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Abstract
Semantic parsing is the task of producing
structured meaning representations for natu-
ral language sentences. Recent research has
pointed out that the commonly-used sequence-
to-sequence (seq2seq) semantic parsers strug-
gle to generalize systematically, i.e. to han-
dle examples that require recombining known
knowledge in novel settings. In this work,
we show that better systematic generalization
can be achieved by producing the meaning
representation directly as a graph and not as
a sequence. To this end we propose LAGr
(Label Aligned Graphs), a general framework
to produce semantic parses by independently
predicting node and edge labels for a com-
plete multi-layer input-aligned graph. The
strongly-supervised LAGr algorithm requires
aligned graphs as inputs, whereas weakly-
supervised LAGr infers alignments for orig-
inally unaligned target graphs using approxi-
mate maximum-a-posteriori inference. Exper-
iments demonstrate that LAGr achieves signif-
icant improvements in systematic generaliza-
tion upon the baseline seq2seq parsers in both
strongly- and weakly-supervised settings.

1 Introduction

Recent research has shown that neural models
struggle to systematically generalize to examples
with unseen combinations of seen rules from the
training set (Lake and Baroni, 2018; Finegan-
Dollak et al., 2018; Hupkes et al., 2019). System-
atic generalization is especially important for the
task of semantic parsing, which requires models to
translate natural language sentences to structured
meaning representations (MRs), such as SPARQL
database queries or lambda calculus logical forms.
To generalize systematically in this task, the model
must be capable of producing MRs for examples
that feature new combinations of meaning construc-
tion rules, such as the rule that maps a noun like
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Training example
A hedgehog ate the cake
∗hedgehog(x1) ∧ cake(x4)∧
eat.agent(x2, x1) ∧ eat.theme(x2, x4)
Generalization example
The baby liked the hedgehog
∗baby(x1) ∧ hedgehog(x4)∧
like.agent(x2, x1) ∧ like.theme(x2, x4))

Figure 1: Examples from the training and the gener-
alization sets of the COGS dataset (Kim and Linzen,
2020b). While “hedgehog” is only observed in the
agent role during training, the generalization set fea-
tures this word in the theme role.

“hedgehog” in Figure 1 to its respective predicate
hedgehog(.), and the rule that defines which se-
mantic role with respect to the verb (e.g. agent or
theme) the resulting predicate takes. Using syn-
thetic (Bahdanau et al., 2019; Kim and Linzen,
2020a; Keysers et al., 2020) and natural bench-
marks (Finegan-Dollak et al., 2018; Shaw et al.,
2020), researchers have been studying systematic
generalization of existing semantic parsing meth-
ods as well as proposing new approaches such as
using meta-learning (Conklin et al., 2021), pre-
trained models (Furrer et al., 2020), or intermediate
meaning representations (Herzig et al., 2021).

The dominant framework in these studies is
sequence-to-sequence (seq2seq, Sutskever et al.,
2014; Bahdanau et al., 2015) learning, whereby
the model produces a serialized MR in an autore-
gressive fashion, by predicting one token at a time,
while conditioning on all previously generated to-
kens. We hypothesize that for semantic parsing
constructing the MR by combining independent
predictions that are not conditioned on each other
can generalize more systematically than seq2seq.
For example, consider the sentence “The dog liked
that the hippo danced”. Arguably, the predictions
that “dog” is the agent of “like” and that “hippo” is
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the agent of “danced” can be made independently
of each other. Our intuition is that a model that
predicts such aspects of meaning independently
of each other can be better at learning context-
insensitive rules because the overall context for
each individual prediction is reduced.

Following this intuition, we propose LAGr
(Label Aligned Graphs), a framework to produce
semantic parses by independently labelling the
nodes and edges of a fully-connected multi-layer
output graph that is aligned with the input utter-
ance. While the general idea of predicting seman-
tic parses as graphs is not new (Lyu and Titov,
2018), the systematic generalization benefits of do-
ing so have not been investigated prior to this work.
Importantly, LAGr retains most of the flexibility
that seq2seq models have, without the complexity
and rigidity that comes with other alternatives to
seq2seq, such as grammar-based methods (Herzig
and Berant, 2020).

We first introduce LAGr in the strongly-
supervised setting where output graphs are aligned
to the input sequences, thus allowing for standard
supervised training. For the weakly-supervised
case when the alignment is not available, we treat
it as a latent variable. We infer the latent alingment
with a simple and novel approximate maximum-
a-posteriori (MAP) inference approach which in-
volves solving several minimum cost bipartite
matching problems with the Hungarian algorithm
(Kuhn, 1955a). We then use the resulting aligned
graphs to train the model. Our experiments demon-
strate that in both strongly- and weakly-supervised
settings LAGr significantly improves upon compa-
rable seq2seq semantic parsers on the COGS and
CFQ datasets (Kim and Linzen, 2020a; Keysers
et al., 2020).

2 Semantic Parsing by Labeling Aligned
Graphs

We present LAGr (Label Aligned Graphs), a
framework for constructing meaning representa-
tions (MR) directly as graphs (i.e., MR graphs).
When LAGr is used to output logical forms, the
graph nodes can be variables, entities, categories
and predicates, and graph edges can be the Neo-
Davidsonian style semantic role relations that the
nodes appear in, e.g. “is-agent-of” or “is-theme-
of” (Parsons, 1990). While this work focuses on
predicting logical forms, LAGr can, in principle,
also be used to output other kinds of graphs, such

as abstract syntax tree parses of SQL queries. As
illustrated in Figure 2, LAGr predicts the output by
labeling the nodes and edges of a fully-connected
multi-layer output graph that is aligned with the
input utterance. We label a multi-layer as opposed
to a single-layer graph because some MR graphs
have more nodes than the number of input tokens
(see Section 4.2 for an example).

Notation and Terminology Formally, let x =
x1, x2, ..., xN denote a natural language utterance
of N tokens. LAGr produces an MR graph G by
labeling the nodes and edges of a complete graph
Γa with M = L · N nodes that are arranged in
L layers. The layers are aligned with the input
sequence x in a way that for each input position i
there is a unique corresponding output node in each
layer. We say that nodes from different layers that
are aligned with the position i form a column (an
example column in Figure 2b contains the nodes
labeled as actor and ?x0 for the word star at the
position i = 3).

We write Γa = (z, ξ) to indicate that a complete
labeled graph Γa is characterized by its node la-
bels z ∈ VM

n and edge labels ξ ∈ VM×M
e , where

Vn and Ve are node and edge label vocabularies,
respectively. Both vocabularies also include ad-
ditional null labels that we use as padding (e.g.
grey nodes in Figure 2 are labeled as null). To
produce the output MR graph G from Γa, we re-
move all null nodes and null edges. Lastly,
we use zj and ξjk notations to refer to the labels of
node j and of the edge (j, k) where j = (l−1)N+i
is a one-dimensional index that corresponds to the
i-th node in the l-th layer.

2.1 Labeling Aligned Graphs

To label the nodes of Γa we encode the input ut-
terance x as a matrix of N d-dimensional vectors
H = fenc(x) ∈ RN×d, where fenc can be an arbi-
trary encoder model such as LSTM (Hochreiter and
Schmidhuber, 1997) or a Transformer (Vaswani
et al., 2017). LAGr then defines a factorized distri-
bution p(z|x) over the node labels z as follows:

O =
L

||
l=1

HW l, (1)

π = softmax(O), (2)

p(z|x) =
M∏
j=1

p(zj |x) = πj,zj , (3)
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* hedgehog ( x _ 1 ); 
apple ( x _ 4 ); 
eat.agent ( x _ 2 ; x _ 1 ) AND 
eat.theme ( x _ 2 ; x _ 4 )

eat

apple
*

The  hedgehog  ate  an  apple.

   * hedgehog eat  apple hedgehog

(a) COGS

M1

actor

parent

sibling

?x0

Did  M1   star        a      child     and     sibling        of      M0  ?

 M1 ?x0             M0

?x0 parent M0 
?x0 sibling M0 . 
FILTER ( ?x0 != M0 )  
M1 actor ?x0 .

M0

      actor     parent      sibling 

(b) CFQ

Figure 2: Aligned and unaligned graphs for COGS (a) and CFQ (b). For COGS, pink, blue and black denote
agent, theme and article edges, respectively. For CFQ, yellow, pink and blue mark FILTER, agent,
theme edges. Grey nodes mark null nodes, and * denotes the definite article. The aligned graph for CFQ is
provided for illustration purposes, and was not used for training. See Section 4 for the learned aligned graphs.

where O ∈ RM×|Vn| contains logits for M = N ×
L nodes from all the L graph layers, || denotes the
concatenation operation along the node axis, W l

denotes the weight matrix for layer l. Here and
in following equations softmax(.) is applied to
the last dimension of the input tensor and every
multiplication by a weight matrix is followed by
the addition of a bias vector which we omit to
enhance clarity. Our edge labelling computation
is reminiscent of the multi-head self-attention by
Vaswani et al. (2017), with the key difference that
softmax is applied across the edge labels and not
across positions:

Hα
q =

L

||
l=1

HUα,l, Hα
k =

L

||
l=1

HV α,l,

ρ = softmax

[
stack
α∈Ve

[
Hα
q H

α
k
T
]]
,

where Hα
q and Hα

k contain concatenated key and
query vectors for the label α ∈ Ve across all

L graph layers, Uα,l, V α,l ∈ R
d
|Ve|

, d
|Ve| are the

weights for the edge label α, and the stack oper-
ator stacks the matrices into a 3D tensor to which
softmax is subsequently applied. Similarly to
p(z|x), we obtain p(ξ|x) as follows:

p(ξ|x) =

M∏
j=1

M∏
k=1

p(ξjk|x) =

M∏
j=1

M∏
k=1

ρjkξjk . (4)

The factorized nature of Equations 3 and 4 makes
the argmax inference ẑ, ξ̂ = arg max p(z, ξ|x)
trivial to perform. When the groundtruth aligned
graph Γ∗a = (z∗, ξ∗) for the MR graph G is avail-
able, LAGr can be trained by directly optimizing
log p(z = z∗, ξ = ξ∗|x). We refer to this training
setting as strongly-supervised LAGr.

2.2 Weakly-supervised LAGr

In many practical settings, the alignment between
the MR graph G and the sequence x is unavailable,
making the aligned graph Γa unknown. To ad-
dress this common scenario, we propose a weakly-
supervised LAGr algorithm based on a latent align-
ment model. Similarly to the strongly-supervised
case, we assume that the MR graph can be rep-
resented as a labeled complete, multi-layer graph
Γna = (s ∈ VM

n , e ∈ VM×M
e ), with the differ-

ence that in this case the alignment between x and
Γna is not known. We assume a generative process
whereby Γna is obtained by permuting the columns
of the latent aligned graph Γa with a random per-
mutation a, where aj is the index of the column
in Γa that becomes the j-th column in Γna. For
the rest of this section we focus on the single layer
(L = 1) case to simplify the formulas. For this
case our probabilistic model defines the following
distribution over Γna = (s, e):

p(e, s|x) =
∑
a

∑
z

∑
ξ

p(e, s, a, z, ξ|x)

=
∑
a

p(a)
∏
j

p(zaj = sj |x)

∏
j

∏
k

p(ξajak = ejk|x),

(5)

where p(a) = 1/N !. Computing p(e, s|x) exactly
is intractable. For this reason, we train LAGr by
using an approximation of p(e, s|x) in which in-
stead of summing over all possible aligments a, we
only consider the maximum-a-posteriori (MAP)
alignment â = arg maxa p(a|e, s, x). This ap-
proach is sometimes called the hard Expectation-
Maximization algorithm in the literature on proba-
bilistic models (Svensén and Bishop, 2007). The
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training objective thus becomes

p(e, s|â, x) =∏
j

p(zâj = sj |x)
∏
j

∏
k

p(ξâj ,âk = ejk|x).

To infer the MAP alignment â, we need to solve
the following inference problem:

â = arg max
a

p(a|e, s, x)

= arg max
a

log p(s|a, x) + log p(e|a, x)

= arg max
a

[∑
j

log p(zaj = sj |x)

+
∑
j

∑
k

log p(ξaj ,ak = ej,k|x)
]

(6)

We are not aware of an exact algorithm for solv-
ing the above optimization problem, however if the
edge log-likelihood term log p(e|a, x) is dropped
in the equations above, maximizing the node la-
bel probability p(s|a, x) is equivalent to a standard
minimum cost bipartite matching problem. This op-
timization problem can be solved by a polynomial-
time Hungarian algorithm (Kuhn, 1955b). We can
thus use an approximate MAP alignment â1 =
arg maxa

∑
j log p(zaj = sj |x). While dropping

p(e|a, x) from Equation 6 is a drastic simplifica-
tion, in situations where node labels s are unique
and the model is sufficiently trained to output sharp
probabilities p(zj |x) we expect â1 to often match
â. To further improve the MAP alignment approxi-
mation and alleviate the reliance on the node label
uniqueness, we generate a shortlist of K candidate
alignments by solving K noisy matching problems
of the form arg maxa

∑
j log p(zaj = sj |x)+εjaj ,

where εjaj ∼ N(0, σ). We then select the align-
ment candidate a that yields the highest full log-
likelihood log p(s|a, x) + log p(e|a, x).

We refer the reader to Algorithm 1 for a detailed
presentation of weakly-supervised LAGr.

3 Related Work

The LAGr approach is heavily inspired by graph-
based dependency parsing algorithms (Mcdonald,
2006). In neural graph-based dependency parsers
(Kiperwasser and Goldberg, 2016; Dozat and Man-
ning, 2017) the model is trained to predict the ex-
istence and the label of each of the possible edges
between the input words. The Abstract Meaning
Representation (AMR) parser by Lyu and Titov

Algorithm 1: Training LAGr with weak
supervision

Init: Let K be the number of alignment
candidates, T be the number of
training steps, and θt be the model
parameters after t steps.

1 for t=1, ..., T do
2 sample example (x, e, s)
3 for κ=1, ..., K do
4 εji ∼ N(0, σ)
5 costji = − log p(zi = sj |x) + εji
6 aκ = MinCostMatch(cost)
7 Jκ =

∑
j log p(zaκj = sj |x)

8 +
∑

j

∑
k log p(ξaκj aκk =

ejk|x)

9 κ̂ = arg maxκ J
κ

10 θt+1 ← Optimizer(θt,∇θ − J κ̂)

11 return θT+1

(2018) brings similar methodology to the realm
of semantic parsing, although they do not con-
sider the systematic generalization implications of
using a graph-based parser instead of a seq2seq
one. Lyu and Titov (2018) only output single layer
graphs which requires aggresive graph compres-
sion; in LAGr we allow the model to output a
multiple layer graph instead. Lastly, the amor-
tized Gumbel-Sinkhorn alignment inference used
by Lyu and Titov (2018) is much more complex
than the Hungarian-algorithm-based approximate
MAP inference that we employ here. Another im-
portant inspiration for LAGr is the UDepLambda
method (Reddy et al., 2016) that converts depen-
dency parses into graph-like logical forms. LAGr
can be seen as an algorithm that produces UDe-
pLambda graphs directly with the neural model,
side-stepping the intermediate dependency parsing
step.

Another alternative to seq2seq semantic parsers
are span-based parsers that predict span-level
actions for building MR expressions from sub-
expressions (Pasupat et al., 2019; Herzig and Be-
rant, 2020; Liu et al., 2021). A prerequisite for
using a span-based parser is an MR that can be
viewed as a recursive composition of MRs for
subspans. While this strong compositionality as-
sumption holds for the logical forms used in earlier
semantic parsing research (e.g. Zettlemoyer and
Collins (2005)), an intermediate MR would be re-
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quired to produce other meaning representations,
such as e.g. SPARQL or SQL queries, with a span-
based parser. The designer for an intermediate MR
for a span-based parser must think about MRs for
spans and how they should be composed. This can
sometimes lead to non-trivial corner cases, such as
e.g. ternary grammar rules in Herzig and Berant
(2020). On the contrary, a graph-based parser can
in principle produce any graph, although in prac-
tice in our experiments we compress the raw graphs
slightly to make the learning problem easier.

Other related semantic parsing approaches in-
clude the semantic labeling method by Zheng and
Lapata (2020) and the structured reordering ap-
proach by Wang et al. (2021). Zheng and Lapata
(2020) show that labelling the input sequence prior
to feeding it to the seq2seq semantic parser im-
proves systematic generalization. Compared to that
study, our work goes one step further by adding
edge labeling, which allows us to let go of the
seq2seq model entirely. Wang et al. (2021) model
semantic parsing as structured permutation of the
input sequence followed by monotonic segment-
level transduction. This approach achieves impres-
sive results, but is considerably more complex than
LAGr. Finally, Guo et al. (2020) achieve a very
high performance on CFQ by combining the sketch
prediction approach (Dong and Lapata, 2018) with
an algorithm that outputs the MR as a directed
acyclic graph (DAG). Unlike LAGr, their algorithm
produces the DAG in a sequential left-to-right fash-
ion. Notably, the non-hierachical version of this al-
gorithm without sketch prediction performs poorly.

Concurrently with this work, Ontañón et al.
(2021) show that semantic parsing by sequence
tagging improves systematic generalization. Their
sequence tags are similar to the aligned graphs that
we predict with LAGr when using a single graph
layer. Ontañón et al. (2021) do not discuss how to
infer sequence tags from logical forms when the
former are not available.

4 Experiments

We demonstrate the effectiveness of LAGr on two
systematic generalization benchmarks for seman-
tic parsing: COGS (Kim and Linzen, 2020a) and
Compositional Freebase Questions (CFQ, Keysers
et al. (2020)) 1.

1Our code is available under https://github.com/
ElementAI/lagr

4.1 COGS

Dataset COGS (Kim and Linzen, 2020a) is a se-
mantic parsing benchmark that requires models
to translate English sentences to Neo-Davidsonian
lambda calculus logical forms. As shown in Fig-
ure 1, the out-of-distribution generalization set of
COGS features novel combinations of words and
syntactic structures from the training dataset (more
examples available in Appendix A.4).
Graph Construction In order to study LAGr
on COGS, we first convert the logical forms
to UDepLambda-style (Reddy et al., 2016) MR
graphs. Specifically, we construct the graph
nodes using the one- and two-place predicates
and definite articles (e.g. hedgehog, apple,
eat and the * nodes in Figure 2a). We do
not create dedicated nodes for variables, as ev-
ery variable in COGS is either an argument
to a unique one-place predicate (e.g. x1 is
for hedgehog(x1)), or the first argument to a
unique two-place predicate (e.g. x2 for eat in
eat.agent(x2, x1)). Instead, we let the respec-
tive predicate node represent the variable. The la-
beled edges for our graphs are defined by the Neo-
Davidsonian role predicates of the logical forms
(such as agent, theme, recipient, ccomp,
nmod.on, nmod.in, xcomp, nmod.beside).
For example, the conjunct eat.agent(x2, x1)
results in an agent edge between the eat and
hedgehog nodes. We also add special article
edges to connect definite article nodes (denoted
by the * label) to their respective nouns (e.g.
hedgehog in Figure 2a). We take advantage of
the correspondence between variable names and
input positions (xi corresponds to the i-th token) to
construct single-layer (L = 1) aligned graphs Γa

for COGS that are suitable for strongly-supervised
LAGr, as described in Section 2.1. The node and
edge vocabularies for the aligned graphs contain
645 and 10 labels respectively, each including a
null label.
Training Details Hyperparameter tuning on
COGS is challenging since the performance on the
in-distribution development set always saturates
to near 100%. We adopt the hyperparameter tun-
ing procedure discussed in Conklin et al. (2021)
to find the best configuration for our baselines and
strongly-supervised LAGr models. Specifically, we
create a “Gen Dev” dataset by sampling 1000 ran-
dom examples from the generalization set and use
them to find the best hyperparameter configuration.
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Exact match accuracy (%)
train test gen

LSTM+Attn ♦ - 99. 16. (±8.)
Transformer ♦ - 96. 35. (±6.)
LSTM+Attn ♥ - - 51. (±5.)
Transformer ♣ - - 81. (±1.)
LSTM + Lex: Simple ♥ - - 82. (±1.)
LSTM + Lex: PMI ♥ - - 82. (±0.)
LSTM + Lex: IBMM2 ♥ - - 82. (±0.)
LSTM+Attn (ours) 100 (±0.0) 99.6 (±0.2) 26.1 (±6.8)
LSTMsh strongly-supervised LAGr 100 (±0.0) 99.9 (±0.1) 39.0 (±9.1)
LSTMsep strongly-supervised LAGr 100 (±0.0) 100 (±0.0) 71.4 (±2.9)
Transformer (ours) 100 (±0.0) 99.8 (±0.0) 80.6 (±1.4)
Transformersh strongly-supervised LAGr 100 (±0.0) 100 (±0.0) 80.2 (±1.4)
Transformersep strongly-supervised LAGr 100 (±0.0) 99.9 (±0.1) 82.5 (±2.9)
Transformersep weakly-supervised LAGr 100 (±0.0) 99.9 (±0.0) 80.7 (±2.5)
Transformersep weakly-supervised LAGr + Retrain 100 (±0.0) 99.9 (±0.0) 82.3 (±2.3)

Table 1: Average exact match accuracy and standard deviation on COGS. Bottom: reproduced seq2seq baselines
and LAGr. Middle: Seq2seq baselines including the original results by Kim and Linzen (2020a) ♦, best Trans-
former baseline by Csordás et al. (2021) ♣, and the best LSTM baseline by Akyürek and Andreas (2021) ♥. We
also show results by the lexicon-based approach by Akyürek and Andreas (2021).

We find that our Transformer-based seq2seq and
LAGr models perform better when embeddings are
initialized following He et al. (2015) and when
positional embeddings are scaled down by 1√

dim
.

The latter techniques were adopted following the
recent work of Csordás et al. (2021) under the PED
(Positional Embedding Downscaling) name. We
report the exact match accuracy, i.e., the percent-
age of examples for which the predicted graphs
after serialization yielded the same logical form,
as well as the standard deviation over at least 10
random seeds. We tune the hyperparameters for
strongly-supervised LAGr first; we then use the
same configuration for weakly-supervised LAGr
and only tune the inference hyperparameters, i.e.
the number of candidates K and the noise level
σ. Since weakly-supervised LAGr does not always
converge on the training set, we implement a restart
mechanism that relaunches experiments with a new
random seed where a training performance of at
least 95% is not achieved. Setting K = 10 and
σ = 1.0 allows us to achieve a convergence rate of
around 50%. For more details on our hyperparam-
eter search, and best configurations, we refer the
reader to Appendix A.1.

Additionally, we observe that the training loss
does not go to 0 in the weakly-supervised setting.
We attribute this to a significant (2.7%) percentage
of training examples in which there are three and
more nodes with the same label (namely “*” for
definite articles), which presents a challenge to our
alignment inference mechanism. To remedy this,
we cache and append the previously used alignment

as the K + 1st alignment candidate (see lines 3-8
in Algorithm 1). This allows the model to remem-
ber low-loss alignments and thereby helps achieve
full convergence. Lastly, we also run weakly-
supervised LAGr with retraining, in which we take
the final learned alignments for all examples and
retrain models with the learned alignments being
used as strong supervision.
Baselines We compare LAGr to LSTM- and
Transformer- based seq2seq semantic parsers that
produce logical forms as sequences of tokens. In
addition to training our own seq2seq baselines,
we also include baseline results from the original
COGS paper by Kim and Linzen (2020a) and from
follow-up works by Akyürek and Andreas (2021),
and Csordás et al. (2021). We also compare LAGr
to a lexicon-based seq2seq model “LSTM+Lex”
by Akyürek and Andreas (2021) that leverages the
copy mechanism in the seq2seq decoder to perform
a lexical lookup to generate the output token.
Results Table 1 shows that our best Transform-
ers trained with LAGr outperform the original
(35% from Kim and Linzen (2020b) and 81% from
Csordás et al. (2021)) and our reproduced (80.6%)
seq2seq Transformer baselines, obtaining 82.5%
and 82.3% exact match accuracy in the strongly-
and weakly-supervised settings, respectively.

We experiment with two variations of LAGr: us-
ing shared encoders and separating encoders for
syntax (i.e., node predictions) and semantics (i.e.,
edge predictions) — reflected in Table 1 by the
subindex ” sh” versus ” sep” in the model names
respectively. We achieve the best result in the
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strongly-supervised setting using separate encoders.
While this setting significantly improves the per-
formance of LAGr in all cases, for the strongly-
supervised LSTM-based LAGr models, separating
encoders seems to be crucial (71.4% vs 39.0%).

The use of retraining in weakly-supervised LAGr
is helpful. It allows us to increase the accuracy of
weakly-supervised LAGr to match our strongly-
supervised result. Finally, LAGr is able to match
the performance of the LSTM+Lex approach by
Akyürek and Andreas (2021) without relying on
the use of lexicons — a result we further discuss in
Section 5.

4.2 CFQ

Dataset CFQ (Keysers et al., 2020) is a benchmark
for systematic generalization in semantic parsing
that requires models to translate English sentences
to SPARQL database queries. We use CFQ’s Maxi-
mum Compound Divergence (MCD) splits, which
were generated by making the distribution of com-
positional structures in the train and test sets as
divergent as possible.

SPARQL queries contain two components: a
SELECT and a WHERE clause. The SELECT
clause is either of the form SELECT count(*)
for yes/no questions or SELECT DISTINCT
?x0 for wh- questions (those starting with ”which”,
”what”, ”who”, etc.). The WHERE clause can con-
tain constrains of three kinds: filter constraints en-
suring two variables or entities are distinct (e.g.
FILTER ?x0 != M0), two-place predicates ex-
pressing a relation between two entities (e.g. ?x0
parent ?x1), and one-place predicates express-
ing if an entity belongs to a category (e.g. ?x0 a
ns:film.actor)
Graph Construction Before constructing the
graphs, similarly to prior work (Furrer et al., 2020;
Guo et al., 2020), we compress the SPARQL
queries by merging some triples in the WHERE
clauses. As an example, consider the question
“Were M2 and M3 directed by a screenwriter
that executive produced M1?”, where the origi-
nal MR contains both [M2 directed by ?x0,
M3 directed by ?x0] conjuncts. To make
it easier to align SPARQL queries to the in-
put question, we merge triples by concatenating
their subjects and objects, e.g. yielding [[M2,
M3] directed by ?x0] for the above exam-
ple. With this compression, the SPARQL queries
can now contain an arbitrary number of entities in

the triples. To convert the compressed SPARQL
queries to graphs we first remove the SELECT
clauses. To preserve the question type informa-
tion, for wh- questions we replace the ?x0 variable
in the WHERE clause with a special select ?x0
variable. As the example in Figure 2b shows, we
define the graph nodes by taking the entities (in-
cluding variables, e.g. ?x0, M1) and all predi-
cates (parent, sibling, actor) from the
triples. For one-place predicates, we connect the
entity nodes to the predicate node with an agent
edge label. For triples with two-place predicates,
we connect the predicate to the left-hand side
and right-hand side entities with the agent and
theme edge respectively. We add a FILTER edge
between the variables or entities that participate in
a filter constraint. The resulting node and the edge
vocabularies contain 84 and 4 labels respectively,
each also including a null label.

Training Details Unlike COGS, we use L=2
graph layers in LAGr in order to accommodate
for the larger MR graphs in CFQ. This is because
CFQ contains examples such as “Who married
M1’s female German executive producer?” that
contains 8 tokens, but induces the following 10
nodes:?x1, executive produced, M1,
gender, ns:m.02zsn, nationality,
ns:m.0345h, select ?x0, spouses,
person.

In all our CFQ experiments we use a shared
Transformer encoder for both node and edge pre-
diction. To assess performance, we use exact graph
accuracy, which we define as the percentage of
examples where the predicted and true graphs are
isomorphic. The predicted graphs contain enough
information to exactly reconstruct the SPARQL
query, hence our exact graph accuracy can be com-
pared to the exact match accuracy from the prior
work. For hyperparameter tuning, we follow Key-
sers et al. (2020) and use CFQ’s in-distribution
random split to find the best model configuration.
We do this by first fixing the number of candidate
alignments at K = 1 to search for the best hyper-
parameters. Once we find the best configuration,
we tune K and σ. For the best found configura-
tion of K = 5, σ = 10, as well as for the base
configuration K = 1, σ = 0, we report the aver-
age graph accuracy and standard deviation for 8-11
runs of weakly-supervised LAGr on the MCD1,
MCD2, MCD3 and the random split. Similarly
to COGS, we use the PED initialization technique
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Graph Accuracy
Random Mean MCD MCD1 MCD2 MCD3

train test test test test test
HPD ♠ - - 67.3 (∓4.1) 72.0 (∓7.5) 66.1 (∓6.4) 63.9 (∓5.7)
HPD w/o Hierarchical Mechanism ♠ - - - 21.3 6.4 10.1
T5-small + IR ♦ - - 47.9 - - -
LSTM + Attn ♥ - 97.4 (∓0.3) 14.9 (∓1.1) 28.9 (∓1.8) 5.0 (∓0.8) 10.8 (∓0.6)
Transformer ♥ - 98.5 (∓0.2) 17.9 (∓0.9) 34.9 (∓1.1) 8.2 (∓0.3) 10.6 (∓1.1)
Universal Transformer ♥ - 98.0 (∓0.3) 18.9 (∓1.4) 37.4 (∓2.2) 8.1 (∓1.6) 11.3 (∓0.3)
Evol. Transformer ♣ - - 20.8 (∓0.7) 42.4 (∓1.0) 9.3 (∓0.8) 10.8 (∓0.2)
LSTM + Simplified SPARQL ♠ - - 26.1 42.2 14.5 21.5
Transformer + Simplified SPARQL ♠ - - 31.4 53.0 19.5 21.6
T5-small from scratch ♦ - - 20.8 - - -
T5-small from scratch + IR ♦ - - 22.6 - - -
Transformersh weakly sup. LAGr, K = 1 100 (∓0.0) 99.5 (∓0.2) 38.2 (∓2.7) 65.2 (∓2.6) 26.4 (∓3.2) 23.0 (∓2.0)
Transformersh weakly sup. LAGr, K = 5, σ = 10 100 (∓0.0) 99.7 (∓0.0) 39.5 (∓3.2) 62.8 (∓4.0) 30.3 (∓2.7) 25.4 (∓2.7)

Table 2: Average graph accuracy and standard deviation of weakly-supervised LAGr on CFQ (bottom). Middle:
results by several seq2seq baselines from prior work (Keysers et al. (2020)♥, Furrer et al. (2020)♣ ). Top: results
not directly comparable to LAGr: Hierarchical Poset Decoding (Guo et al., 2020) ♠, and pretrained T5-small
seq2seq model with intermediate representations (IR) (Herzig et al., 2021) ♦. Approaches other than LAGr report
the average exact match accuracy with 95% confidence intervals.

from Csordás et al. (2021), and discard runs where
weakly-supervised LAGr does not reach at least
99.5% graph accuracy on the training set (around
12% of all runs). For further details on our CFQ
experiments we refer the reader to Appendix A.2.
Results We compare LAGr to seq2seq seman-
tic parsing results reported in prior work (Keysers
et al., 2020; Furrer et al., 2020), as well as results
obtained with compressed SPARQL queries (Guo
et al., 2020; Herzig et al., 2021). As shown in Table
2, weakly-supervised LAGr outperforms all compa-
rable baselines on all of CFQ’s out-of-distribution
MCD splits. While both K = 1 and K = 5 with
σ = 10 yield impressive performance gains com-
pared to the baselines, we obtain mixed results
about the impact of a higher K and the use of noise.
Specifically, the best result on MCD1 is achieved
withK = 1 in contrast to MCD2 and MCD3 where
K = 5 with σ = 10 performs significantly better
than when using K = 1.

For reference, Table 2 also includes the state-of-
the-art Hierarchical Poset Decoding (HPD, Guo
et al., 2020) method (see Section 3), which ar-
guably is not a fair baseline to LAGr because of
its use of sketch prediction and lexicons. Notably,
when these techniques are not used, LAGr performs
much better than their base HPD algorithm.

To further zoom into the impact of the weakly-
supervised LAGr’s hyperparameters, we report re-
sults of preliminary experiments2 in which we

2These experiments were carried out using an earlier pre-
liminary implementation. Results in Table 3 are thus not
directly comparable to those reported in Table 2.

Graph Accuracy
K σ train test
1 0.0 99.79 (∓0.4) 98.75 (∓0.5)
5 0.01 99.92 (∓0.1) 99.01 (∓0.2)

0.1 99.88 (∓0.1) 99.10 (∓0.3)
1.0 99.85 (∓0.2) 99.10 (∓0.3)

10.0 99.97 (∓0.1) 99.69 (∓0.1)
15.0 83.78 (∓1.6) 83.73 (∓1.7)
20.0 2.18 (∓0.17) 2.28 (∓0.19)

10 0.01 99.77 (∓0.3) 98.85 (∓0.6)
0.1 99.92 (∓0.1) 99.10 (∓0.2)
1.0 99.70 (∓0.3) 98.68 (∓0.7)

10.0 99.96 (∓0.1) 99.58 (∓0.2)
15.0 99.77 (∓0.4) 99.42 (∓0.5)
20.0 69.69 (∓3.9) 68.91 (∓4.0)

Table 3: The effect of the number of alignment can-
didates K and noise level σ on the performance of
weakly-supervised LAGr using CFQ’s random split.
We report the average graph accuracy and the standard
deviation over 5 runs. We show the best configuration
in bold.

tuned the number of alignment candidates K and
the noise level σ. One can see that choosing the
best alignment out of K > 1 candidates is indeed
helpful, and that noise of high magnitude (σ = 10)
brings the best improvement on the random split.
These improvements also translate into system-
atic generalization gains for MCD2 and MCD3,
as shown in Table 2 where we see that K = 5
achieves better performance than K = 1. The
positive effect of a larger K on these splits is in
line with our expectation since 3.7 - 5.7% of ex-
amples in each CFQ split have at least two predi-
cates with identical node labels, which can make
it hard to align the MR graph to the input by look-
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ing at node labels only. Interestingly, in contrast
to our intuition, when using ten candidate align-
ments, the random split test performance is slightly
worse than when using five. We show examples
of the node labels that weakly-supervised LAGr
predicts in the learned aligned CFQ graphs as well
as the corresponding SPARQL queries in Figure 3
(Appendix A.3).

5 Discussion & Future Work

In this work we have shown that performing se-
mantic parsing by labeling aligned graphs brings
significant gains in systematic generalization. In
our COGS and CFQ experiments, LAGr signifi-
cantly improves upon sequence-to-sequence base-
lines in both strongly and weakly-supervised set-
tings. Specifically, on COGS, LAGr outperforms
our carefully-tuned seq2seq baselines and performs
similarly to LSTMs that leverage lexicons. Lex-
icons can also be integrated into LAGr, although
we do not expect this to improve LAGr’s perfor-
mance on COGS, as our best performing mod-
els already predict node labels perfectly. Lexi-
cons also bring their own challenges of dealing
with context-dependency and ambiguity, hence it
is notable that LAGr matches the performance of
a lexicon-equipped model while making less as-
sumptions about the nature of the input-to-output
mapping. On CFQ, LAGr outperforms all seq2seq
baselines on all MCD splits.

Based on our error analysis (see Appendix A.3),
we believe that a modification of LAGr that condi-
tions edge predictions on node labels could bring
further improvements. Importantly, this modifica-
tion would be compatible with our current align-
ment inference algorithm. Another obvious direc-
tion to improve LAGr’s performance is by using
a pretrained encoder. Lastly, while the current
alignment inference algorithm is effective, apply-
ing more advanced discrete optimization or amor-
tized inference methods could be an interesting
direction for future work.
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A Appendix

A.1 COGS Hyperparameter Tuning
COGS does not include an out-of-distribution de-
velopment set, which makes it challenging to find
the best model configuration. To overcome this
problem, we followed the same hyperparameter
tuning procedure for our baselines and our strongly-
supervised LAGr models as proposed by Conklin
et al. (2021). We sampled 1000 examples from
the generalization set as a ”Gen Dev” set which
was used to pick the best hyperparameter configu-
ration. We tested 0.001, 0.004, 0.0001 and 0.0004
for learning rates, 64, 128 and 256 for batch sizes,
and 0.1 versus 0.4 for dropout. We tested an em-
bedding size of 256 versus 512. Furthermore, for
the Transformer baselines and for LAGr with a
Transformer encoder, we also tested 2 versus 4 lay-
ers, and 4 versus 8 attention heads. We trained all
models for 70,000 steps, with no early stopping.

Each configuration was evaluated on 5 seeds.
Once the best configuration was found, we re-
trained all models on at least 10 seeds. The final
number of seeds that were used to report our results
in Table 1 are the following: 20 seeds for each of
the weakly-supervised LAGr experiments with and
without retraining, 80 and 20 seeds for strongly-
supervised LAGr with a separate and shared en-
coder, respectively, and finally, 20 seeds for our
baseline Transformer experiments. We varied the
number of seeds in order to obtain more accurate
estimates for the mean performance measures. The
best configurations for COGS are shown in Table
6.

For weakly-supervised LAGr, we used the best
configuration we found for strongly-supervised
LAGr. We then investigated different values for
K, the number of candidate alignments, with 1, 5
versus 10, and for the noise levels σ of 0, 0.001,
0.01, 0.1, 1, 10, 15 and 20. In addition, we also
implemented a random restart procedure to restart
runs with a new random seed if they were not able
to reach at least 98% of training accuracy. We

found that only when we used K = 10 with σ = 1,
we were able to get around 50% of the runs to
converge. This was different from our CFQ exper-
iments, where 97% of runs converged to at least
98% when appropriate noise levels were chosen
(i.e., σ < 15).

As for our seq2seq baseline, in order to repro-
duce the same Transformer performance as re-
ported by Csordás et al. (2021), we reused both
their hyperparameters and their model implementa-
tion. Namely, we used a learning rate of 1e-4 with
a linear scheduler and no warmup, a batch size of
128, an encoder dimension of 512 with dropout of
0.1. Lastly, we clipped gradients larger than 1.0.

A.2 CFQ Hyperparameter Tuning
We performed hyperparameter tuning on CFQ’s
random split, and chose the best configuration
based on the development exact graph accuracy.
For LAGr with both shared and separate Trans-
former encoders, we tested learning rates of 0.0001,
0.0004, 0.0006, 0.0008 and 0.001, with a linear
warmup of 0, 1000 versus 5000 steps, with dropout
of 0.1 and 0.4, batch sizes of 64, 128, 256 and 512,
and 2 versus 4 Transformer layers and attention
heads of 4 versus 8. In contrast to COGS, we were
able to drive the training loss to 0 without caching
and appending previously learned alignments as
the K + 1st alignment candidates. For this reason,
we did not use this caching technique. Lastly, simi-
larly to COGS, we filtered out runs that diverged
in terms of their training graph accuracy. While for
COGS weakly-supervised LAGr is more sensitive
to varying K and σ, in CFQ, we obtained 97% con-
vergence from all our runs in Table 3. We report
the best configuration used for CFQ in Table 7.

A.3 Error analysis
Table 4 shows some commonly encountered errors
on COGS with strongly-supervised LAGr. In all
examples, the model predicted the correct set of
nodes. However, even when all nodes are correctly
predicted, some may not show up in the final log-
ical form, if it has no connecting edges to other
nodes (see the ”dog” node in example 4.).

Figure 3 shows the predicted nodes of aligned
graphs and resulting queries produced by the best
weakly-supervised LAGr model on CFQ. The top
two rows show common errors where some edge
labels do not get predicted, and where some nodes
are missing due to the model not having predicted
any connecting edges for the nodes, thus omitting
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the nodes from the final output graph. The bot-
tom two rows show the inferred aligned graphs for
examples that result in the correct output graph.

A.4 Further COGS examples
Table 5 shows further examples from COGS’s gen-
eralization set with various cases for challenging
models’ ability to test systematic generalization.
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Example 1: wrong edge label, between right nodes
In A cockroach sent Sophia the sandwich beside the yacht .

Out * sandwich ( x 5 ) ; * yacht ( x 8 ) ; cockroach ( x 1 ) AND send . theme ( x 2 , x 1 ) AND send . recipient ( x 2 , Sophia )
AND send . theme ( x 2 , x 5 ) AND sandwich . nmod . beside ( x 5 , x 8 )

Pred * sandwich ( x 5 ) ; * yacht ( x 8 ) ; cockroach ( x 1 ) AND send . agent ( x 2 , x 1 ) AND send . recipient ( x 2 , Sophia )
AND send . theme ( x 2 , x 5 ) AND sandwich . nmod . beside ( x 5 , x 8 )

Example 2: Right edge label, but between wrong nodes
In The girl beside the bed lended the manager the leaf .

Out * girl ( x 1 ) ; * bed ( x 4 ) ; * manager ( x 7 ) ; * leaf ( x 9 ) ; girl . nmod . beside ( x 1 , x 4 ) AND lend . agent ( x 5 , x 1 )
AND lend . recipient ( x 5 , x 7 ) AND lend . theme ( x 5 , x 9 )

Pred * girl ( x 1 ) ; * bed ( x 4 ) ; * manager ( x 7 ) ; * leaf ( x 9 ) ; lend . agent ( x 5 , x 1 )
AND lend . recipient ( x 5 , x 7 ) AND lend . theme ( x 5 , x 9 ) AND leaf . nmod . beside ( x 9 , x 4 )

Example 3: Mistaking edge labels
In The dog noticed that a hippo juggled .
Out * dog ( x 1 ) ; notice . agent ( x 2 , x 1 ) AND notice . ccomp ( x 2 , x 6 ) AND hippo ( x 5 ) AND juggle . agent ( x 6 , x 5 )
Pred * dog ( x 1 ) ; notice . agent ( x 2 , x 1 ) AND notice . ccomp ( x 2 , x 6 ) AND hippo ( x 5 ) AND juggle . theme ( x 6 , x 5 )

Example 4: Correct nodes, but incorrect edges predicted
In A dog beside a chair said that a melon on the bed was liked .

Out * bed ( x 11 ) ; dog ( x 1 ) AND dog . nmod . beside ( x 1 , x 4 ) AND chair ( x 4 ) AND say . agent ( x 5 , x 1 )
AND say . ccomp ( x 5 , x 13 ) AND melon ( x 8 ) AND melon . nmod . on ( x 8 , x 11 ) AND like . theme ( x 13 , x 8 )

Pred * bed ( x 11 ) ; chair ( x 4 ) AND say . agent ( x 5 , x 4 ) AND melon ( x 8 ) AND bed . nmod . in ( x 11 , x 13 )
AND like . theme ( x 13 , x 8 )

Table 4: Incorrectly predicted logical forms for COGS with strongly-supervised LAGr. Errors are highlighted in
bold.

Example 1: Wrong edge predictions
Layer 2 ?x0 M3 influenced director spouse M2 ?x2 cinematographer M4 ?x1 actor
Layer 1
Input Did M3 influence a film director , marry M2 ’s cinematographer , influence M4 , and influence a actor
Target ?x1 actor . ?x0 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2
Predicted ?x0 actor . ?x0 director . ?x1 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2

Example 2: Missing node
Layer 2 select ?x0 ns:m.0f8l9c editor M1 influenced by ?x1 employer ?x2 organizations founded M2
Layer 1 nationality
Input What French film editor that M1 influenced influenced a company s founder and was influenced by M2
Target ?x1 actor . ?x0 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2
Predicted ?x0 actor . ?x0 director . ?x1 director . ?x2 cinematographer M2 . FILTER M3 != ?x2 . M3 influenced [?x0 ?x1 M4] . M3 spouse ?x2

Example 3: Correct prediction
Layer 2 select ?x0 ns:m.05zppz ns:m.059j2 editor director M3
Layer 1 gender nationality
Input Which male Dutch film editor directed M3
Predicted select ?x0 director M3 . select ?x0 editor . select ?x0 gender ns:m.05zppz . select ?x0

nationality ns:m.059j2

Example 4: Correct prediction
Layer 2 select ?x0 ns:m.06mkj actor influenced M2 ?x1 actor
Layer 1 nationality person
Input Who was a Spanish actor that influenced M2 and influenced a actor
Predicted ?x1 actor . select ?x0 actor . select ?x0 influenced ?x1 . select ?x0 influenced M2 . select ?x0 person . select ?x0 nationality

ns:m.06mkj

Figure 3: Predicted nodes of aligned graphs and resulting queries produced by the best weakly-supervised LAGr
with k = 5, σ = 10 on the development set of CFQ. Top two rows show common errors with missing edge labels
and missing nodes, and bottom rows show the inferred alignments for correct examples.

Case Training Generalization
Subject→ Object A hedgehog ate the cake. The baby liked the hedgehog.
Object→ Subject Henry liked a cockroach. The cockroach ate the bat.
Primitive→ Object Paula The child helped Paula.

Depth generalization
Ava saw the ball in the bottle
on the table.

Ava saw the ball in the bottle
on the table on the floor.

Active→ Passive Emma blessed William. A child was blessed.

Table 5: Example from Kim and Linzen (2020a) that show various linguistic phenomena from the COGS general-
ization set.
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Reproduced baselines . Strongly-supervised LAGr with different encoders
. LSTM Transformer LSTMsh LSTMsep Transformersh Transformersep

batch size 256 128 128 64 128 128
learning rate 0.004 0.0001 0.0001 0.0004 0.0001 0.0001

scheduler
linear with

warmup of 1000 steps
linear with
no warmup

linear with
warmup of 1000 steps

linear with
warmup of 1000 steps

linear with
no warmup

linear with
no warmup

layers 2 4 2 2 4 4
enc dim 256 256 256 256 512 512
train steps 50000 50000 70000 70000 70000 70000
dropout 0.4 0.1 0.1 0.4 0.4 0.4
attention heads - 8 - - 4 4

Table 6: Best hyperparameters for our COGS baseline and strongly-supervised LAGr experiments

CFQ
Weakly-supervised LAGr

Transformersh
batch size 256
learning rate 0.0004

scheduler
linear with warmup

of 1000 steps
layers 4
enc dim 256
train steps 750000
dropout 0.1
attention
heads

8

Table 7: Best configuration for CFQ weakly-supervised LAGr.
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