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Abstract

Several studies have reported the inability of
Transformer models to generalize composi-
tionally, a key type of generalization in many
NLP tasks such as semantic parsing. In this
paper we explore the design space of Trans-
former models showing that the inductive bi-
ases given to the model by several design deci-
sions significantly impact compositional gen-
eralization. We identified Transformer config-
urations that generalize compositionally signif-
icantly better than previously reported in the
literature in many compositional tasks. We
achieve state-of-the-art results in a semantic
parsing compositional generalization bench-
mark (COGS), and a string edit operation com-
position benchmark (PCFG).

1 Introduction

Although modern neural network architectures
reach state-of-the-art performance in many chal-
lenging natural language tasks, they seem to exhibit
a low amount of “compositional generalization”,
i.e., the ability to learn a set of basic primitives and
combine them in more complex ways than those
seen during training (Hupkes et al., 2020). For ex-
ample, suppose a system has learned the meaning
of “jump” and that “jump twice” means that the
action “jump” has to be repeated two times. Upon
learning the meaning of the action “jax”, it should
be able to infer what “jax twice” means. Compo-
sitional generalization is a key aspect of natural
language and many other tasks we might want ma-
chine learning models to learn.

While both humans and classical AI techniques
(such as grammars or search-based systems) can
handle compositional tasks with relative ease, it
seems that modern deep learning techniques do not
possess this ability. A key question is thus: Can
we build deep learning architectures that can also
solve compositional tasks? In this paper we focus
on Transformers (Vaswani et al., 2017), which have

been shown in the literature to exhibit poor com-
positional generalization (see Section 2). Through
an empirical study, we show that this can be im-
proved. With the goal of creating general models
that generalize compositionally in a large range of
tasks, we show that several design decisions, such
as position encodings, decoder type, weight shar-
ing, model hyper-parameters, and formulation of
the target task result in different inductive biases,
with significant impact for compositional general-
ization1. We use a collection of twelve datasets
designed to measure compositional generalization.
In addition to six standard datasets commonly used
in the literature (such as SCAN (Lake and Baroni,
2018), PCFG (Hupkes et al., 2020), CFQ (Keysers
et al., 2019) and COGS (Kim and Linzen, 2020)),
we also use a set of basic algorithmic tasks (such
as addition, duplication, or set intersection) that
although not directly involving natural language,
are useful to obtain insights into what can and can-
not be learned with different Transformer models.
We also include tasks where we do not see sig-
nificant improvements, to understand what types
of compositional generalization are improved with
our proposed modifications, and which are not.

The main contributions of this paper are: (1) A
study of the Transformer design space, showing
which design choices result in compositional learn-
ing biases across a variety of tasks. (2) state-of-the-
art results in COGS, where we report a classifica-
tion accuracy of 0.784 using an intermediate repre-
sentation based on sequence tagging (compared to
0.35 for the best previously reported model (Kim
and Linzen, 2020)), and the productivity and sys-
tematicity splits of PCFG (Hupkes et al., 2020).

The rest of this paper is organized as follows.
Section 2 provides some background on compo-
sitional generalization and Transformers. In Sec-

1Source code: https://github.com/
google-research/google-research/tree/
master/compositional_transformers.
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tion 3, we present the datasets used in our empirical
evaluation, which is presented in Section 4. The
paper closes with a discussion on the implications
of our results, and directions for future work.

2 Background

This section briefly provides background on com-
positional generalization and Transformer models.

2.1 Compositional Generalization

Compositional generalization can manifest in dif-
ferent ways. Hupkes et al. (2020) identified five
different types, such as systematicity and produc-
tivity (extrapolation to longer sequences than those
seen during training). Systematicity is the ability
of recombining known parts and rules in different
ways than seen during training. The example in the
introduction of knowing the meaning of “jump“,
“jump twice“ and “jax“ and from those inferring
the meaning of “jax twice“ is an example of sys-
tematicity. Productivity, on the other hand, is the
ability to extrapolate to longer sequences than those
seen during training. For example, consider the ex-
ample of learning how to evaluate mathematical
expressions of the form “3 + (4 − (5 ∗ 2))”. An
example of productivity would be to extrapolate to
expressions with a larger number of parenthesis, or
with deeper parenthesis nesting, than seen during
training. Hupkes et al. (2020) identify other forms
of compositionality, such as substitutivity, localism
or overgeneralization, but we will mostly focus on
systematicity and productivity in this paper.

Compositional generalization is related to the
general problem of out-of-distribution generaliza-
tion. Hence, we can also see it as the problem of
how models can discover symmetries in the domain
(such as the existence of primitive operations or
other regularities) that would generalize better to
out-of-distribution samples than shortcuts (Geirhos
et al., 2020), which would only work on the same
distribution of examples seen during training.

Early work focused on showing how different
deep learning models do not generalize composi-
tionally (Liška et al., 2018). For example Liška
et al. (2018) showed that while models like LSTMs
are able to generalize compositionally, it is un-
likely that gradient descent converges to a solution
that does so (only about 2% out of 50000 train-
ing runs achieved a generalization accuracy higher
than 80% in a compositional task, while they had
almost perfect performance in training). Datasets

like SCAN (Lake and Baroni, 2018), PCFG (Hup-
kes et al., 2020), Arithmetic language (Veldhoen
et al., 2016), or CFQ (Keysers et al., 2019) were
proposed to show these effects.

Work toward improving compositional gen-
eralization includes ideas like Syntactic at-
tention (Russin et al., 2019), increased pre-
training (Furrer et al., 2020), data augmenta-
tion (Andreas, 2019), intermediate representa-
tions (Herzig et al., 2021) or structure annota-
tions (Kim et al., 2021). Specialized architectures
that achieve good performance in specific composi-
tional generalization tasks also exist. For example,
Liu et al. (2020) propose a model made up of a
“composer” and a “solver”, achieving perfect per-
formance on SCAN. The most related concurrent
work to ours is that of Csordás et al. (2021), who
also showed gains in compositional generalization
via relative attention. Additionally, in their work,
they show that a key problem in some tasks is the
end of sequence detection problem (when to stop
producing output). Finally, they show that general-
ization accuracy keeps growing even when training
accuracy maxes out, questioning early stopping
approaches in compositional generalization. We
note that training for longer might also improve our
results, which we will explore in the future.

2.2 Transformer Models

Models based on Transformers (Vaswani et al.,
2017), such as BERT (Devlin et al., 2018), or vari-
ants (Yang et al., 2019; Lan et al., 2019; Raffel
et al., 2019) yield state-of-the-art results in many
NLP tasks such as language modeling (Child et al.,
2019; Sukhbaatar et al., 2019; Rae et al., 2019;
Kitaev et al., 2020), question answering (Ainslie
et al., 2020; Lan et al., 2019; Zaheer et al., 2020;
Beltagy et al., 2020), and summarization (Zhang
et al., 2019). However, existing studies show that
they do not have good compositional generaliza-
tion. In this paper we will consider the original
Transformer architecture and expand upon it.

The standard Transformer model consists of two
main components (see the center of Figure 2): an
encoder and a decoder, each of which consists of
a series of layers. Each layer contains an attention
sublayer followed by a feed-forward sublayer (the
decoder has two attention sublayers for decoder-
to-decoder and decoder-to-encoder attention). The
input of a Transformer is a sequence of token em-
beddings, and the output is a sequence of tokens
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Input:    # # # 3 6 7 [SEP] # # 1 4 9 1 [END]
Output: # # 1 8 5 8 [END]  

Addition:

Input:    # # - 3 6 7 [SEP] # # 1 4 9 1 [END]
Output: # # 1 1 2 4 [END]  

AdditionNegatives:

Input:    1 3 3 7 2 [END] 
Output: 2 7 3 3 1 [END] 

Reverse:

Input:    1 3 5 7 2 [END] 
Output: 1 3 5 7 2 1 3 5 7 2 [END] 

Duplication:

Input:     1 2 3 [SEP] a b [END]
Output:  1 a [SEP] 2 a [SEP] 3 a [SEP] 

  1 b [SEP] 2 b [SEP] 3 b [END]

Cartesian:

Input:    a4 b1 f6 [SEP] f7 a4 c3 [END]
Output: true [END]

Intersection:

Input:     look around right and walk left twice [END]
Output:   I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK 

  I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK 
  I_TURN_LEFT I_WALK I_TURN_LEFT I_WALK [END]

SCAN-length / SCAN-add-jump:

Input:     swap_first_last copy remove_second E18 E15 
  Q6 , P15 L18 X10 I15 Y14 [END]

Output:  Q6 E15 E18 [END]

PCFG-productivity / PCFG-systematicity

Input:     A rose was helped by a dog . [END]
Output:  rose ( x _ 1 ) AND help . theme ( x _ 3 , x _ 1 )

  AND help . agent ( x _ 3 , x _ 6 ) 
  AND dog ( x _ 6 ) [END]

COGS

Input:     Did a person marry a cinematographer ,
  influence M1 , and influence M2 [END]

Output:  SELECT count(*) WHERE { 
  ?x0 a ns:people.person . 
  ?x0 ns:influence.influence_node.influenced M1 .
  ?x0 ns:influence.influence_node.influenced M2 .
  ?x0 ns:people.person.spouse_s ?x1 . 
  ?x1 a ns:film.cinematographer . 
  FILTER ( ?x0 != ?x1 ) } [END]

CFQ

Figure 1: Examples from the different datasets used in our experiments.

generated one at a time by predicting based on the
output distribution generated by the decoder. To
provide a notion of token “order” a set of position
encodings are typically added to the embedding of
each input token to indicate sequence order.

We will use l to denote the number of en-
coder/decoder layers, d for the dimensionality of
token embeddings, f for the intermediate dimen-
sionality used by the feed-forward sublayer, and h
for the number of attention-heads in the attention
sublayers. The original Transformer model used
l = 6, d = 512, f = 2048 and h = 8, as their base
configuration. In this paper, we use parameters
much smaller than that, as we are evaluating the
architectural decisions on relatively small datasets.

3 Evaluation Datasets

We use a collection of 12 datasets that require dif-
ferent types of compositional generalization. Six
of those dataset consist of “algorithmic” tasks
(addition, reversing lists, etc.), and six of them
are standard datasets used to evaluate composi-
tional generalization (most involving natural lan-
guage). We note that our algorithmic tasks mostly
require productivity-style compositional generaliza-
tion, while other datasets also require systematicity
or synonimity (Hupkes et al., 2020). Specifically,
we used the following datasets (see Appendix E for
details, and Figure 1 for examples):

Addition (Add): A synthetic addition task,
where the input contains the digits of two integers,
and the output should be the digits of their sum.
The training set contains numbers with up to 8 dig-
its, and the test set contains numbers with 9 or 10

digits. Numbers are padded to reach a length of 12.
AdditionNegatives (AddNeg): The same as the

previous one, but 25% of the numbers are negative
(preceded with the - symbol).

Reversing (Reverse): Where the output is ex-
pected to be the input sequence in reverse order.
Training contains sequences of up to 16 digits, and
the test set contains lengths between 17 to 24.

Duplication (Dup): The input is a sequence of
digits and the output should be the same sequence,
repeated twice. Training contains sequences up to
16 digits, and test from 17 to 24.

Cartesian (Cart): The input contains two se-
quences of symbols, and the output should be their
Cartesian product. Training contains sequences of
up to 6 symbols (7 or 8 for testing).

Intersection (Inters): Given two sequences of
symbols, the output should be whether they have
a non-empty intersection. Training contains sets
with size 1 to 16, and testing 17 to 24.

SCAN-length (SCAN-l): The length split of the
SCAN dataset (Lake and Baroni, 2018).

SCAN-add-jump (SCAN-aj): The add primi-
tive jump split of the SCAN dataset (Lake and Ba-
roni, 2018).

PCFG-productivity (PCFG-p): The productiv-
ity split of the PCFG dataset (Hupkes et al., 2020)

PCFG-sytematicity (PCFG-s: The systematic-
ity split of the PCFG dataset (Hupkes et al., 2020).

COGS: The generalization split of the COGS
semantic parsing dataset (Kim and Linzen, 2020).

CFQ-mcd1 (CFQ): The MCD1 split of the CFQ
dataset (Keysers et al., 2019).

Note that most of these datasets are trivial if
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Figure 2: An illustration of a Transformer, extended with the additional components necessary to explore the
different dimensions we experiment with in this paper: (1) position encodings, (2) copy decoder, (3) model size
(l, d, f, h), (4) weight sharing, and (5) intermediate representations.

the training and test sets come from the same dis-
tribution, and most Transformer models achieve
near 100% accuracy (except a few hard tasks like
the Cartesian product or set intersection). Hence,
splitting train and test data in a way that requires
compositional generalization is key (e.g., having
examples with larger sequences in the test set than
in the training set). We want to make sure models
do not just learn shortcuts (Geirhos et al., 2020)
that do not generalize to out-of-distribution data.

4 Empirical Results

In this section we present an evaluation of the com-
positional generalization abilities of Transformers
with different architectural configurations. Specif-
ically we evaluated: (1) the type of position en-
codings, (2) the use of copy decoders, (3) model
size, (4) weight sharing, and (5) the use of inter-
mediate representations for prediction (see Figure
2). For this systematic experimentation, we used
small Transformer models, without pre-training (all
models are trained from scratch). Even if previous
work has reported benefits of pre-training in some
compositional tasks (e.g., in CFQ (Furrer et al.,
2020)), we aim at disentangling the effects of each
architecture decision in and of itself, in the search
for compositional inductive biases.

Our results show that, while these decisions do
not affect certain types of compositional general-
ization tasks, we see significant gains in others.

We report the average of at least 3 training runs
(for algorithmic tasks, we use at least 5 train-
ing runs, and 10 for set intersection since they
have a higher variance; see Appendix B). We use
sequence-level accuracy as the evaluation metric:
an output sequence with even just a single wrong
token is considered wrong.

4.1 Position Encodings

While the original Transformer model (Vaswani
et al., 2017) and BERT (Devlin et al., 2018) used
absolute position encodings, later models such as
T5 (Raffel et al., 2019) or ETC (Ainslie et al., 2020)
use relative position encodings (Shaw et al., 2018).
Relative position encodings assign a label to each
pair of tokens in the input (typically representing
their relative distance in the input, up to a maxi-
mum radius). So, there is a label used for tokens
attending to a token “two positions to the right”,
etc. One interesting thing about relative position
encodings is that they are position invariant, i.e.
two tokens that are k positions apart will attend to
each other in the same way, regardless of where
they are in the sequence, and hence allowing mod-
els to capture further symmetries in the domain. We
compare the following position encodings:

abs: sinusoidal absolute position encodings (as
used in the original Transformer)2.

2We did not experiment with learnable absolute position
encodings, as test examples are longer than anything seen
during training, hence containing untrained embeddings.
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 0.000 0.003 0.174 0.434 0.177 0.304 0.137
rel-e 0.004 0.018 0.422 0.486 0.004 0.501 0.064 0.003 0.238 0.451 0.170 0.322 0.224
rel-b 0.002 0.005 0.277 0.362 0.054 0.501 0.049 0.007 0.042 0.102 0.126 0.276 0.150
rel-eb 0.003 0.011 0.486 0.444 0.000 0.500 0.089 0.011 0.257 0.452 0.249 0.290 0.233
rel2-e 0.988 0.830 0.787 0.010 0.000 0.501 0.032 0.007 0.159 0.353 0.259 0.322 0.354
rel2-b 0.140 0.708 0.056 0.253 0.000 0.504 0.080 0.002 0.041 0.117 0.138 0.319 0.197
rel2-eb 0.978 0.779 0.737 0.017 0.000 0.504 0.091 0.010 0.194 0.374 0.159 0.311 0.346

Table 1: Sequence-level accuracy for different position encoding methods. Bolded results represent the best results
for each dataset in this table.

rel-e: relative position encodings, where the rel-
ative position label defines a learnable embedding
that is added to the key during the attention process.
We used a maximum local attention radius of 16,
which means that we have the following relative po-
sition labels {l−16, l−15, ..., l−1, l0, l1, ..., l15, l16}.
Tokens that are further than 16 positions apart get
the l−16 or l16 labels.

rel-b: relative positions define a learnable bias
that is added to the attention weight of each atten-
tion pair. This is the attention mechanism used by
T5 (although they use a logarithmic scheme for
representing relative positions).

rel-eb: relative position using both a learnable
embedding vector and a learnable bias scalar.

While relative positions are straightforward for
encoder-to-encoder and decoder-to-decoder atten-
tion, it is unclear what the relative positions should
be for decoder-to-encoder. Hence, we tested three
alternatives (rel2-e, rel2-b and rel2-eb in our result
tables). rel-* methods do not use relative position
labels in decoder to encoder attention, while those
named rel2-* do (where token yi in the decoder
attending to token xj in the encoder will have label
lj−i.

Table 1 shows sequence-level classification ac-
curacy for small Transformers (l = 2, d = 64,
f = 256, h = 4). The right-most column shows
the average accuracy across all datasets, and we can
see that position encodings play a very significant
role in the performance of the models. Going from
0.137 accuracy of the model with absolute position
encodings up to 0.354 for a model with relative
position encodings using embeddings (but no bias
term), as well as relative positions for decoder-to-
encoder attention. In general almost any type of
relative position encodings help, but using embed-
dings helps more than using bias terms. Moreover,
position encodings play a bigger role in algorith-
mic tasks. For example, in the Add and AddNeg
tasks, models go from 0.005 and 0.042 accuracy to

almost perfect accuracy (0.988 and 0.830 for the
rel2-e model). Moreover tasks like SCAN or CFQ
do not seem to be affected by position encodings,
and using relative position encodings with only a
bias term hurts in PCFG.

4.2 Decoder Type
Many tasks (such as the duplication or PCFG
datasets used in our experiments) require models
able to learn things like “output whatever is in po-
sition k of the input”, rather than having to learn
hard-coded rules for outputting the right token, de-
pending on the input, a type of symmetry that can
be captured with a copy decoder.

The copy decoder in our experiments is fairly
simple, and works as follows (Figure 2, top-left).
It assumes that the input and output vocabularies
are the same (we use the union of input and output
vocabularies in our experiments). For a given token
xi in the output (with final embedding yi), in addi-
tion to the output probability distribution p1 over
the tokens in the vocabulary, the copy decoder pro-
duces a second distribution p2, which is then mixed
with p1 via a weight w. p2 is obtained by attending
to the output of the last encoder layer (the attention
query is calculated using a learnable weight matrix
from yi, the embeddings of the last encoder layer
are used as the keys, and the values are a one-hot
representation of the input tokens). The result is
passed through a softmax layer, resulting in p2.

Table 2 shows sequence-level classification ac-
curacy for models with and without a copy decoder.
As can be seen in the last column (Avg.), having a
copy decoder consistently helps performance, with
all models using a copy decoder (abs-c, rel-eb-
c and rel2-eb-c) outperforming their counterparts
without a copy decoder. Moreover, we see that the
copy decoder helps the most in PCFG and COGS,
while it does not seem to help in some other tasks.

Moreover, we would like to point out that there
are other ways to set up copy decoders. For exam-
ple Akyürek et al. (2021) propose defining a lexical
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 0.000 0.003 0.174 0.434 0.177 0.304 0.137
rel-eb 0.003 0.011 0.486 0.444 0.000 0.500 0.089 0.011 0.257 0.452 0.249 0.290 0.233
rel2-eb 0.978 0.779 0.737 0.017 0.000 0.504 0.091 0.010 0.194 0.374 0.159 0.311 0.346
abs-c 0.006 0.021 0.000 0.000 0.000 0.501 0.000 0.003 0.230 0.390 0.520 0.301 0.164
rel-eb-c 0.004 0.007 0.271 0.460 0.000 0.413 0.026 0.009 0.342 0.541 0.474 0.311 0.238
rel2-eb-c 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403

Table 2: Sequence-level accuracy with and without copy decoding (models with a copy decoder are marked with a
“-c” suffix). Bolded numbers are the best results for each dataset in this table.

Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
small-2 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403
small-4 0.986 0.835 0.676 0.572 0.000 0.500 0.170 0.000 0.499 0.711 0.501 0.301 0.479
small-6 0.992 0.835 0.225 0.000 0.000 0.203 0.164 0.002 0.548 0.741 0.476 0.312 0.375
large-2 0.983 0.811 0.605 0.503 0.000 0.500 0.184 0.001 0.535 0.758 0.498 0.269 0.471
large-4 0.957 0.786 0.684 0.523 0.000 0.400 0.164 0.004 0.513 0.770 0.462 0.310 0.464
large-6 0.978 0.673 0.423 0.288 0.000 0.250 0.144 0.000 0.530 0.750 0.451 0.288 0.398

Table 3: Sequence-level accuracy for models of different sizes. All models are variations of the rel2-eb-c model in
Table 2 (small-2 is equivalent to rel2-eb-c). Bolded results represent the best results for each dataset in this table.

translation layer in the copy decoder, which allows
models to translate tokens in the input to tokens in
the output (which is useful in tasks such as SCAN,
which have disjoint vocabularies). In their work,
they propose to initialize this layer via a lexicon
learning task.

4.3 Model Size

Next, we compare the effect of varying both the
number of layers (l), as well as their size (d, f ,
h). Specifically, we tested models with number
of layers l equal to 2, 4 and 6, and layers of two
sizes: small (d = 64, f = 256, h = 4), and large
(d = 128, f = 512, h = 8). We denote these
models small-2, small-4, small-6, large-2, large-
4, and large-6. All of the models in this section
are variants of rel2-eb-c, our previous best (see
Appendix C for parameter counts of our models).

Table 3 shows the sequence-level classification
accuracy, showing a few interesting facts. First,
in most algorithmic tasks, size does not help. Our
hypothesis is that the logic required to learn these
tasks does not require too many parameters, and
large models probably overfit (e.g., like in Du-
plication)3. Some datasets, however, do benefit
from size. For example, most large models outper-
form their respective small ones in both variants of
PCFG. These results are not unexpected, as most
compositional generalization datasets contain ide-
alized examples, often generated via some form of

3Further investigation showed that lowering the learning
rate improves performance in the larger models, preventing the
phenomenon seen in the Duplication dataset. Systematically
exploring this is left for future work.

grammar, and have very small vocabularies (see
Table 7). Hence, models might not benefit from
size as much as on complex natural language tasks.

4.4 Weight Sharing

In this section we evaluate the effect of sharing
weights across transformer layers. When weight
sharing is activated, all learnable weights from all
layers in the encoder are shared across layers, and
the same is true across the layers of the decoder.

Table 4 shows the resulting performance of the
models (to be compared with Table 3). Surpris-
ingly, weight sharing significantly boosts compo-
sitional generalization accuracy, and almost all
models achieve a higher average accuracy across
all datasets than their equivalent models in Ta-
ble 3. In particular, datasets such as AdditionNeg-
atives see a significant boost, with several mod-
els achieving higher than 0.9 accuracy (0.982 for
large-6s). PCFG also significantly benefits from
weight sharing, with the large-6s model achieving
0.634 and 0.828 in the productivity and systematic-
ity versions, respectively. These are higher than
previously reported results in the literature (using
the original Transformer, which is a much larger
model): 0.50 and 0.72 (Hupkes et al., 2020). No-
tice, moreover that achieving good results in PCFG
(or SCAN) is easy with specialized models. The
important achievement is doing so with general
purpose models. Our hypothesis is that a model
with shared weights across layers might have a
more suited inductive bias to learn primitive opera-
tions that are applied repeatedly to the input of the
transformer (copying, reversing, duplicating, etc.).
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
small-2s 0.992 0.809 0.780 0.750 0.000 0.699 0.022 0.003 0.313 0.501 0.450 0.303 0.468
small-4s 0.991 0.955 0.708 0.580 0.000 0.500 0.172 0.017 0.534 0.723 0.445 0.292 0.493
small-6s 0.993 0.933 0.505 0.000 0.000 0.500 0.186 0.000 0.562 0.780 0.454 0.295 0.434
large-2s 0.997 0.894 0.831 0.848 0.000 0.584 0.033 0.002 0.511 0.638 0.465 0.292 0.508
large-4s 0.991 0.915 0.771 0.882 0.000 0.400 0.186 0.002 0.589 0.791 0.475 0.327 0.527
large-6s 0.985 0.982 0.241 0.000 0.000 0.500 0.196 0.000 0.634 0.828 0.454 0.303 0.427

Table 4: Sequence-level accuracy for all the models in Table 3, but sharing weights across layers.

4.5 Intermediate Representations

The key idea of an intermediate representation is
to define a different representation of the target out-
put that is easier to generate by the model, but that
can be easily mapped to the desired output. Herzig
et al. (2021) recently showed very promising re-
sults using this technique in several tasks. Defining
useful intermediate representations is task-specific
and not trivial. Thus we experimented with it in
only two datasets: COGS and CFQ (Figure 3).

4.5.1 Intermediate Representation for COGS

Our intermediate representation for COGs turns
the task from seq2seq into a sequence tagging task.
We ask the model to produce 5 tags for each input
token: a parent, the role of the relation between the
token and its parent (if applicable), the category,
the noun determiner (for nouns) and the verb name
(for verbs). With these tags, the original output can
be constructed deterministically. One of the main
advantages of this is that the model is naturally
pushed to produce outputs with the correct length
even for longer inputs (improving productivity).

For the sequence tagging formulation, we used
only the encoder part of the Transformer and added
five prediction heads, to predict each tag. For role,
category, noun determiner and verb name, we sim-
ply had a dense layer with a Sigmoid activation
function. For the parent tag, we experimented with
3 different head types: Absolute used a dense layer
with a Sigmoid activation to predict the absolute
index of the parent in the input sequence (-1 for
no parent). Relative predicted the relative offset of
the parent token with respect to the current token,
or self for no parent. Finally, Attention used the
attention weights from a new attention layer with 1
head to predict the parent.

Table 5 shows the experimental results com-
paring a few configurations of this new tagging
approach to a few configurations of the seq2seq
approach (see Appendix D for all other configu-
rations). Examples in the structural generaliza-
tion tasks are typically longer than in the train-

seq2seq tagging
Model abs rel2-eb-c abs rel-eb
Size small-2 small-6s small-2 small-2s
Parent encoding absolute attention
Lexical Generalization: Primitives and Grammatical Roles
Subject→ Object (common noun) 0.309 0.899 0.911 0.969
Subject→ Object (proper noun) 0.098 0.429 0.630 0.826
Object→ Subject (common noun) 0.790 0.936 0.982 0.978
Object→ Subject (proper noun) 0.207 0.951 0.993 0.995
Prim noun→ Subject (common noun) 0.240 0.913 0.993 0.988
Prim noun→ Subject (proper noun) 0.019 0.772 0.974 0.996
Prim noun→ Object (common noun) 0.017 0.902 0.950 0.953
Prim noun→ Object (proper noun) 0.000 0.513 0.651 0.700
Prim verb→ Infinitival argument 0.000 0.766 0.000 0.001
Lexical Generalization: Verb Argument Structure Alternation
Active→ Passive 0.604 0.000 0.697 0.948
Passive→ Active 0.196 0.001 0.535 0.897
Object-omitted transitive→ Transitive 0.275 0.003 0.527 0.926
Unaccusative→ Transitive 0.069 0.003 0.528 0.787
Double object dative→ PP dative 0.819 0.000 0.590 0.958
PP dative→ Double object dative 0.404 0.004 0.771 0.850
Lexical Generalization: Verb Class
Agent NP→ Unaccusative Subject 0.399 0.951 0.784 1.000
Theme NP→ Obj-omitted trans Subj 0.688 0.965 0.791 0.701
Theme NP→ Unergative subject 0.694 0.966 0.930 0.771
Structural Generalization: Phrases and Grammatical Roles
Obj-mod PP→ Subj-mod PP 0.000 0.000 0.000 0.299
Structural Generalization: Deeper Recursion
Depth generalization: PP modifiers 0.003 0.000 0.138 0.681
Depth generalization: Sentential comp 0.000 0.000 0.000 0.233
Overall 0.278 0.475 0.637 0.784

Table 5: Sequence-level accuracy in different general-
ization subsets in COGS for both seq2seq and sequence
tagging models. PP stands for prepositional phrase.

ing set and require productivity. All the models
tested in the original COGS paper (Kim and Linzen,
2020) (and all of our seq2seq approaches above)
achieved 0 accuracy in this category. The small-6s
seq2seq model improves the overall performance
from 0.278 to 0.475, but curiously has near 0 per-
formance on Verb Argument Structure Alternation
tasks, worse than the base abs model.

The intermediate representation based on tag-
ging works much better. The base abs tagging
model manages to get non-zero performance on
one structural generalization task, which suggests
that enforcing the right output length helps. Finally,
when predicting the parent directly from attention
weights, the structural generalization tasks score
0.2-0.7, compared to our previous near 0 scores
(see Appendix D for common types of errors).

Overall, the sequence tagging intermediate rep-
resentation achieves a much higher accuracy, with
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COGS
Input:           Did a person marry a cinematographer ,

influence M1 , and influence M2 [END]

Intermediate Output:          
SELECT count(*) WHERE { 
?x0 a ns:people.person . 
?x0 ns:influence.influence_node.influenced {M1,M2} .
?x0 ns:people.person.spouse_s ?x1 . 
?x1 a ns:film.cinematographer . 
FILTER ( ?x0 != ?x1 ) } [END]

CFQ

...
?x0 ns:influence.influence_node.influenced M1 .
?x0 ns:influence.influence_node.influenced M2 .
...

A  rose   was  helped  by  a   dog   .  [END]

-    3     -     -     -   -    3    -    -
-  theme   -     -     -   -  agent  -    -
-  CNOUN   -   VERB    -   -  CNOUN  -    -
-  INDEF   -     -     -   -  INDEF  -    -
-    -     -   help    -   -    -    -    -

Input:

Intermediate Output:
Parent:
Role:
Category:
Noun determiner:
Verb name:

rose ( x _ 1 ) 
AND help . theme ( x _ 3 , x _ 1 )
AND help . agent ( x _ 3 , x _ 6 ) 
AND dog ( x _ 6 ) [END]

Final 
Output

Final 
Output

Figure 3: Examples from the intermediate representations for COGs and CFQ. For COGs, we framed the task as
sequence tagging and made the model predict 5 tags for each token; for CFQ we compressed Cartesian products.

CFQ CFQ-im
abs 0.304 0.541
rel-eb 0.290 0.555
rel2-eb 0.311 0.541
rel-eb-c 0.311 0.541
rel2-eb-c 0.295 0.519
large-4 0.310 0.541
large-4s 0.327 0.474

Table 6: Sequence-level accuracy for different models
for the original CFQ, and for CFQ with intermediate
representations (CFQ-im). The top 5 models are small
models with 2 layers, and the last four models are vari-
ants of rel2-eb-c (used in Tables 3 and 4).

one model reaching 0.784, higher than any previ-
ously reported performance in COGS in the litera-
ture, to the best of our knowledge. This suggests
that the encoder has the power to parse the input
correctly, but maybe the decoder is not capable of
generating the correct output sequence from the
encoder in the full transformer.

4.5.2 Intermediate Representation for CFQ
One of the difficulties in the CFQ dataset is that
models need to learn to perform Cartesian prod-
ucts (e.g., for questions like “who directed and
acted in M1 and M2?”, the model needs to expand
to “directed M1”, “directed M2”, “acted in M1”
and “acted in M2”). However, as shown in our
experiments above, this is a very hard task to learn.
Hence, we followed the same idea as in Herzig
et al. (2021), and defined an intermediate repre-
sentation that removes the need to learn Cartesian
products by allowing triples of the form (entity list)
- (relation list) - (entity list).

Table 6 shows the sequence-level classification
accuracy for models on CFQ and on the version
with intermediate representations (CFQ-im). While
the different variations on Transformer models
have little affect on the performance, the use of an
intermediate representation significantly improves
performance, going from around 0.3 accuracy for

most Transformer models to over 0.5, and up to
0.555 for the rel-eb model. This is consistent with
the results reported by Herzig et al. (2021).

5 Discussion

An overall trend is that algorithmic tasks seem to
be greatly affected by the different architecture de-
sign decisions we explored. In all datasets, except
for Cartesian product, there is at least one combina-
tion in our experiments that achieved high perfor-
mance (close to 0.8 accuracy or higher). Cartesian
products remain an open challenge for future work,
where one of the big obstacles is learning to pro-
duce much longer outputs than seen during training
(output is quadratic with respect to input size).

There are some datasets, such as SCAN-aj, where
we did not see large improvements in performance.
The main obstacle is learning to handle a symbol
(“jump”) having seen it very few times (or even just
once) during training (this also happens in some
types of generalization in COGS). None of the vari-
ations we experimented with were enough to han-
dle this type of compositionality either.

In conclusion, we observed:

1. relative position encodings (when both em-
beddings and biases are used) seem to never
be detrimental (they either provided gains, or
did not affect). Results indicate this signif-
icantly helps in productivity. Moreover, for
tasks where positional information is impor-
tant (such as addition, or reversing), adding
positional encodings to decoder2encoder at-
tention provided significant benefits. Finally,
as Table 1 shows, for relative position embed-
dings to be beneficial, using embeddings was
necessary; only using relative position biases
was not enough.

2. Adding a copy decoder was generally benefi-
cial. We saw some occasional degradation in
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some tasks (e.g., Reverse), but these are high
variance tasks (see Table 10 in the Appendix),
where results are more uncertain.

3. Model size in terms of embedding dimensions,
helped generally. Going from 2 to 4 layers
provided a slight benefit in general. Our ex-
periments show going to 6 layers hurt perfor-
mance, but as noted earlier, additional (un-
reported preliminary) experiments indicated
larger models might need smaller learning
rates, with which they also seem to improve
performance (systematic exploration of this is
future work).

4. Weight sharing seems to benefit in tasks where
there are a clear set of primitives that have
to be learned (PCFG in particular), or algo-
rithmic tasks, but it seems to hurt in COGs.
Hence, weight sharing does not provide gen-
eral benefits as the previous modifications.

5. Intermediate representations, although
dataset-specific, significantly help when they
can be defined, as expected.

6 Conclusions

This paper presented an empirical study of the de-
sign space of Transformer models, evaluated in a
collection of benchmarks for compositional gener-
alization in language and algorithmic tasks. Our
results show that, compared to a baseline Trans-
former, significant gains in compositional general-
ization can be achieved. Specifically, the baseline
Transformer achieved an average sequence-level
accuracy of 0.137, while we showed this can in-
crease to up to 0.527 with some design changes.
Accuracy levels of up to 0.493 can be achieved
without increasing the parameter count of our base-
line model (see Appendix C for parameter counts).
Moreover, we achieved state-of-the-art results in
COGS (at the time of submission), showing 0.784
accuracy on the generalization set, and two PCFG
splits (0.634 and 0.828 respectively). This shows
that a key factor in training models that generalize
compositionally is to provide the right inductive
biases.

As part of our future work, we want to explore
more dimensions, such as pre-training and opti-
mizer parameters, and study the implications of
our results in compositional generalization in large
models on real world tasks.
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A Implementation Details

We used a standard Transformer implementation4,
and added all the proposed variations on top of
it. All experiments were run on machines with
a single CPU and a single Tesla V100 GPU. All
parameters were left to their default values from the
original implementation, including the learning rate
schedule (which could probably be further tweaked
if state-of-the-art results are sought), as we were
just aiming to compare inductive biases, rather than
aim for SOTA results.

Additionally, we would like to highlight some
implementation details, which surprisingly had
large effects on our experimental results. Layer
normalization operations in our Transformer imple-
mentation were done after each sublayer (attention
and feed forward). Embedding layers were initial-
ized with the Keras default “uniform” Keras ini-
tializer (uniform random distribution in the range
[−0.05, 0.05]). Dense layers were initialized also
with the Keras default Glorot initializer (uniform
random distribution with mean 0 and standard
deviation

√
2/(fan_in+ fan_out)) (Glorot and

Bengio, 2010). While these details might not
seem that important, we were unable to repro-
duce some of the results reported above using a
re-implementation of the Transformer model in
Flax, which used different defaults (and layer nor-
malization before each sublayer rather than after)
unless we changed these implementation details
to match those of the Keras implementation. This
indicates that these low-level details also have an
effect on the learning bias of the models, with an
impact in compositional generalization, which we
plan to study in the future.

B Detailed Results

Table 8 shows the average sequence-level accuracy
for all the models evaluated in this paper, all in one
table. We used the same names as used in the paper
(as models rel2-eb-c and small-2 both refer to the
same model, we included the row twice, with both
names, for clarity).

Table 9 shows the maximum accuracy each
model achieved in each dataset out of the 3 to
10 repetitions we did for each dataset. Recall we
used 3 repetitions for SCAN-l, SCAN-aj, PCFG-p,
PCFG-s, COGS and CFQ, 5 repetitions for Add,
AddNeg, Reverse, Dup and Cart, and 10 repetitions

4https://www.tensorflow.org/tutorials/
text/transformer

for Inters (as it was the dataset where we saw more
extreme results). An interesting phenomenon ob-
served in the Inters dataset is that models tend to
achieve either random accuracy (around 0.5), or
perfect accuracy (1.0). Very rarely models achieve
intermediate values. This support the needle-in-a-
haystack argument of Liška et al. (2018), who saw
that while LSTMs have the capability of general-
ize compositionally, what happens in practice is
that gradient descent has a very low probability of
converging to weights that do so (finding the “com-
positional needle” in a haystack). We observed a
similar thing in our experiments, but saw that some
Transformer architectures resulted in an increased
chance of finding this needle.

Table 10 shows the standard deviation in the
sequence-level accuracy we observed in our ex-
periments. As can be seen, the algorithmic tasks
result in a much larger standard deviation. In some
datasets (e.g., Add and Inters) it was common for
morels to either achieve near 0% accuracy (50% in
Inters) or near 100% accuracy, but few values in
between.

C Parameter Counts

Table 11 shows the parameter count for all the mod-
els used in this paper, notice that exact parameter
counts vary per dataset, as each dataset has a differ-
ent token vocabulary, and hence both the token em-
bedding and the output layers vary. One interesting
result is that in our experiments, parameter count is
not, by itself, sufficient to increase compositional
generalization. Our best model overall (large-4s)
only had about 0.5 million parameters, and outper-
formed significantly larger models. Another ex-

Dataset |Train| |Test | |Vocab| Epochs
Add 200000 1024 14 2
AddNeg 200000 1024 16 10
Reverse 200000 1024 14 2
Dup 200000 1024 14 4
Cart 200000 1024 24 4
Inters 200000 1024 106 8
SCAN-l 16989 3919 25 24
SCAN-aj 14669 7705 25 24
PCFG-p 81011 11331 537 20
PCFG-s 82167 10175 537 20
COGS 24155 21000 876 16
CFQ 95743 11968 184 16

Table 7: Size of the training/test sets, vocab and train-
ing epochs we used for the different datasets.
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 0.000 0.003 0.174 0.434 0.177 0.304 0.137
rel-e 0.004 0.018 0.422 0.486 0.004 0.501 0.064 0.003 0.238 0.451 0.170 0.322 0.224
rel-b 0.002 0.005 0.277 0.362 0.054 0.501 0.049 0.007 0.042 0.102 0.126 0.276 0.150
rel-eb 0.003 0.011 0.486 0.444 0.000 0.500 0.089 0.011 0.257 0.452 0.249 0.290 0.233
rel2-e 0.988 0.830 0.787 0.010 0.000 0.501 0.032 0.007 0.159 0.353 0.259 0.322 0.354
rel2-b 0.140 0.708 0.056 0.253 0.000 0.504 0.080 0.002 0.041 0.117 0.138 0.319 0.197
rel2-eb 0.978 0.779 0.737 0.017 0.000 0.504 0.091 0.010 0.194 0.374 0.159 0.311 0.346
abs-c 0.006 0.021 0.000 0.000 0.000 0.501 0.000 0.003 0.230 0.390 0.520 0.301 0.164
rel-eb-c 0.004 0.007 0.271 0.460 0.000 0.413 0.026 0.009 0.342 0.541 0.474 0.311 0.238
rel2-eb-c 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403
small-2 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403
small-4 0.986 0.835 0.676 0.572 0.000 0.500 0.170 0.000 0.499 0.711 0.501 0.301 0.479
small-6 0.992 0.835 0.225 0.000 0.000 0.203 0.164 0.002 0.548 0.741 0.476 0.312 0.375
large-2 0.983 0.811 0.605 0.503 0.000 0.500 0.184 0.001 0.535 0.758 0.498 0.269 0.471
large-4 0.957 0.786 0.684 0.523 0.000 0.400 0.164 0.004 0.513 0.770 0.462 0.310 0.464
large-6 0.978 0.673 0.423 0.288 0.000 0.250 0.144 0.000 0.530 0.750 0.451 0.288 0.398
small-2s 0.992 0.809 0.780 0.750 0.000 0.699 0.022 0.003 0.313 0.501 0.450 0.303 0.468
small-4s 0.991 0.955 0.708 0.580 0.000 0.500 0.172 0.017 0.534 0.723 0.445 0.292 0.493
small-6s 0.993 0.933 0.505 0.000 0.000 0.500 0.186 0.000 0.562 0.780 0.454 0.295 0.434
large-2s 0.997 0.894 0.831 0.848 0.000 0.584 0.033 0.002 0.511 0.638 0.465 0.292 0.508
large-4s 0.991 0.915 0.771 0.882 0.000 0.400 0.186 0.002 0.589 0.791 0.475 0.327 0.527
large-6s 0.985 0.982 0.241 0.000 0.000 0.500 0.196 0.000 0.634 0.828 0.454 0.303 0.427

Table 8: Average sequence-level accuracy for all the models evaluated in this paper.

ample, of this is that the models with shared layer
parameters outperform their counterparts without
parameter sharing, although they naturally have
less parameters.

D Detailed Results in COGS

Table 12 shows the results of some of the models
we tested in the COGS dataset (including seq2seq
and sequence tagging models), with the accuracy
broken down by the type of example in the gen-
eralization set. The COGS dataset contains four
splits: training, dev, test and generalization (gener-
alization is the one used to measure compositional
generalization, and the set reported in the main pa-
per). All but one shown configuration achieve more
than 95% sequence level accuracy on the test and
development splits after training for 16 epochs over
the training data. The generalization set is split into
several generalization tasks as described above, to
break down performance by type of generalization
(overall performance in the generalization set is
shown in the bottom row).

The best tagging model does much better than
the base seq2seq model (0.784 vs. 0.278). No-
tably the tagging model does relatively well on the
Depth generalization: Prepositional phrase (PP)
modifiers task achieving accuracy 0.681. When the
depth of the model is increased from 2 to 6, the
score on this task increases from 0.681 to 0.819, i.e.
the model with more layers can parse deeper recur-
sion. However, increasing the encoder depth at the

same time dramatically lowers the performance on
Verb Argument Structure Alternation tasks.

Since many of the tasks are solved to near per-
fect accuracy, here we briefly discuss the types of
the remaining errors. The one type of task where
sequence tagging models did worse than seq2seq
is Prim verb→ Infinitival argument, which mea-
sures one shot generalization of an example with
only a single verb to examples where the verb is
used in sentences. The cause of this is that the
tagging example with only a single verb doesn’t ac-
tually encode the type of relations the verb allows,
so the tagging model is actually not provided the
full information in the only example for this one
shot learning task. Nevertheless, this category was
solved in our seq2seq models with a copy decoder.

Curiously, some errors, that the tagging model
with attention in the parent prediction head makes,
are quite quite reasonable. For example in the Obj-
mod PP → Subj-mod PP task, the model often
gets the complete parsing tree correctly, and the
only error is the predicted relation of the subject to
the predicate (instead of agent the model predicts
theme as is present in all the training examples,
where the prepositional phrase modifies the object).

Another task where even the best tagging model
achieves a low score (0.233) is Depth generaliza-
tion: Sentential complements. The examples in this
task are long complex sentences chained together
with the conjunction that. The most common er-
ror here is to predict that the main verb depends
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 0.008 0.131 0.002 0.000 0.000 0.500 0.000 0.008 0.191 0.462 0.211 0.326
rel-e 0.010 0.059 0.597 0.908 0.034 0.511 0.115 0.007 0.257 0.496 0.281 0.346
rel-b 0.004 0.016 0.331 0.417 0.137 0.510 0.072 0.013 0.047 0.112 0.170 0.305
rel-eb 0.006 0.018 0.658 0.795 0.001 0.502 0.129 0.023 0.268 0.528 0.306 0.333
rel2-e 1.000 0.943 0.917 0.038 0.000 0.512 0.058 0.018 0.182 0.457 0.332 0.357
rel2-b 0.256 0.910 0.132 0.339 0.002 0.529 0.116 0.004 0.049 0.137 0.187 0.342
rel2-eb 1.000 0.875 0.824 0.062 0.000 0.519 0.124 0.018 0.233 0.479 0.205 0.333
abs-c 0.021 0.037 0.000 0.000 0.000 0.506 0.000 0.005 0.250 0.420 0.550 0.312
rel-eb-c 0.006 0.027 0.504 0.721 0.000 1.000 0.031 0.021 0.361 0.562 0.581 0.351
rel2-eb-c 0.998 0.842 0.861 0.683 0.000 1.000 0.082 0.014 0.346 0.581 0.576 0.369
small-2 0.998 0.842 0.861 0.683 0.000 1.000 0.082 0.014 0.346 0.581 0.576 0.369
small-4 0.992 0.877 0.939 0.805 0.000 0.500 0.197 0.001 0.509 0.734 0.520 0.342
small-6 1.000 0.922 0.576 0.000 0.000 0.500 0.199 0.007 0.571 0.766 0.516 0.330
large-2 0.998 0.896 0.933 0.882 0.000 0.500 0.197 0.002 0.548 0.762 0.530 0.314
large-4 0.996 0.953 0.848 0.855 0.000 0.500 0.199 0.010 0.523 0.782 0.500 0.360
large-6 0.994 0.887 0.619 0.856 0.000 0.500 0.195 0.000 0.549 0.766 0.483 0.317
small-2s 0.998 0.871 0.979 0.972 0.000 1.000 0.044 0.006 0.328 0.519 0.487 0.348
small-4s 0.998 0.986 0.870 0.871 0.000 0.500 0.175 0.039 0.540 0.742 0.515 0.362
small-6s 1.000 0.984 0.821 0.000 0.000 0.500 0.199 0.000 0.569 0.788 0.486 0.344
large-2s 1.000 0.945 0.952 0.955 0.000 1.000 0.054 0.003 0.526 0.641 0.563 0.304
large-4s 1.000 0.959 0.923 0.959 0.000 0.500 0.195 0.004 0.604 0.810 0.481 0.362
large-6s 1.000 0.998 0.489 0.000 0.000 0.500 0.198 0.000 0.642 0.832 0.469 0.361

Table 9: Maximum sequence-level accuracy achieved in a given repetition for all the models evaluated in this
paper.

on another verb far away in the sentence structure,
instead of predicting that it has no parent. The dis-
tance to the incorrectly predicted parent is often
more than 16, which was the limit on our relative
attention offsets. The attention mechanism seems
to get confused by seeing many more tokens in this
test split than during training.

E Dataset Details

This appendix presents more details on the datasets
used in this paper, as well as on the type of compo-
sitionality involved in each of them.

• Addition (Add): This is a synthetic addition
task, where the input contains the digits of
two integers, and the output should be the
digits of their sum. The training set contains
numbers with up to 8 digits, and the test set
contains numbers with 9 or 10 digits. Num-
bers are padded to reach a length of 12 so
that it’s easy to align the digits that need to
be added. We found that without padding, the
task became much harder. Types of compo-
sitionality: models need to learn that there
is a primitive operation “adding two digits
(with carry)” that is repeatedly applied at each
position. Models that learn position-specific
shortcuts will not generalize to longer input
lengths (as they would have learned no rules
to produce the most significant digits, which

would have never been seen during training).
This mostly corresponds to productivity type
of compositional generalization.

• AdditionNegatives (AddNeg): The same as
the previous one, but 25% of the numbers
are negative (preceded with the “-” token).
Types of compositionality: the type of com-
positionality requires by this task is similar to
that of the previous task, except that the gen-
eral rules that need to be learned (independent
of position) are more complex due to negative
numbers. So, the model needs to learn three
basic primitive operations that are the same
irrespective of the position of the digits: “add
two digits with carry”, “subtract first from sec-
ond with carry”, and “subtract second from
first with carry”, and learn when to apply each.
This also mostly corresponds to productivity
type of compositional generalization.

• Reversing (Reverse): Where the output is ex-
pected to be the input sequence in reverse or-
der. Training contains sequences of up to 16
digits, and the test set contains lengths be-
tween 17 to 24. Types of compositionality:
the difficult part of this task is to learn to re-
verse position embeddings in a way that gener-
alizes to longer inputs than seen during train-
ing, in order to attend and produce the right
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 0.003 0.047 0.001 0.000 0.000 0.000 0.000 0.004 0.014 0.039 0.067 0.022
rel-e 0.003 0.017 0.169 0.271 0.012 0.003 0.045 0.004 0.023 0.078 0.103 0.027
rel-b 0.002 0.006 0.078 0.046 0.073 0.003 0.038 0.006 0.005 0.014 0.040 0.025
rel-eb 0.002 0.007 0.211 0.287 0.000 0.001 0.038 0.011 0.013 0.066 0.050 0.047
rel2-e 0.009 0.074 0.167 0.014 0.000 0.004 0.023 0.009 0.016 0.111 0.104 0.035
rel2-b 0.122 0.202 0.051 0.055 0.001 0.009 0.039 0.002 0.011 0.018 0.045 0.016
rel2-eb 0.029 0.067 0.057 0.024 0.000 0.007 0.029 0.008 0.047 0.101 0.043 0.020
abs-c 0.009 0.010 0.000 0.000 0.000 0.003 0.000 0.002 0.024 0.027 0.038 0.013
rel-eb-c 0.003 0.011 0.135 0.157 0.000 0.322 0.005 0.011 0.017 0.036 0.093 0.025
rel2-eb-c 0.035 0.053 0.208 0.289 0.000 0.239 0.033 0.005 0.009 0.048 0.056 0.063
small-2 0.035 0.053 0.208 0.289 0.000 0.239 0.033 0.005 0.009 0.048 0.056 0.063
small-4 0.004 0.054 0.213 0.184 0.000 0.000 0.046 0.000 0.010 0.019 0.028 0.049
small-6 0.007 0.120 0.233 0.000 0.000 0.256 0.056 0.004 0.024 0.026 0.047 0.022
large-2 0.016 0.074 0.240 0.289 0.000 0.000 0.022 0.001 0.012 0.004 0.042 0.033
large-4 0.075 0.106 0.178 0.190 0.000 0.211 0.049 0.006 0.009 0.010 0.033 0.047
large-6 0.023 0.377 0.119 0.356 0.000 0.264 0.045 0.000 0.018 0.014 0.029 0.022
small-2s 0.007 0.038 0.255 0.254 0.000 0.346 0.021 0.003 0.014 0.019 0.054 0.039
small-4s 0.009 0.055 0.118 0.261 0.000 0.000 0.005 0.020 0.008 0.023 0.068 0.054
small-6s 0.012 0.047 0.208 0.000 0.000 0.001 0.017 0.000 0.006 0.007 0.030 0.041
large-2s 0.004 0.031 0.131 0.167 0.000 0.156 0.027 0.001 0.018 0.004 0.102 0.011
large-4s 0.007 0.039 0.127 0.066 0.000 0.211 0.016 0.002 0.015 0.017 0.009 0.043
large-6s 0.020 0.015 0.159 0.000 0.000 0.000 0.002 0.000 0.008 0.007 0.013 0.037

Table 10: Standard deviation of the sequence level accuracy results.

output sequences. This mostly corresponds to
productivity type of compositional generaliza-
tion, as the model needs to learn to reverse po-
sition embeddings for longer sequences than
seen during training.

• Duplication (Dup): The input is a sequence
of digits and the output should be the same
sequence, repeated twice. Training contains
sequences up to 16 digits, and test from 17 to
24. Types of compositionality: Learning to
repeat the input several times is not a particu-
larly hard task for a Transformer, but we no-
ticed that the difficult part was learning when
to stop producing output (exactly after repeat-
ing the input twice in this case). This problem
was also noted in the work of (Csordás et al.,
2021), and mostly corresponds to productivity
type of compositional generalization.

• Cartesian (Cart): The input contains two se-
quences of symbols, and the output should
be their Cartesian product. Training contains
sequences of up to 6 symbols (7 or 8 for test-
ing). Types of compositionality: this is a
very challenging task that requires very de-
manding productivity, as the model needs to
learn to learn to compose the basic operation
of pairing elements from both sets via two
nested loops: iterating over each of the two
input sets.

• Intersection (Inters): Given two sequences
of symbols, the output should be whether they
have a non-empty intersection. Training con-
tains sets with size 1 to 16, and testing 17
to 24. Types of compositionality: the main
challenge in this dataset is to learn short-cut
rules such as “if the first set contains a4 and
the second set also contains a4 then the out-
put should be true”. However, the model
needs to learn to ignore these token specific
rules, and learn the general rule of finding two
identical tokens regardless of which specific
token they are, which could be seen as a form
of systematicity. Moreover, this needs to be
learned in a way that generalizes to longer
inputs (productivity).

• SCAN-length (SCAN-l): The length split of
the SCAN dataset (Lake and Baroni, 2018).
The SCAN dataset asks the model to learn to
interpret and execute natural language instruc-
tions with a limited vocabulary. For example,
if the input is “walk twice", the output should
be “I_WALK I_WALK“. There are a set of
primitive actions (walk, jump, etc.), and a set
of modifiers (twice, thrice, left, etc.) and com-
position operators (e.g., and), and the model
needs to learn how to compose and execute
all of those instructions to generate the out-
put sequence. In this specific length split, the
training and test sets are split by length (the
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 236k 236k 236k 236k 238k 253k 238k 238k 337k 337k 402k 268k
rel-e 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
rel-b 236k 236k 236k 236k 238k 254k 238k 238k 337k 337k 402k 269k
rel-eb 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
rel2-e 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
rel2-b 236k 236k 236k 236k 238k 254k 238k 238k 337k 337k 402k 269k
rel2-eb 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
abs-c 241k 241k 241k 241k 242k 258k 243k 243k 341k 341k 407k 273k
rel-eb-c 243k 244k 243k 243k 245k 261k 245k 245k 344k 344k 410k 276k
rel2-eb-c 243k 244k 243k 243k 245k 261k 245k 245k 344k 344k 410k 276k
small-2 243k 244k 243k 243k 245k 261k 245k 245k 344k 344k 410k 276k
small-4 480k 480k 480k 480k 482k 498k 482k 482k 581k 581k 646k 513k
small-6 717k 717k 717k 717k 719k 735k 719k 719k 818k 818k 883k 750k
large-2 1.88m 1.88m 1.88m 1.88m 1.88m 1.92m 1.88m 1.88m 2.08m 2.08m 2.21m 1.95m
large-4 1.88m 1.88m 1.88m 1.88m 1.88m 1.92m 1.88m 1.88m 2.08m 2.08m 2.21m 1.95m
large-6 2.81m 2.81m 2.81m 2.81m 2.81m 2.84m 2.81m 2.81m 3.01m 3.01m 3.14m 2.87m
small-2s 125k 125k 125k 125k 127k 143k 127k 127k 226k 226k 291k 158k
small-4s 125k 125k 125k 125k 127k 143k 127k 127k 226k 226k 291k 158k
small-6s 125k 125k 125k 125k 127k 143k 127k 127k 226k 226k 291k 158k
large-2s 486k 487k 486k 486k 490k 521k 490k 490k 687k 687k 818k 552k
large-4s 486k 487k 486k 486k 490k 521k 490k 490k 687k 687k 818k 552k
large-6s 486k 487k 486k 486k 490k 521k 490k 490k 687k 687k 818k 552k

Table 11: Parameter counts for the models used in this paper.

test set contains the longest sequences and
the training set the shortest ones). Types of
compositionality: Overall, SCAN requires
significant systematicity to be solved, and this
split in particular focuses on productivity.

• SCAN-add-jump (SCAN-aj): The add prim-
itive jump split of the SCAN dataset (Lake
and Baroni, 2018). In this split, the “jump”
instruction is only seen during training in iso-
lation (i.e., there is a training example “jump”
→ “I_JUMP”), but the test set contains this
instruction heavily, and in combination with
other constructs. Types of compositionality:
this split in particular focuses more on system-
aticity.

• PCFG-productivity (PCFG-p): The produc-
tivity split of the PCFG dataset (Hupkes et al.,
2020). The PCFG dataset is a synthetic dataset
where each example contains a set of opera-
tions that need to be done to one or more input
strings, and the model needs to learn to apply
these operations and produce the final output.
Operations include reversing, duplicating, get-
ting the first element, etc. Types of compo-
sitionality: this split in particular focuses on
productivity, as test examples contain longer
sequences of instructions than those seen dur-
ing training.

• PCFG-sytematicity (PCFG-s: The system-
aticity split of the PCFG dataset (Hupkes et al.,
2020). Types of compositionality: this split
focuses on systematicity, by testing the model
recombining operations in ways never seen
during training.

• COGS: The generalization split of the COGS
semantic parsing dataset (Kim and Linzen,
2020). This is a semantic parsing dataset,
where the input is a sentence in natural lan-
guage, and the output should be a logical rep-
resentation of the sentence. Types of compo-
sitionality: The generalization split contains
combinations not seen during training, while
most of these focus on systematicity (e.g., con-
structions that had only been seen as subjects,
now they are seen as objects), some part of the
test set focuses on productivity (having deeper
nesting of propositional phrases, for example).
This, productivity type of generalization, is
where our sequence tagging approach signifi-
cantly outperforms previous approaches.

• CFQ-mcd1 (CFQ): The MCD1 split of the
CFQ dataset (Keysers et al., 2019). This
dataset asks a model to learn how to translate
delexicalized natural language queries into
SPARQL. Types of compositionality: the
MCD1 split of this dataset focuses specifically
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on systematicity, but more concretely, there
are two additional ways in which this dataset
is hard compositionally. First, solving this
dataset requires solving Cartesian products
(which is the reason for which we added the
separate Cartesian product task), since some
question contains constructions like: “Who
directed, played and produced movies M1,
M2 and M3”, which get translated into 9
SPARQL clauses (the Cartesian product). Sec-
ond, SPARQL clauses are supposed to be pro-
duced in alphabetical order, hence the model
needs to learn how to sort.

Finally, table 7 shows the size of the training
and test sets for each dataset, as well as the size
of their vocabularies. For the vocabulary, we used
the union of the input and output vocabularies as
a unified vocabulary. We also show the number
of training epochs we performed in each dataset
(this was chosen as the number after which perfor-
mance stabilized with some initial models; it was
not tuned afterwards during the systematic evalua-
tion presented below).
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