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A few large, homogenous, pre-trained models
undergird many machine learning systems — and
often, these models contain harmful stereotypes
learned from the internet. We investigate the bias
transfer hypothesis: the theory that social biases
(such as stereotypes) internalized by large language
models during pre-training transfer into harmful
task-specific behavior after fine-tuning. For two
classification tasks, we find that reducing intrin-
sic bias with controlled interventions before fine-
tuning does little to mitigate the classifier’s dis-
criminatory behavior after fine-tuning. Regression
analysis suggests that downstream disparities are
better explained by biases in the fine-tuning dataset.
Still, pre-training plays a role: simple alterations to
co-occurrence rates in the fine-tuning dataset are
ineffective when the model has been pre-trained.
Our results encourage practitioners to focus more
on dataset quality and context-specific harms.

1 Introduction

Large language models (LLMs) and other mas-
sively pre-trained “foundation” models are power-
ful tools for task-specific machine learning (Bom-
masani et al., 2021). Models pre-trained by well-
resourced organizations can easily adapt to a wide
variety of downstream tasks in a process called fine-
tuning. But massive pre-training datasets and in-
creasingly homogeneous model design come with
well-known, immediate social risks beyond the fi-
nancial and environmental costs (Strubell et al.,
2019; Bender et al., 2021).

Transformer-based LLMs like BERT and GPT-
3 contain quantifiable intrinsic social biases en-
coded in their embedding spaces (Goldfarb-Tarrant
et al., 2021). These intrinsic biases are typically
associated with representational harms, including
stereotyping and denigration (Barocas et al., 2017;
Blodgett et al., 2020; Bender et al., 2021). Sepa-
rately, many studies document the extrinsic harms
of the downstream (fine-tuned & task-specific) ap-
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Figure 1: Full pre-training to fine-tuning pipeline, with
experimental interventions (green hexagons).

plications of fine-tuned LLMs, including discrimi-
natory medical diagnoses (Zhang et al., 2020), over-
reliance on binary gender for coreference resolu-
tion (Cao and Daumé, 2021), the re-inforcement
of traditional gender roles in part-of-speech tag-
ging (Garimella et al., 2019), toxic text generation
(Gehman et al., 2020), and censorship of inclu-
sive language and AAVE (Blodgett and O’Connor,
2017; Blodgett et al., 2018; Park et al., 2018; Sap
et al., 2019).

Despite these risks, no research has investigated
the extent to which downstream systems inherit
social biases from pre-trained models.! Many stud-

"'We use the term “bias” to refer to statistical associations
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ies warn that increasing intrinsic bias upstream
may lead to an increased risk of downstream harms
(Bolukbasi et al., 2016; Caliskan et al., 2017). This
hypothesis, which we call the Bias Transfer Hy-
pothesis, holds that stereotypes and other biased
associations in a pre-trained model are transferred
to post-fine-tuning downstream tasks, where they
can cause further, task-specific harms. A weaker
version of this hypothesis holds that downstream
harms are at least mostly determined by the pre-
trained model (Bommasani et al., 2021).

In the pre-training paradigm, the extent to which
the bias transfer hypothesis holds will determine
the most effective strategies for responsible design.
In the cases we study, reducing upstream bias does
little to change downstream behavior. Still, there is
hope: instead, developers can carefully curate the
fine-tuning dataset, checking for harms in context.

We test the bias transfer hypothesis on two classi-
fication tasks with previously demonstrated perfor-
mance disparities: occupation classification of on-
line biographies (De-Arteaga et al., 2019) and tox-
icity classification of Wikipedia Talks comments
(Dixon et al., 2018). We investigate whether re-
ducing or exacerbating intrinsic biases encoded by
RoBERTa (Liu et al., 2019) decreases or increases
the severity of downstream, extrinsic harms (Fig-
ure 1). We find that the bias transfer hypothesis
describes only part of the interplay between pre-
training biases and harms after fine-tuning:

* Systematically manipulating upstream bias has
little impact on downstream disparity, especially
for the most-harmed groups.

* With a regression analysis, we find that most
variation in downstream bias can be explained
by bias in the fine-tuning dataset (proxied by co-
occurrence rates).

* Altering associations in the fine-tuning dataset
can sometimes change downstream behavior, but
only when the model is not pre-trained.

Without absolving LLMs or their owners of repre-
sentational harms intrinsic to pre-trained models,
our results encourage practitioners and application
stakeholders to focus more on dataset quality and
context-specific harm identification and reduction.

that result in representational or allocational harms to histori-
cally marginalized social groups (Blodgett et al., 2020).

2 Related Work

Little prior work directly tests the bias transfer
hypothesis. The closest example of this phenom-
ena is the “blood diamond” effect (Birhane and
Prabhu, 2021), in which stereotyping and deni-
gration in the pre-training corpora pervade sub-
sequently generated images and language even
before the fine-tuning stage (Steed and Caliskan,
2021). Still, it is unclear to what extent unde-
sirable values encoded in pre-training datasets or
benchmarks—such as Wikipedia or ImageNet—
induce task-specific harms after fine-tuning (Baro-
cas et al., 2019).

Some work explores the consistency of intrin-
sic and extrinsic bias metrics: Goldfarb-Tarrant
et al. (2021) find that intrinsic and extrinsic met-
rics are not reliably correlated for static embed-
dings like word2vec. We focus instead on state-
of-the-art transformer-based LLMs—the subject
of intense ethical debate (Bender et al., 2021;
Bommasani et al., 2021)—which construct con-
textual, rather than static, embeddings. Contextual
embeddings—token encodings that are conditional
on other, nearby tokens—pose an ongoing chal-
lenge for intrinsic bias measurement (May et al.,
2019; Kurita et al., 2019; Guo and Caliskan, 2021)
and bias mitigation (Liang et al., 2020). We find
that intrinsic and extrinsic metrics are correlated for
the typical LLM—but that the correlation is mostly
explained by biases in the fine-tuning dataset.

Other research tests the possibility that upstream
mitigation could universally prevent downstream
harm. Jin et al. (2021) show that an intermedi-
ate, bias-mitigating fine-tuning step can help re-
duce bias in later tasks. Likewise, Solaiman and
Dennison (2021) propose fine-tuning on carefully
curated “values-targeted” datasets to reduce toxic
GPT-3 behavior. Our results tend to corroborate
these methods: we find that the fine-tuning process
can to some extent overwrite the biases present in
the original pre-trained model. A recent post-hoc
mitigation technique, on the other hand, debiases
contextual embeddings before fine-tuning (Liang
et al., 2020). Our results imply that while this type
of debiasing may help with representational harms
upstream, it is less successful for reducing harms
downstream.

3 Methods

To empirically evaluate the bias transfer hypothe-
sis, we examine the relationship between upstream
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bias and downstream bias for two tasks. We track
how this relationship changes under various con-
trolled interventions on the model weights or the
fine-tuning dataset.

3.1 Model

For each task, we fine-tune RoOBERTa? (Liu et al.,
2019). We split the fine-tuning dataset into train
(80%), evaluation (10%), and test (20%) partitions.
To fine-tune, we attach a sequence classification
head and train for 3 epochs.?

3.2 Occupation Classification

The goal of occupation classification is to predict
someone’s occupation from their online biogra-
phy. We fine-tune with the BIOS dataset scraped
from Common Crawl (De-Arteaga et al., 2019),
which includes over 400,000 online biographies
belonging to 28 common occupations. Since self-
identified gender was not collected, we will refer in-
stead to the pronouns used in each biography (each
biography uses either he/him or she/her pronouns).
Following De-Arteaga et al. (2019), we use the
“scrubbed” version of the dataset—in which all the
identifying pronouns have been removed—to mea-
sure just the effects of proxy words (e.g. “mother”)
and avoid overfitting on pronouns directly.

Downstream Bias.— Biographies with she/her
pronouns are less frequently classified as be-
longing to certain traditionally male-dominated
professions—such as “surgeon”—which could re-
sult in lower recruitment or callback rates for job
candidates if the classifier is used by an employer.
The empirical true positive rate (TPR) estimates
the likelihood that the classifier correctly identifies
a person’s occupation from their biography.

We follow previous work (De-Arteaga et al.,
2019) in measuring downstream bias via the empir-
ical true positive rate (TPR) gap between biogra-
phies using each set of pronouns. First, define

TPR%g:]P’DA/:y|G:g,Y:y],

where g is a set of pronouns and y is an occupa-
tion. Y and Y represent the true and predicted
occupation, respectively. Then the TPR bias (TPB)

1S
TPRy,she/her

TPB, = .
v TPRy he/him

ey

’roberta-base from HuggingFace (Wolf et al., 2020).
3See Appendix D for more details. Epochs and other
parameters were chosen to match prior work (Jin et al., 2021).

For example, the classifier correctly predicts “sur-
geon” for he/him biographies much more often
than for she/her biographies, so the TPR ratio for
the “surgeon” occupation is low (see Appendix A).

Upstream Bias.— We adapt Kurita et al. (2019)’s
pronoun ranking test to the 28 occupations in the
Bi10s dataset. Kaurita et al. (2019) measure the
encoded association of he/him and she/her pro-
nouns by the difference in log probability scores be-
tween pronouns appearing in templates of the form
{pronoun} is a(n) {occupation}. We
augment this approach with 5 career-related tem-
plates proposed by Bartl et al. (2020) (see Ap-
pendix A). Formally, given a template sequence
Xy,¢ filled in with occupation y and pronoun g,
we compute py 4, = P(x,4). As a baseline, we
also mask the occupation and compute the prior
probability 7, ; = P(x] ;). The pronoun ranking
bias (PRB) for this template is the difference in log
probabilities:

Py, she/her
Y —lo
Try,she/her

Dy,he/him
Ty,he/him

PRB, = log 2)

3.3 Toxicity Classification

For toxicity classification, we use the WIKI
dataset, which consists of just under 130,000 com-
ments from the online forum Wikipedia Talks
Pages (Dixon et al., 2018). The goal of the task is to
predict whether each comment is toxic. Each com-
ment has been labeled as toxic or non-toxic
by a human annotator, where a toxic comment is a
“rude, disrespectful, or unreasonable comment that
is likely to make you leave the discussion” (Dixon
et al., 2018). Following Dixon et al. (2018), we
focus on 50 terms referring to people of certain gen-
ders, races, ethnicities, sexualities, and religions.

Downstream (Extrinsic) Bias.— Mentions of cer-
tain identity groups—such as “queer”’—are more
likely to be flagged for toxic content, which could
result in certain communities being systematically
censored or left unprotected if an online plat-
form uses the classifier. The classifier’s empirical
false positive rate (FPR) estimates its likelihood
to falsely flag a non-toxic comment as toxic. The
FPR corresponds to the risk of censoring inclusive
speech or de-platforming individuals who often
mention marginalized groups.

Following Dixon et al. (2018), we express the
classifier’s bias against comments or commenters
harmlessly mentioning an identity term as the FPR
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bias (FPB).

P[T=0|1=4T=1]

FPB; = A
P[T=0|T=1]

N ©))

where ¢ is an identity term and 7" = 1 if the com-
ment was deemed toxic by a human annotator.

Upstream Bias.— Following Hutchinson et al.
(2020), we measure upstream bias via sentiment
associations. We construct a set of templates of the
form {identity} {person} is [MASK],
where identities are the identity terms from Dixon
etal. (2018) (e.g. “gay” or “Muslim”) and the per-
son phrases include “a person,” “my sibling,” and
other relations. We predict the top-20 likely tokens
for the “[MASK]” position (e.g., “awesome” or
“dangerous”). Using a pre-trained ROBERTA senti-
ment classifier trained on the TweetEval benchmark
(Barbieri et al., 2020), we then measure the average
negative sentiment score of the predicted tokens.
The model’s bias is the magnitude of negative asso-
ciation with each identity term.

RoBERTa sometimes suggests terms which refer
back to the target identity group. To mitigate this
effect, we drop any predicted tokens that match the
50 identity terms (e.g. “Latino”) from Dixon et al.
(2018), but we are likely missing other confound-
ing adjectives (e.g. “Spanish”). We suspect this
confounding is minimal: we achieve similar results
with an alternative ranking-based bias metric (see
Appendix C.2).

4 Experiments

We measure changes in upstream and downstream
bias subject to the following interventions (Fig. 1):

* No pre-training. To control for the effects of
pre-training, we test randomly initialized ver-
sions of both models that have not been pre-
trained. We average over 10 trials.

* Random perturbations. We instantiate a pre-
trained model and then add random noise e to
every weight in the embedding matrix. We try
both uniform noise u ~ Unif(—c¢, ¢) and Gaus-
sian noise z ~ N(0, 02), varying c and 0. The
final noise-added matrix is clipped so that its
range does not exceed that of the original matrix.

 Bias mitigation. We apply the SENTDEBIAS al-
gorithm to de-bias embeddings at the word-level
(Liang et al., 2020). SENTDEBIAS estimates a

bias subspace V with principal component anal-
ysis, then computes debiased word embeddings
h=nh- fyz?:l(h, v;)Vv; by subtracting the
projection of h onto V. We add the multiplier
~ to add or remove bias to various degrees—
standard SENTDEBIAS uses v = 1.0.

* Re-balancing and scrubbing. For B1os, we
re-balance the fine-tuning dataset by under-
sampling biographies with the prevalent pronoun
in each occupation. For WIKI, we randomly re-
move from the fine-tuning dataset o percent of
comments mentioning each identity term.

4.1 Upstream variations have little impact on
downstream bias.

Our goal is to test the bias transfer hypothe-
sis, which holds that upstream bias is transferred
through fine-tuning to downstream models. By
this view, we would expect changes to the pre-
trained model to also change the distribution of
downstream bias—but we find that for both tasks,
downstream bias is largely invariant to upstream
interventions. Figure 2 summarizes the similarity
of biases before and after each randomized event.
Though randomizing the model weights signifi-
cantly reduces the mean and variance of upstream
bias, the distribution of downstream bias changes
very little.* For example, RoBERTa exhibits the
same disparities in performance after fine-tuning re-
gardless of whether the base model was pre-trained.

Likewise, although the SENTDEBIAS mitigation
method reduces pronoun ranking (upstream) bias as
intended, we detect roughly the same downstream
biases no matter the level of mitigation applied
(Figure 3). For example, in the BIOS task, surgeons
with he/him pronouns are still 1.3 times more likely
to have their biographies correctly classified than
their she/her counterparts.

There is one notable exception to this trend: for
the WIKI task, adding noise (uniform or Gaussian)
to the pre-trained model’s embedding matrix or
not pre-training the model yields a modest reduc-
tion in median bias (Figure 2). As upstream bias
shifts towards zero, downstream bias also moves
marginally towards zero. Still, the largest biases
(e.g., against the term “gay’”) do not decrease and
may even increase after randomization.

4See Appendix B.2 for a full set of correlation tests.
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Figure 2: Bias per occupation after randomized interventions, averaged over 10 trials. Despite drastic changes to
the distribution of upstream bias (left), downstream bias remains roughly stable (right). For example, upstream
bias with pre-training (purple) is not correlated with upstream bias without pre-training. But downstream bias is
partially correlated with the control (Pearson’s correlation coefficient pgios = 0.93 and pwix; = 0.64, p < 0.01).

4.2 Most downstream bias is explained by the
fine-tuning step.

Though the results in the preceding section suggest
that there is no clear or consistent correspondence
between changes in upstream bias and changes
in downstream bias, there is still a noticeable
correlation between baseline upstream and down-
stream bias (Pearson’s p = 0.43, p = 0.022 for
B1os, p = 0.59, p < 1075 for WIKI—see Ap-
pendix A). There is an important third variable
that helps explain this correlation: cultural arti-
facts ingrained in both the pre-training and fine-
tuning datasets.” RoBERTa learns these artifacts
through co-occurrences and other associations be-
tween words in both sets of corpora.

To test this explanation, we conduct a simple
regression analysis across interventions (Figure 1)

SFor example, cultural biases about which pronouns be-
long in which occupations are likely to pervade both the pre-
training dataset (e.g., Wikipedia) and the fine-tuning dataset
(internet biographies).

and evaluation templates. We estimate

log TPBm,y = 50 +ﬂ1PRBm,y,s +/627Ty + fs +Cm-

“)
for model treatment m, occupation y, and pronoun
ranking template s. TPB is the TPR bias (down-
stream bias) from Eq. 1; PRB is the pronoun rank-
ing bias (upstream bias) from Eq. 2; f, and ¢,
are dummy variables (for ordinary least squares)
or fixed effects to capture heterogeneous effects
between templates and models (such as variations
in overall embedding quality). We control for sta-
tistical “dataset bias” with 7, the prevalence of
“she/her” biographies within each occupation y in
the fine-tuning data.

We find that the “dataset bias” in the fine-tuning
stage explains most of the correlation between up-
stream and downstream bias. Under the strong bias
transfer hypothesis, we would expect the coeffi-
cient on upstream bias (31 to be statistically signifi-
cant and greater in magnitude than the coefficient
B2 on our proxy for dataset bias. But for both tasks,
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Figure 3: Log TPR bias per occupation after scaled
SENTDEBIAS on the B10OS task. Mitigation signifi-
cantly reduces pronoun ranking (upstream) bias com-
pared to base RoOBERTa (top); but even when upstream
bias decreases, the TPR ratio (downstream bias) re-
mains mostly constant (bottom). The distribution of
downstream bias without any mitigation is almost per-
fectly correlated with the distribution at v = 50 (Pear-
son’s p = 0.96, p < 0.01).

the opposite is true: fine-tuning dataset bias has a
larger effect than upstream bias. Figure 4 reports
the coefficient estimates for these two variables.
(See Appendix C.1 for all estimates, standard er-
rors, assumptions and additional specifications.)

In the B10OS task, a large decrease in upstream
bias corresponds to a small but statistically signifi-
cant increase in downstream bias. On average, a re-
duction of 0.3 to the log likelihood gap—equivalent
to the reduction in bias towards nurses after up-
stream mitigation—corresponds to a 0.5% increase
in the TPR ratio. Almost all the downstream bias in
the B10S task is explained by dataset bias instead:
a 10% increase in the prevalence of she/her pro-
nouns within an occupation corresponds to a much
larger 6.5% increase in the TPR ratio.

In the WIKT task, upstream bias has a more no-
ticeable effect—but the effect of dataset bias is
still much larger. The regression takes the same
form as Eq. 4, where downstream bias is FPR bias
(Eq. 3), upstream bias is negative sentiment, and
m; is the proportion of toxic mentions of identity
i. We additionally control for the prevalence of

each identity term and the average length of toxic
mentions of each identity term—Ilonger comments
are less likely to result in erroneous screening (Ap-
pendix C.1).

As in the previous regression, dataset bias ex-
plains more of the variation in downstream bias
than does upstream bias. On average, a large in-
crease in average negative sentiment against a given
identity term (e.g. 0.1, one standard deviation) cor-
responds to only a modest 3.7% increase in FPR. In
comparison, only a 10% increase in the prevalence
of toxic mentions of an identity corresponds to an
even larger 6.3% increase in FPR.

We also check that intrinsic downstream bias
also changes due to fine-tuning. We measure in-
trinsic bias again after fine-tuning and regress on
downstream intrinsic bias instead of downstream
extrinsic bias (Eq. 4). The results are consistent: af-
ter controlling for the overall increase in log likeli-
hood, the effect of upstream intrinsic bias on down-
stream intrinsic bias is explained almost entirely by
fine-tuning dataset bias (Appendix C.1).

4.3 Re-sampling and re-scrubbing has little
effect on downstream behavior.

Given the strong relation between our proxies for
dataset bias and downstream bias, we test whether
manipulating these proxies admits some control
over downstream bias. For example, were the fine-
tuning dataset to include exactly as many she/her
nurse biographies as he/him, would the model still
exhibit biased performance on that occupation?

Our findings suggest not. No matter the amount
of re-sampling, downstream bias remains rela-
tively stable for pre-trained RoOBERTa. The dis-
tributions of downstream bias with and without
re-balancing are almost perfectly correlated (Pear-
son’s p = 0.94, p < 0.01—see Appendix B.1).
Though co-occurrence statistics help to explain
downstream bias, they are still only proxies for
dataset bias. Directly altering these statistics via
re-sampling the dataset does not alter the sentence-
level context in which the words are used.

Based on this result, we also try completely re-
moving mentions of identity terms. Scrubbing men-
tions of identity terms—in all comments or only in
toxic comments—appears to reduce bias only when
the model is not pre-trained and all mentions of the
term are scrubbed (Figure 5). For a pre-trained
model trained on scrubbed data, a 10% decrease in
mentions of an identity term corresponds to a 7.2%
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Figure 4: Effect of upstream bias vs. fine-tuning dataset bias on downstream bias, controlling for model & tem-
plate fixed effects. Bars depict heteroskedasticity-consistent standard errors. Statistically insignificant (p < 0.01)
coefficients are hollow. For both tasks, reduction in fine-tuning dataset bias corresponds to a greater alteration to
downstream bias than an equivalent reduction (accounting for scale) in upstream bias.

decrease in FPR. We speculate that ROBERTa re-
lies on its high quality feature embeddings to learn
proxy biases about identity terms based on the way
they are used in the pre-training corpora. For ex-
ample, our model classifies a sequence containing
only the term “gay” as toxic without any context.
If a term like “gay” is often used pejoratively on
the web, RoBERTa is likely to infer that sentences
including “gay” are toxic even if the term never
appears in the fine-tuning dataset.

But when the upstream model is not pre-trained,
the fine-tuned model has no such prejudices. In this
case, removing all mentions of identity results in a
distribution of bias entirely uncorrelated with the
control (Pearson’s p = 0.09, p > 0.1). Notably,
though, even a small number of mentions of an
identity term like “gay” in the fine-tuning dataset
are enough for a randomly initialized model to
exhibit the same biases as the pre-trained model
(Figure 5).

5 Limitations

Our approach comes with several limitations.
First, our results may not generalize to all tasks—
especially non-classification tasks—or all kinds of
bias (e.g., bias against AAVE or non-English speak-
ers). Also, while similar studies of bias have been
successfully applied to vision transformers (Steed
and Caliskan, 2021; Srinivasan and Uchino, 2021),
our results may vary for substrates other than En-
glish language.

Second, Goldfarb-Tarrant et al. (2021) conclude
that the lack of correlation between intrinsic bias
indicators and downstream bias is because some
embedding bias metrics are unsuitable for mea-
suring model bias. To ensure our intrinsic and
extrinsic metrics measure the same construct, we
chose upstream indicators that correlate with real-
world occupation statistics (Caliskan et al., 2017;
Kurita et al., 2019). Pronoun ranking in particular
may be more reliable for transformer models than
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Figure 5: FPR gap (downstream bias) after scrubbing
toxic mentions of identity terms from the WIKI fine-
tuning dataset. A combination of scrubbing and not
pre-training (orange) results in a zero-mean, noticeably
re-ordered bias distribution. Scrubbing but still pre-
training (purple) results in a bias distribution that is still
correlated with the original bias distribution (Pearson’s
p = 0.99, 0.93 for toxic and all respectively, p < 0.01).

other metrics (Silva et al., 2021). Still, downstream,
annotator prejudices and other label biases could
skew our extrinsic bias metrics as well (Davani
et al., 2021).

Third, there may be other explanations for the re-
lationship between upstream and downstream bias:
for example, decreasing the magnitude of upstream
bias often requires a reduction in model accuracy,
though we attempt to control for between-model
variation with fixed effects and other controls. Al-
ternate regression specifications included in Ap-
pendix C.1 show how our results change with the
inclusion of controls.

6 Conclusion

Our results offer several points of guidance to or-
ganizations training and distributing LLMs and the
practitioners applying them:

* Attenuating downstream bias via upstream
interventions—including embedding-space bias
mitigation—is mostly futile in the cases we study
and may be fruitless in similar settings.

* For a typical pre-trained model trained for the
tasks we study, the fine-tuning dataset plays a
much larger role than upstream bias in determin-
ing downstream harms.

« Still, simply modulating co-occurrence statistics
(e.g., by scrubbing harmful mentions of certain
identities) is not sufficient. Task framing, de-
sign, and data quality are also very important for
preventing harm.

* If a model is pre-trained, it may be more resis-
tant to scrubbing, re-balancing, and other simple
modulations of the fine-tuning dataset.

But, our results also corroborate a nascent, some-
what optimistic view of pre-training bias. LLMs’
intrinsic biases are harmful even before down-
stream applications, and correcting those biases
is not guaranteed to prevent downstream harms. In-
creased emphasis on the role of fine-tuning dataset
bias offers an opportunity for practitioners to shift
to more careful, quality-focused and context-aware
approach to NLP applications (Zhu et al., 2018;
Scheuerman et al., 2021).

Ethical Considerations

This study navigates several difficult ethical issues
in NLP ethics research. First, unlike prior work,
we do not claim to measure gender biases—only
biases related to someone’s choice of personal pro-
nouns. However, our dataset is limited to the En-
glish “he/him” and “she/her,” so our results do
not capture biases against other pronouns. Our
study is also very Western-centric: we study only
English models/datasets and test for biases con-
sidered normatively pressing in Western research.
Second, our training data (including pre-training
datasets), was almost entirely scraped from inter-
net users without compensation or explicit consent.
To avoid exploiting these users further, we only
used already-scraped data and replicated already-
existing classifiers, and we do not release these
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data or classifiers publicly. Finally, the models we
trained exhibit toxic, offensive behavior. These
models and datasets are intended only for studying
bias and simulating harms and, as our results show,
should not be deployed or applied to any other data
except for this purpose.
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A Descriptive Statistics

B10S.— Biographies include the 28-most frequent
occupations according to the BLS Standard Occu-
pation Classification system.® See Figure 6 for a
full list of occupations and the prevalence of each
set of pronouns.
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Figure 6: Frequency of occupations in BIOS dataset.

Upstream bias (measured with pronoun rank-
ing) is depicted in Figure 7. Table 1 Gives the
full list of templates used for testing. Traditionally
female occupations (e.g., “nurse”) are generally bi-
ased towards “she/her,” with some exceptions (e.g.,
“software engineer”’). Downstream bias is similarly
distributed—Figure 9 depicts the relationship be-
tween upstream and downstream bias, which is
generally linear (Pearson’s p = 0.43, p < 0.05).
There are noticeable outliers (e.g., “surgeon”) for
which real-world harms could be especially acute.

WIKI.— Identity terms occur relatively infre-
quently in the dataset and some terms appear in
toxic comments more often than others. See Fig-
ure § for a full list of identity terms tested and their
prevalence in toxic and non-toxic comments.

Upstream and downstream bias have an even
stronger relationship for WIKI than for BIOS (p =
0.59, p < 0.01). The terms “homosexual” and
“gay” have especially high biases both upstream and
downstream, likely because of their use as common
pejoratives on certain internet spaces represented
in the pre-training and fine-tuning datasets.

B Additional Results

B.1 Partial Interventions

This section gives the full results for each par-
tial intervention (e.g., scrubbing only half of the

®https://wuw.bls.gov/soc/
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Figure 7: Distribution of pronoun ranking (upstream)
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Figure 8: Frequency of comments mentioning each
identity term in the WIKI dataset.

toxic mentions, rather than all of them). Figure 10
shows downstream bias at each level of pronoun
re-balancing. To measure the effects of different
levels of gender balance, we either randomly over-
sample the minority group to close « percent of the
gap between the majority and minority pronouns,
randomly under-sample the majority group to close
B percent of the gap, or some combination of both.

Figure 11 shows the full set of partial scrub-
bing interventions tested - notably, there is a slight
convergence to zero in downstream bias when the
model is not pre-trained.

B.2 Correlation Tests

To quantify the effect of our experimental inter-
ventions on upstream and downstream bias, we
compared the distribution of bias after each in-
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Bias Template Targets Source
Occupation-Pronoun [TARGET] is a(n) [OCCUPATION] he, she (Kurita et al., 2019)
Occupation-Pronoun [TARGET] works as a(n) [OCCUPA- he, she (Bartl et al., 2020)
TION]
Occupation-Pronoun [TARGET] wants to become a(n) [OC- he, she (Bartl et al., 2020)
CUPATION]
Occupation-Pronoun [TARGET] applied for the position of he, she (Bartl et al., 2020)
[OCCUPATION]
Identity-Sentiment [IDENTITY] [TARGET] are [MASK] people (Dixon et al., 2018)
Identity-Sentiment [IDENTITY] [TARGET] is [MASK] my sibling  (Dixon et al., 2018)
my friend
my parent
my partner
my spouse

Table 1: Templates used for bias measurement.

Upstream vs. Downstream Bias (p = 0.43, p =0.022)
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Figure 9: Correlation between upstream and down-
stream bias across occupations (BIOS) and identity
terms (WIKI). p is the Pearson correlation coefficient.

tervention to the distribution of bias after an un-
modified pre-trained model. We tested for statis-
tical correlation between these two distributions
with both Pearson’s correlation coefficient p and
Kendall’s correlation coefficient 7. For Pearson’s,
we assume that the two distributions are approx-
imately normally distributed. This assumptions
seems reasonable because our samples are not too

—_—— . —«—=Nurse
0.00

Downstream Bias
(TPR ratio: she/her — he/him)

-025 —DJ

Surgeon
0O 10 20 30 40 50 60 70 80 90 100
% pronoun gap reduced w/ undersampling

Figure 10: TPR gap (downstream bias) after balanc-
ing pronouns within each occupation of the BIOS fine-
tuning dataset. As shown, balancing pronoun preva-
lence has little effect on downstream bias.

small (N = 28 and N = 50 for B10S and WIKI,
respectively), but a Shapiro-Wilk test of normality
shows that downstream bias for both tasks is likely
non-normal (W = 0.81 and W = 0.67 for TPR
ratio and FPR ratio respectively, p < 0.01). So,
we also compute Kendall’s correlation coefficient
7, which is a nonparametric test of ordinal asso-
ciation. The results are similar in magnitude and
significance (Table 2).

C Full Regression Results

Tables 3 and 4 report the full set of coeffi-
cient estimates used to generate Figure 4 and
the effects described in the paper. We use HC3
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Figure 11: FPR gap (downstream bias) after scrubbing toxic mentions of identity terms from the WIKI fine-tuning

dataset.

heteroskedasticity-consistent standard errors.” The
Variance Inflation Factor (VIF) for the covariates
are all less than 2.5 for an unmodified pre-trained
model for both tasks (a sign that multicollinearity
may not be too severe).

The fixed effects regression requires a few as-
sumptions for unbiased, normally-converging esti-
mates. First, we assume that the error is uncorre-
lated with every covariate (i.e., there are no omitted
variables; we discuss this possibility in the limita-
tions section). Second, we assume that the sam-
ples are independent and identically distributed (in-
dependence is assured by our experimental setup,
which varies one factor at a time). Third, we as-
sume that large outliers are unlikely (evident from
the distribution plots presented).

C.1 Additional Specifications

We tested several regression specifications on just
the unmodified, pre-trained model (Tables 5 and 6).
For B10S, note that the direct and indirect (after
controlling for dataset bias) effects of upstream
bias on downstream bias have opposite signs. The
change is the effect of including dataset bias, a col-
inear confounder, in the regression. Confounders

"For a simple OLS specification on WIKI, the Breusch-
Pagan test rejects the hypothesis that our errors are ho-
moskedastic with BP = 27.039, p < 1073, For BIOS,
the hypothesis is not rejected (BP = 5.033, p = 0.41).

can be interpreted as “explaining” the relationship
between the independent (upstream) and dependent
(downstream) variables (MacKinnon et al., 2000).

To test whether the effect observed is mediated
by a change in the model’s weights, also include
an estimate of the effect of upstream intrinsic bias
(e.g., from pronoun ranking) on downstream intrin-
sic bias (intrinsic bias, measured after fine-tuning).
We control for the overall increase in log likelihood
by including in the regression the difference in log
likelihood of the neutral pronouns “they/them” be-
fore and after fine-tuning. We find that a similar
relationship holds between upstream bias and in-
trinsic bias downstream as holds between upstream
bias and extrinsic bias downstream, suggesting that
the model’s internal representations change in con-
cert with its downstream behavior.

C.2 Identity Ranking - Robustness Check

Because of the limitations of the sentiment-based
approach, we check the robustness of our results
with an identity ranking approach based on pro-
noun ranking. Included in the Dixon et al. (2018)
study of toxicity classification bias is an extensive
evaluation set composed of 89,000 templates such
as “[IDENTITY] is [ATTRIBUTE],” where the
attributes include both positive (for non-toxic ex-
amples) and extremely negative words (for toxic
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Upstream Bias

Downstream Bias

Intervention Pearson’s p Kendall’s 7 Pearson’s p Kendall’s 7
B1os Pronoun ranking TPR ratio
Not pre-trained -0.08 0.04 0.93%** 0.74***
Uniform noise 0.90*** 0.62*** 0.67*** 0.60***
Gaussian noise 0.29 0.09 0.90*** 0.56**
SENTDEBIAS (7 = 50) 0.87*** 0.61*** 0.96%** 0.77**
Dataset re-balancing (8 = 1.0) 0.94*** 0.85%**
WIKI Negative sentiment FPR ratio
Not pre-trained -0.21 -0.14 0.64*** 0.39***
Uniform noise 0.56*** 0.37*** 0.91*** 0.56™**
Gaussian noise 0.36™** 0.24** 0.78*** 0.45%*
Scrubbing toxic mentions 0.99*** 0.85***
Scrubbing all mentions 0.93*** 0.77**
Scrubbing toxic mentions, not pre-trained 0.30** 0.21** -0.11 -0.07
Scrubbing all mentions, not pre-trained 0.30** 0.21* 0.09 0.10

Note: *p<0.1; **p<0.05; ***p<0.01

Table 2: Correlation between bias distributions before and after each intervention. Statistically insignificant cor-
relation coefficients indicate bias has changed drastically (red). Notably, downstream bias is correlated with the
control to some extent for every intervention except for scrubbing and not pre-training. Pearson’s correlation coeffi-
cient p measure of correlation strength and direction; Kendall’s 7 is a measure of ordinal correlation. Randomized
interventions (e.g., not pre-training, adding noise) tend to re-order the bias distribution more than others, indicated

by a lower 7.

Table 3: Effect of upstream on downstream bias for pre-trained RoOBERTa on the B10S task. Panel linear models
include model fixed effects.

Dependent variable:

Log TPR ratio (downstream bias)

OLS panel
linear
Pre-trained Mitigated Noise added Random Balanced All pre-trained
00} )] 3) ) ®) ©6)
Likelihood gap (upstream bias) —0.068*** —0.058"*** —0.063* —0.013 —0.016** —0.018***
(0.018) (0.005) (0.038) (0.011) (0.007) (0.007)
Prevalance of she/her 0.485*** 0.458*** 0.534+** 0.739*** 0.820"** 0.633***
(0.043) 0.011) (0.016) (0.048) (0.036) (0.027)
Constant —0.090***
(0.029)
Template Dummies? Yes Yes Yes Yes Yes Yes
Observations 140 1,820 1,400 2,940 1,400 6,020
R? 0.500 0.489 0.438 0.075 0.297 0.085
Adjusted R? 0.477 0.484 0.432 0.067 0.289 0.078
Residual Std. Error 0.109 (df = 133)
F Statistic 22.149*** (df = 6; 133)  287.282*** (df = 6; 1801)  179.585"** (df = 6; 1384)  39.276*** (df = 6;2913)  97.257*** (df = 6; 1384)  92.307*** (df = 6; 5971)

Note:
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*p<0.1; **p<0.05; **p<0.01



Table 4: Effect of upstream on downstream bias for pre-trained RoBERTa on the WIKI task.

include model fixed effects.

Panel linear models

Dependent variable:

FPR
OLS panel
linear
Pre-trained Noise added Random Scrubbed All pre-trained
@ (&) 3) [C) )
Avg. negative sentiment (upstream bias) 0.591*** 0.255%** 0.029 0.571%* 0.376***
0.107) 0.027) (0.084) (0.025) (0.017)
Prevalance of toxic mentions 0.650*** 0.556*** 0.425% 0.716% 0.626***
(0.068) 0.013) (0.015) (0.018) (0.011)
Prevalance of identity term —5.024 1.575* 6.526"* —7.274 —1.231*
(3.740) (0.708) (0.815) (1.086) (0.612)
Avg. length of toxic mentions —0.373*+*
0.077)
Template Dummies? Yes Yes Yes Yes Yes
Observations 315 6,615 3,150 5,901 12,516
R? 0.296 0.225 0.210 0.283 0.241
Adjusted R? 0.276 0.221 0.206 0.279 0.238

Residual Std. Error
F Statistic

0.221 (df = 305)

14.283*** (df = 9; 305)

211.998** (df = 9; 6585)

92,711 (df = 9; 3131)

257.043"** (df = 9; 5873)

439,225 (df = 9; 12467)

Note:

Table 5:

*p<0.1; *p<0.05; ***p<0.01

Effect of upstream on downstream bias for pre-trained RoBERTa on the B10S task.

Dependent variable:

TPR ratio (downstream bias)

OLS

Likelihood gap after fine-tuning (intermediate bias)

panel panel
linear linear
@ 2) 3 @) ®)
Likelihood gap (upstream bias) 0043 0.068** 0043 0068 0046
(0.021) 0.018) 0.021) 0.018) (0.575)
Prevalance of she/her 0485+ 0485+ 10.311%+
(0.043) (0.043) (1.424)
Difference in they/them log likelihood before and after pre-training 0.206*
(0.086)
Constant —0.01 —0.090***
(0.039) 0.029)
Template dummies? Yes Yes No No No
Observations 140 140 140 140 140
R? 0.031 0.500 0.031 0.500 0366
Adjusted R? —0.005 0477 ~0.005 0477 0332

Residual Std. Error
F Statistic

0.151 (df = 134)
0.856 (df = 5; 134)

0.109 (df = 133)

22149 (df = 6; 133)

4279" (df = 1; 134)

66.447°** (df = 2; 133)

25.386"* (df = 3; 132)

Note:

“p<0.1; **p<0.05; “**p<0.01

Table 6: Effect of upstream on downstream bias for pre-trained ROBERTa on the WIKI task.

Dependent variable:

FPR Avg. negative sentiment after fine-tuning (intermediate bias)
oLs panel panel
linear linear
(€] @) ®) @ ) (©)
Avg. negative sentiment (upstream bias) 05697 05687 05867 05697 05917 ~0.004
(0.110) (0.106) (0.108) (0.110) (0.107) 0.014)
Prevalance of toxic mentions 0.657" 0.654" 0650 —0.020*
(0.068) (0.070) (0.068) (0.009)
Prevalance of identity term —4.973 —5.024 0.656
(3.749) (3.740) (0.481)
Avg. length of toxic mentions 0.00001
(0.00002)
Constant —0.281"* —0.371"* —0.375"*
0.079) 0.077) 0.078)
Template Dummies? Yes Yes Yes No No No
Observations 350 315 315 350 315 315
R? 0073 0292 0297 0073 0296 0.024
Adjusted R? 0.054 0274 0274 0.054 0276 ~0.004

Residual Std. Error
F Statistic

0.240 (df = 342)
3.820° (df =7:342)

0.221 (df = 306)
15,801 (df = 8; 306)

0.221 (df = 304)
12.826** (df = 10; 304)

26.802*" (df = 1: 342)

42.848"** (df = 3; 305)

2.551* (df = 3; 305)

Note:
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*p<0.1; **p<0.05; **p<0.01



examples). Templates of other forms are not in-
cluded to reduce computation time.® For each of
these templates, we mask the identity term and
compute the log probability score as described in
§3.2. The model’s bias is described by the differ-
ence between the average log probability scores for
the toxic templates and the non-toxic templates for
each identity term.

For the regressions (Tables 7 and 8), the tem-
plates are not paired, so we average first across
toxic and non-toxic templates, then calculate the
ratio between the two. The relative size and statisti-
cal significance of the coefficients are the same as
for the negative sentiment approach, suggesting the
negative sentiment metric is robust for our purposes
despite its limitations.

D Replication

We provide our full results (upstream and down-
stream bias for every intervention, for each task)
and the scripts used to analyse them. We are not
allowed to release the source code used to train
our models and measure bias, but we include addi-
tional details on our implementation to help others
understand and replicate our results.

* Our code for the pronoun ranking tests is
adapted from Zhang et al. (2020)’s implemen-
tation available at https://github.com/
MLforHealth/HurtfulWords.

* Our code for SENTDEBIAS is adapted from the
original authors’ (Liang et al., 2020), available
at https://github.com/pliang279/
sent_debias.

* Epochs and other parameters were chosen
to match prior work on the same tasks (Jin
et al.,, 2021). We train with 5 epochs, batch
sizes 16 and 64 for training and evaluation
respectively, and a learning rate of 5de —
6.  Otherwise, we use the default hyper-
parameters for roberta-base (https://
huggingface.co/roberta-base).

* Code for scraping the BIOS dataset is pro-
vided by the original authors at https:
//github.com/microsoft/biosbias.
The WIKI dataset is available at https:

8 A full list of these templates can be found in (Dixon et al.,
2018) or https://github.com/conversationai/
unintended-ml-bias—-analysis.
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//github.com/conversationai/
unintended-ml-bias-analysis.

Fine-tuning a single model for either task takes
from 4-6 hours on single NVIDIA Tesla V100
16GB GPU. Our results include approximately
60 model permutations for a total of 240-360
GPU hours. roberta-base has 125M param-
eters, but we did not pre-train any models from
scratch.



Table 7: Effect of upstream on downstream bias for pre-trained RoOBERTa on the WIKI task.

Dependent variable:

FPR
@ &) 3
Avg. log likelihood ratio (upstream bias) 0.399** 0.292 0.286
(0.192) (0.176) (0.187)
Prevalance of toxic mentions 0.624*** 0.628***
(0.180) (0.186)
Prevalance of identity term 0.00001
(0.0001)
Avg. length of toxic mentions 0.096*** 0.008 0.004
(0.034) (0.040) (0.058)
Observations 50 50 50
R? 0.083 0.269 0.269
Adjusted R? 0.064 0.238 0.222

Residual Std. Error

F Statistic

0.241 (df = 48)
4.345%* (df = 1; 48)

0.217 (df = 47)

8.649*** (df = 2; 47)

0.220 (df = 46)
5.648** (df = 3; 46)

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 8: Effect of upstream on downstream bias for pre-trained RoOBERTa on the WIKI task.

Dependent variable:

FPR ratio (downstream bias)

OLS panel
linear
Pre-trained Noise added Random Scrubbed All pre-trained
@ 2 3) [©) ®)
Avg. log likelihood ratio (upstream bias) 0.292 0.073** 0.165 0.301*** 0.184***
(0.176) (0.032) (0.167) (0.039) (0.022)
Prevalance of toxic mentions 0.624** 0.558*** 0.421% 0.688** 0.536™*
(0.180) (0.034) (0.039) (0.046) (0.021)
Prevalance of identity term 2.611 —1.074 2.682**
(1.777) (2.700) (1.177)
Constant 0.008
(0.040)
Observations 50 1,050 500 1,000 3,050
R? 0.269 0.216 0.196 0.247 0.200
Adjusted R? 0.238 0.198 0.178 0.230 0.183

Residual Std. Error
F Statistic

0.217 (df =47)
8.649%* (df =2; 47)

94.264™* (df = 3; 1026)

59.616™* (df = 2; 488)

106.960"** (df = 3; 977)

248.602** (df = 3; 2986)

Note:
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*p<0.1; **p<0.05; ***p<0.01



