number of answers single 2526
multiple 752

– not answerable 149

Table 5: Statistics on different types of questions.

A Dataset Analysis
The dataset consists of yes/no questions and extrac-
tive questions. Questions may contain one or more
answers, with or without conditions. The statistics
of the questions are shown in Table 5.
Answer type Among all the answerable questions,
1751 questions have yes/no answers while the other
1527 questions have extractive answers. 1161 of
the yes/no questions have the answer “yes”, 712
questions have answer “no”, and 122 questions
have both answers “yes” and “no” under different
conditions. Please see the example in Table 1. The
average length of the extract answers is 6.36 tokens.
Condition type 803 questions have conditional
answers. 390 out of the 803 questions have one
answer, but this answer is only correct if the con-
ditions are satisfied. 173 questions have multiple
answers, each have their own conditions, i.e. the
answers are different if different conditions apply.
The rest 240 questions also have multiple answers,
but some of the answers require conditions while
other don’t. See examples in Table 1. A total of
1090 answers from 803 questions have conditions,
among which 672 answers have only one condition
and 418 answers have multiple conditions.
Number of answers Besides questions that have
different answers under different conditions, 339
questions have multiple deterministic answers.
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