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Abstract

Procedures are inherently hierarchical. To
make videos, one may need to purchase a cam-
era, which in turn may require one to set a
budget. While such hierarchical knowledge
is critical for reasoning about complex proce-
dures, most existing work has treated proce-
dures as shallow structures without modeling
the parent-child relation. In this work, we at-
tempt to construct an open-domain hierarchi-
cal knowledge-base (KB) of procedures based
on wikiHow, a website containing more than
110k instructional articles, each documenting
the steps to carry out a complex procedure.
To this end, we develop a simple and effi-
cient method that links steps (e.g., purchase
a camera) in an article to other articles with
similar goals (e.g., how to choose a camera),
recursively constructing the KB. Our method
significantly outperforms several strong base-
lines according to automatic evaluation, hu-
man judgment, and application to downstream
tasks such as instructional video retrieval.1

1 Introduction

A procedure includes some steps needed to achieve
a particular goal (Momouchi, 1980). Procedures
are inherently hierarchical: a high-level procedure
is composed of many lower-level procedures. For
example, a procedure with the goal make videos
consists of steps like purchase a camera, set up
lighting, edit the video, and so on, where each step
itself is a procedure as well. Such hierarchical
relations between procedures are recursive: the
lower-level procedures can be further decomposed
into even more fine-grained steps: one may need to
arrange the footage in order to edit the video.

Relatively little attention has been paid to hierar-
chical relations in complex procedures in the field

∗Equal contribution.
1A demo with partial data can be found at

https://wikihow-hierarchy.github.io/. The code and the data
are at https://github.com/shuyanzhou/wikihow_hierarchy.

of NLP. Some work performed a shallow one-level
decomposition and often required costly resources
such as human expert task-specific annotation (Chu
et al., 2017; Zhang et al., 2020a, 2021). More at-
tention has been paid in fields adjacent to NLP. For
example, Lagos et al. (2017) and Pareti et al. (2014)
both create hierarchical structures in how-to docu-
ments by linking action phrases in one procedure
to another procedure or by linking steps in how-
to articles to resources like DBPedia (Auer et al.,
2007). This kind of linking is helpful for explain-
ing complex steps to readers who do not have prior
knowledge of the topic being explained.

In this paper, we revisit this important but un-
derstudied task to develop a simple and effective
algorithm (Figure 1) to construct a hierarchical
knowledge-base (KB) for over 110k complex pro-
cedures spanning a wide range of topics from wiki-
How, a large-scale how-to website that has recently
become a widely-used resource in NLP (Zhou et al.,
2019; Zellers et al., 2019; Zhang et al., 2020d,c).2

From each wikiHow article which represents a pro-
cedure, we follow Zhang et al. (2020d) and extract
the title as the goal (e.g., g1 in Figure 1), and the
paragraph headlines as steps (e.g., s1 . . . sn). Next,
we decompose the steps by linking them to articles
with the same or a similar goal (e.g., s1 to g2). The
steps of the linked article are treated as the finer-
grained steps (si to sj) of the linked step (s1). In
this way, the procedural hierarchies go from shal-
low (B1) to deep (B4).

To link steps and article goals, we employ a
retrieve-then-rerank approach, a well-established
paradigm in related tasks (Wu et al., 2019; Humeau
et al., 2019). Our hierarchy discovery model (§3)
first independently encodes each step and goal in
wikiHow and searches the k nearest goals of similar
meaning for each step (B2). Then, it applies a
dedicated joint encoder to calculate the similarity
score between the step and each candidate goal,

2www.wikihow.com
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Figure 1: The overview of our proposed method. The input (Block1) and output (B4) of the hierarchy discovery
model (B2, B3) and the applications (B5, B6) of the hierarchical knowledge base.

thus reranking the goals (B3). This pipeline can
efficiently search over a large candidate pool while
accurately measuring the similarity between steps
and goals. With each step linked to an article goal,
a hierarchical KB of procedures is thus constructed.

We evaluate our KB both intrinsically and ex-
trinsically. Intrinsically, the discovered links can
be directly used to complete missing step-goal hy-
perlinks in wikiHow, which have been manually
curated (B5). Our proposed method outperforms
strong baselines (e.g., Lagos et al. (2017)) accord-
ing to both automatic and human evaluation, in
terms of recall and usefulness respectively (§4, §5).
Extrinsically, we consider the task of retrieving
instructional videos given textual queries. We ob-
serve that queries that encode deeper hierarchies
are better than those that do not (§6). This provides
evidence that our KB can bridge the high-level
instructions and the low-level executions of proce-
dures, which is important for applications such as
robotic planning.

2 Problem Formulation

We represent a procedure as a tree where the root
node n represents a goal and its children nodes
Ch(n) represent the steps of n. We formulate the
hierarchy discovery task as identifying the steps
among Ch(n) that can themselves be a goal of
some other finer-grained steps (sub-steps), which
are inserted into the tree.

While this formulation could potentially be used
on any large collection of procedures, we specifi-
cally focus on wikiHow. As shown in B1 of Fig-

ure 1, each article comprises a goal (g), and a series
of steps (Ch(g)). Therefore, each article forms a
procedure tree of depth one.

We denote the collection of all goals and steps in
wikiHow as G and S respectively. Our hierarchy
discovery algorithm aims to link a step si ∈ S to
a goal g ∈ G such that g has the same meaning
as si. It then treats Ch(g) as Ch(si). Given that
g and si are both represented by textual descrip-
tions, the discovery process can be framed as a
paraphrase detection task. This discovery process
can be applied recursively on the leaf nodes until
the resulting leaf nodes reach the desired granu-
larity, effectively growing a hierarchical procedure
tree (B4 of Figure 1).

3 Hierarchy Discovery Model

For each of the 1.5 million steps in the wikiHow
corpus, we aim to select one goal that expresses the
same procedure as the step from over 110k goals.
We propose a simple and efficient method to deal
with such a large search space through a two-stage
process. First, we perform retrieval, encoding each
step and goal separately in an unsupervised fashion
and select the k most similar goals for each step
s. This process is fast at the expense of accuracy.
Second, we perform reranking, jointly encoding a
step with each of its candidate goals in a supervised
fashion to allow for more expressive contextualized
embeddings. This process is more accurate at the
expense of speed, since calculating each similarity
score requires a forward pass in the neural network.
The goal with the highest similarity score is se-
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lected and the step is expanded accordingly, as in
B4 of Figure 1.

3.1 Retrieval
In the first stage, we independently encode each
step s ∈ S and goal g ∈ G with a model Mb,
resulting in embeddings es1 , es2 , ..., esn and eg1 ,
eg2 , ..., egm . The similarity score between s and
g is calculated as the cosine similarity between
es and eg. We denote this first-stage similarity
score as sim1(s, g). Using this score, we can obtain
the top-k most similar candidate goals for each
step s, and we denote this candidate goal list as
C(s) = [g1, ..., gk]. To perform this top-k search,
we use efficient similarity search libraries such as
FAISS (Johnson et al., 2017).

We instantiateMb with two learning-based para-
phrase encoding models. The first is the SP
model (Wieting et al., 2019, 2021), which encodes
a sentence as the average of the sub-word unit em-
beddings generated by SentencePiece (Kudo and
Richardson, 2018). The second is SBERT (Reimers
and Gurevych, 2019), which encodes a pair of sen-
tences with a siamese BERT model that is finetuned
on paraphrase corpus. For comparison, we addi-
tionally experiment with search engines as Mb,
specifically Elasticsearch with the standard BM25
weighting metric (Robertson and Zaragoza, 2009).
We index each article with its title only or with its
full article. We also experiment with Bing Search
API where we limit the search to wikiHow website
only3. The BM25 with the former setting resem-
bles the method proposed by Lagos et al. (2017).

3.2 Reranking
While efficient, encoding steps and goals indepen-
dently is likely sub-optimal as information in the
steps cannot be used to encode the goals and vice-
versa. Therefore, we concatenate a step with each
of its top-k candidate goals in C(s) and feed them
to a modelMc that jointly encodes each step-goal
pair. Concretely, we follow the formulation of Wu
et al. (2019) to construct the input of each step-goal
pair as:

[CLS] ctx [ST] step [ED] goal [SEP]

where [ST] and [ED] are two reserved tokens
in the vocabulary of a pretrained model, which
mark the location of the step of interest. ctx is the
context for a step (e.g., its surrounding steps or
its goal) that could provide additional information.

3www.bing.com

The hidden state of the [CLS] token is taken as the
final contextualized embedding. The second-stage
similarity score is calculated as follows:

sim2(s, gi) = proj(Mc(s, gi)) + λsim1(s, gi) (1)

where proj(·) takes an d-dimension vector and
turns it to a scalar with weight matrix W ∈ Rd×1,
and λ is the weight for the first-stage similarity
score. Both W and λ are optimized through back-
propagation (see more about labeled data in §4.1).

With labeled data, we finetune Mc to mini-
mize the negative log-likelihood of the correct goal
among the top-k candidate goal list, where the log-
likelihood is calculated as:

ll(s, gi) = − log

(
softmax

(
sim2(s, gi)∑

gj∈C(s) sim2(s, gj)

))
(2)

Compared to the randomly sampled in-batch neg-
ative examples, the top-k candidate goals are pre-
sumably harder negative examples (Karpukhin
et al., 2020) and thus the model must work harder
to distinguish between them. We will explain the
extraction of the labeled step-goal pairs used to
train this model in §4.1.

Concretely, we experiment with two pretrained
models as Mc, specifically BERT-base (Devlin
et al., 2019) and DEBERTA-large finetuned on the
MNLI dataset (He et al., 2021). We pick them due
to their high performance on various tasks (Zhang
et al., 2020e). 4

In addition, we consider including different ctx
in the reranking input. For each step, we exper-
iment with including no context, the goal of the
step, and the surrounding steps of the step within a
window-size n (n=1).

3.3 Unlinkable Steps
Some steps in wikiHow could not be matched with
any goal. Such steps are unlinkable because of sev-
eral reasons. First, the step itself might be so fine-
grained that further instructions are unnecessary
(e.g. Go to a store). Second, although wikiHow
spans a wide range of complex procedures, it is far
from comprehensive. Some goals simply do not
exist in wikiHow.

Hence, we design a mechanism to predict
whether a step is linkable or not explicitly. More
specifically, we add a special token unlinkable,

4 https://cutt.ly/oTx5gMM. BERTScore measures the
semantic similarity between a pair of texts, similar to the
objective of our reranking.
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taken from the reserved vocabulary of a pretrained
model, as a placeholder “goal” to the top-k candi-
date goal list C(s), and this placeholder is treated
as the gold-standard answer if the step is deter-
mined to be unlinkable. The similarity score be-
tween a step and this placeholder goal follows
Equation 1 and sim1(s,unlinkable) is set to
the lowest first-stage similarity score among the
candidate goals retrieved by the first-stage model.
Accurately labeling a step as unlinkable is non-
trivial – it requires examining whether the step can
be linked to any goal in G. Instead, we train the
model to perform this classification by assigning
unlinkable to steps that have a ground-truth
goal but this goal does not appear in the top-k can-
didate goal list. The loss follows Equation 2.

4 Automatic Step Prediction Evaluation

To train our models and evaluate how well our
hierarchy discovery model can link steps to goals,
we leverage existing annotated step-goal links.

4.1 Labeled Step-goal Construction

In wikiHow, there are around 21k steps that already
have a hyperlink redirecting it to another wikiHow
article, populated by editors. We treat the title
of the linked article as the ground-truth goal for
the step. For example, as in B5 of Figure 1, the
ground-truth goal of the step Create a channel is
Make a Youtube Channel. We build the training,
development and test set with a 7:2:1 ratio.

4.2 Results

Table 1 lists the recall of different models without
or with the reranking. Precision is immaterial here
since each step has only one linked article.
Candidate Retrieval The SP model achieves the
best recall of all models, outperforming SBERT by
a significant margin. Models based on search en-
gines with various configurations, including the
commercial Bing Search, are less effective. In ad-
dition, BM25 (goal only), which does not consider
any article content, notably outperforms BM25 (ar-
ticle) and Bing Search, implying that the full arti-
cles may contain undesirable noise that hurts the
search performance. This interesting observation
suggests that while commercial search engines are
powerful, they may not be the best option for spe-
cific document retrieval tasks such as ours.

5We are unable to get the top-30 results from Bing search
because the web queries only return top-10 search results.

Model R@1 R@10 R@30

SP 35.8 64.4 72.5
SBERT 30.6 53.3 63.4
BM25 (goal only) 30.5 51.6 61.1
BM25 (article) 9.3 35.3 49.2
Bing Search 28.0 47.9 -

BERT 50.7 69.4 -
DEBERTA 55.4 71.9 -
− surr 54.3 71.6 -
− goal 55.0 71.5 -
− both 52.4 71.0 -
+ unlinkable 50.4 71.6 -
+ λ = 0 51.9 71.4 -

Table 1: The recall@n for different models on the test
set. The top half are with paraphrase retrieval only and
the bottom half are with taking the top-30 candidate
goals generated by the best model (SP) and adding the
reranking model. The best performance recall is bold.
“surr” denotes the surrounding steps of the query step.5

Reranking We select the top-30 candidate goals
predicted by the SP model as the input to the
reranking stage. The recall@30 of the SP model
is 72.5%, which bounds the performance of any
reranker.6 As seen in the bottom half of Ta-
ble 1, reranking is highly effective, as the best
configuration brings a 19.6% improvement on
recall@1, and the recall@10 almost reaches the
upper bound of this stage. We find that under the
same configuration, DEBERTA-large finetuned on
MNLI (He et al., 2021) outperforms BERT by 1.7%
on recall@1, matching the reported trends from
BERTScore.5

To qualitatively understand the benefit of the
reranker, we further inspect randomly sampled pre-
dictions of SP and DEBERTA. We find that the
reranker largely resolves partial matching prob-
lems observed in SP. As shown in C1 of Table 2,
SP tends to only consider the action (e.g., learn)
or the object (e.g., bike) and mistakenly rank those
partially matched goals the highest. In contrast, the
reranker makes fewer mistakes. In addition, we
observed that the reranker performed better on rare
words or expressions. For example, as shown in
the last column of C1, the reranker predicts that
“vinyl records” is closely related to “LP records”
and outputs the correct goal while SP could not.

Second, we observe that the surrounding context
and the goal of the query step are helpful in general.
Incorporating both contexts brings a 3% improve-
ment in recall@1. While steps are informative,

6We only experiment with SP because it is the best retrieval
model, providing a larger improvement headroom.
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Step Retrieval Prediction Reranking Prediction (GT) Context

C1
Learn to chop properly Learn Editing Chop Food Like a Pro Use a Knife

Acquire a bike Get on a Bike Buy a Bicycle Commute By Bicycle

Get some vinyl records Cut Vinyl Records Buy Used LP Records Buy a Turntable

C2

Open your coordinates Read UTM Find Your Coordinates Find the End Portal
Coordinates in Minecraft in Minecraft

Fill in sparse spots Remove Set in Stains Fill in Eyebrows
Shape Eyebrows (g)
Trim your brows (surr)
Use a clear gel to set (surr)

Table 2: The main failure modes of the candidate retrieval model (SP) that could be recovered by the reranking
model. Step: the query step; Retrieval Prediction: the top-1 prediction of the best retrieval model SP; Reranking
Prediction: the top-1 prediction of the best reranking model DeBERTa, it is also the ground-truth goal. By default,
the Context refers to the goal of the query step. The last case lists both goal (g) and the surrounding steps (surr).

they could be highly dependent on the contexts.
For example, some steps are under-specified, using
pronouns to refer to previously occurring contents
or simply omitting them. The additional informa-
tion introduced by the context helps resolve these
uncertainties. In the first example of C2, the con-
text “minecraft” is absent in the query step but
present in the goal of that step. Similarly, in the
second example, the context “eyebrows” is absent
in the query step but present in both the goal and
the surrounding steps.

Finally, adding unlinkable prediction harms
the recall@1 due to its over-prediction of
unlinkable for steps whose ground-truth goal
exists in the top-k candidate list. We also experi-
ment with setting a threshold tuned on the devel-
opment set to decide which steps are unlinkable,
in which case the recall@1 degrades from 55.4%
to 41.9%. Therefore, this explicit learnable pre-
diction yields more balance between the trade-offs.
In §5, we will demonstrate that this explicit unlink-
able prediction is overall informative to distinguish
steps of the two types through crowdsourcing anno-
tations. We empirically find that setting the weight
of sim1(s, g) (λ) to 0 is beneficial in the unlinkable
prediction setting.

5 Manual Step Prediction Evaluation

The automatic evaluation strongly indicates the
effectiveness of our proposed hierarchy discov-
ery model. However, it is not comprehensive
because the annotated hyperlinks are not exhaus-
tive. We complement our evaluation with crowd-
sourced human judgments via Amazon Mechanical
Turk (MTurk).

Each example of annotating is a tuple of a step,
its original goal from wikiHow, and the top-ranked
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Figure 2: Crowd workers’ ratings of step-goal links pre-
dicted by our models. The left graph shows steps linked
to some goals by the DEBERTA-UL model, while the
right shows steps those predicted as unlinkable.

goal predicted by one of our models. For each
example, we ask three MTurk workers to judge
whether the steps in the article of the linked goal
are exact, helpful, related, or unhelpful with re-
gard to accomplishing the queried step. Details
about the task design, task requirements, worker
pay, example sampling, etc. are in A.

We select SP, DEBERTA, and DEBERTA with
unlinkable prediction and λ = 0 (DEBERTA-UL)
for comparison. We attempt to answer the follow-
ing questions. First, does the performance trend
shown in automatic evaluation hold in human evalu-
ation? Second, can the unlinkable predictions help
avoid providing users with misleading information
(Rajpurkar et al., 2018)?

For the purpose of the second question, we sep-
arate the examples into two groups. One contains
linkable examples. Namely, those whose top-1 pre-
diction is not predicted as unlinkable by the
DEBERTA-UL model. Ideally, the linked articles
from these examples should be helpful. The other
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group contains unlinkable examples. For these,
we evaluate the second-highest ranked prediction
of the DEBERTA-UL model. Ideally, the linked
articles from these examples should be unhelpful.

The corresponding crowd judgment is shown in
Figure 2. Comparing the models, the DEBERTA

model and the DEBERTA-UL model have similar
performance, while greatly outperforming the SP
model. This shows that our proposed model de-
composes much more helpful finer-grained steps to
assist users with tasks, similar to the trend observed
in our automatic evaluation. Comparing the two
graphs, it is apparent that when the DEBERTA-
UL model predicts unlinkable for a step, the
suggested decompositions of all models are more
likely to be unhelpful. This implies the high pre-
cision of the unlinkable prediction, effectively
avoiding misleading predictions. Note that our
study does not explicitly require subjects to carry
out the task, but only annotates whether they find
the instructions helpful.

6 Application to Video Retrieval

In addition to intrinsic evaluation, we take a further
step to study the usefulness of our open-domain
hierarchical KB to downstream tasks. We select
video retrieval as the extrinsic evaluation task,
which aims at retrieving relevant how-to videos
for a textual goal to visually aid users. More for-
mally, given a textual goal g, the task is to retrieve
its relevant videos vg from the set of all videos,
with a textual query q. Intuitively, our KB can be
useful because videos usually contain finer-grained
steps and verbal descriptions to accomplish a task.
Therefore, the extra information presented in de-
composed steps could benefit retrieving relevant
videos.

6.1 Dataset Construction
We use Howto100M (Miech et al., 2019) for eval-
uation. It is a dataset of millions of instruc-
tional videos corresponding to over 23k goals.
We construct our video retrieval corpus by ran-
domly sampling 1, 000 goals (e.g., record a video)
with their relevant videos. The relevant videos
vg = {v1, v2, ..., vn} of each goal g in the dataset
are obtained by selecting the top 150 videos among
the search results of the goal on YouTube.7 For

7Although the relevance between a goal and a video is
not explicitly annotated in the Howto100M dataset, we argue
that with the sophisticated engineering of the YouTube video
search API and hundreds of thousands user clicks, the highly

Query R/P@1 R/P@10 R/P@25 R/P@50 MR

L0 2.2/89.2 19.2/78.1 39.9/66.0 56.6/48.2 79.49
L1 2.2/88.0 19.2/78.0 40.1/66.4 58.1/49.6 75.79
FIL-L1 2.2/89.9 20.2/81.7 43.1/71.2 63.2/53.8 66.32
FIL-L2 2.2/89.4 20.3/82.7 43.9/72.3 65.0/55.2 63.38

L0 12.1/81.7 59.8/42.8 71.9/20.8 77.9/11.3 41.60
L1 11.8/79.7 61.2/43.9 74.1/21.4 80.5/11.6 36.70
FIL-L1 12.4/83.7 66.0/47.3 77.4/22.4 82.9/12.0 33.35
FIL-L2 12.5/84.4 66.1/47.7 78.0/22.5 83.3/12.0 32.30

L0 11.4/82.6 59.2/45.2 71.8/22.1 77.8/12.0 43.11
L1 11.2/81.3 60.4/46.2 73.8/22.7 79.9/12.3 38.19
FIL-L1 11.7/85.1 64.8/49.5 77.2/23.8 82.2/12.7 34.76
FIL-L2 11.6/84.5 65.5/50.0 77.9/24.0 82.7/12.7 34.13

Table 3: The Recall/Precision@N (%, ↑) and mean
rank (MR, ↓) with different queries on the relevant
video retrieval task on the training (top), development
(middle) and the test set (bottom). The best perfor-
mance on each set is bold.

each goal g, we randomly split its relevant videos
vg into three sub-sets vtr

g , vdev
g and vtest

g with a ratio
of 7.5:1.25:1.25, as the training, development, and
testing sets.8

6.2 Setup
Since our KB is fully textual, we also represent
each video textually with its automatically gener-
ated captions. For the search engine, we use Elastic-
search with the standard BM25 metric (Robertson
and Zaragoza, 2009).9 We denote the relevance
score calculated by BM25 between the query q and
a textually represented video v as Rel(q, v).

We experiment with four different methods,
which differ in how they construct the query q:
L0: Goal only. The query is the goal g itself.
This is the minimal query without any additional
hierarchical information. The relevance score is
simply Rel(q, v) = Rel(g, v).
L1: Goal + Children. The query is a concatena-
tion of the goal g and its immediate children steps
Ch(g). This query encodes hierarchical knowl-
edge that already exists in wikiHow. The rele-
vance score is then defined as a weighted sum,
Rel(q, v) = wgRel(g, v) + ws

∑
s∈Ch(g) Rel(s, v).

The weights wg and ws are tuned on a development
set and set to 1.0 and 0.1 respectively.
FIL-L1: Goal + Filtered children. The query
is a concatenation of the goal g and a filtered
sequence of its children Ch(g). Intuitively, de-
composing a goal introduces richer information

ranked videos likely demonstrate the queried goal.
8We explain more about the appropriateness of the down-

stream video retrieval task setup in B.1.
9We find the performance of a neural model (BERT fine-

tuned on query/video caption pairs) significantly lower than
BM25 and therefore, we only report the results with BM25.
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Goal Stain Cabinet

FIL-L1 Purchase some stain colors to test

FIL-L2

FIL-L1 +
Buy cloth with which to apply the stain
Unscrew the cabinet from the wall
Clean your workspace

KM

Remove the doors
Sanding the front
Top coat
Finished look

Goal Make Avocado Fries

FIL-L1

Bake the avocado fries until they are golden
Dip the avocado wedges into the egg
and then the breadcrumbs

FIL-L2

FIL-L1 +
Preheat the oven
Peel and pit the avocados
Cut your avocado in half and remove the stone
Let rise
Finished, cool and enjoy

KM

2 large avocados ...
pinch of salt, pinch of pepper
two eggs, beaten ...
bake at 425F 20 min until golden bros ...

Table 4: The queries and the key moments (KM) for
two goals. “...” represents the omission of steps
that describe the ingredients to save space. The first
selected video is h9k0T25_NxA and the second is
o7uVUmPph6I.

but also introduces noise, since certain steps may
not visually appear at all (e.g., enjoy yourself ).
Therefore, we perform filtering and only retain
the most informative steps, denoted by Ch′(g).
Specifically, to construct Ch′(g) for a goal g, we
use a hill-climbing algorithm to check each step
s from Ch(g), and include s into the query only
if it yields better ranking results for the ground-
truth videos in the training set vtrain

g .10 The rele-
vance score is defined as Rel(q, v) = wgRel(g, v)+
ws

∑
s∈Ch′(g) Rel(s, v), where wg is set to 1.0 and

ws is set to 0.5 after similar tuning.

FIL-L2: Goal + Filtered children + Filtered
grand-children. The query is the concatenation
of the goal g and a filtered sequence of its im-
mediate children Ch(g) and grandchildren Ch(s)
(s ∈ Ch(g)). These filtered steps are denoted
by Ch′(g + Ch(g)). This two-level decomposi-
tion uses the knowledge from our KB, therefore
including lower-level information about the exe-
cution of the goal. We perform the same filtering
algorithm as in FIL-L1, and we define Rel(q, v) =
wgRel(g, v)+ws

∑
s∈Ch′(g+Ch(g)) Rel(s, v). wg is

set to 1.0 and ws is set to 0.5.

10See Algorithm 1 in Appendix for more details.

6.3 Results
We report the precision@N , recall@N and mean
rank (MR) following existing work on video re-
trieval (Luo et al., 2021) (see §B.2 for metric def-
initions). Table 3 lists the results. First, queries
that encode hierarchies of goals (L1, FIL-L1 and
FIL-L2) are generally more beneficial than queries
that do not (L0). The steps of goals enrich a query
and assist the retrieval. Second, video-oriented fil-
tering yields significant improvement over the un-
filtered L1 queries since it produces a set of more
generalizable steps that are shared among multiple
videos. Although steps in wikiHow articles are
human-written, they are not grounded to real-world
executions of that goal. Many steps do not have
corresponding executions in the videos and become
noisy steps in the L1 queries. More interestingly,
we observe that queries using deeper hierarchies
(FIL-L2) outperform the shallower ones (FIL-L1)
in most cases. This is probably due to the fact that
how-to videos usually contain detailed (verbal) in-
structions of a procedure, which are better aligned
with more fine-grained steps found in FIL-L2.

In our qualitative study, we investigate how
FIL-L2 queries with deeper hierarchies help re-
trieval. Table 4 list FIL-L1 and FIL-L2 queries for
two goals. We find that the FIL-L2 queries are more
informative and cover more aspects. For example,
the FIL-L2 queries for stain cabinet and make av-
ocado fries consist of the preparation, actual op-
erations, and the post-processing steps, while the
FIL-L1 query only contains the first one. In addi-
tion, we search the goals on Google and list the
key moments of some randomly sampled videos.11

These key moments textually describe the impor-
tant clips of the videos, and therefore they pre-
sumably also serve as the query for the goal. We
find that the FIL-L2 query of make avocado fries
explains a few necessary steps to accomplish this
goal, while the key moment is mostly composed
of the ingredients of this dish. This comparison
suggests the potential integration of our induced
hierarchical knowledge to identify key moments in
videos in the future.

7 Decomposition Analysis

In this section, we study the properties of the hier-
archies. First, what kind of steps are likely to be
linked to another goal and are thus decomposed?

11Key moments are either identified manually or are ex-
tracted automatically by YouTube. https://cutt.ly/qTcxSi6
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Figure 3: The verbs with largest rank difference in two
clusters. The blue bars are words becoming less fre-
quent in cluster 2 (decomposed steps) and the orange
bars are words becoming more frequent.

Second, what do the decomposed steps look like?
We group steps into two clusters. The first con-

tains the immediate steps of a goal (s ∈ Ch(g))
whose prediction is not unlinkable. The sec-
ond contains the decomposed steps of the steps in
the first cluster (s′ ∈ Ch(s)). We use spaCy (Hon-
nibal et al., 2020) to extract and lemmatize the verb
in each step and rank the verbs by their frequency in
each cluster. Next, the top-100 most frequent verbs
in each cluster are selected and we measure the
rank difference of these verbs in the two clusters.
Figure 3 plots the verbs with largest rank difference
and the full figure is in Figure 4. We observe that
verbs that convey complex actions and intuitively
consist of many other actions become less frequent
after the decomposition (e.g., decorate). On the
other hand, verbs that describe the action itself gain
in frequency after the decomposition (e.g., push,
hold, press). This observation follows our assump-
tion that the decomposition would lead to more
fine-grained realizations of a complex procedure.
Some other more abstract actions such as “learn”
and “decide” also increase in frequency, as some
low-level goals are explained with more complex
steps.

8 Related Work

Linking Procedural Events To the best of our
knowledge, two other pieces of work Pareti et al.
(2014); Lagos et al. (2017) tackled the task of
linking steps in procedures to other procedures.
Both of them also drew the procedures from wik-
iHow. While we share the same task formulation,
our work makes several additional contributions:

(1) a retrieval-then-rerank method significantly in-
creases linking recall; (2) more comprehensive ex-
periments with the manual and the downstream
evaluation that showcases the quality and useful-
ness of the linked data and (3) experiments and
data with broader coverage over all of WikiHow,
not just the Computer domain.
Procedural Knowledge Procedural knowledge
can be seen as a subset of knowledge pertaining
to scripts (Abelson and Schank, 1977; Rudinger
et al., 2015), schemata (Rumelhart, 1975) or events.
A small body of previous work (Mujtaba and Ma-
hapatra, 2019) on procedural events includes ex-
tracting them from instructional texts (Paris et al.,
2002; Delpech and Saint-Dizier, 2008; Zhang et al.,
2012) and videos (Alayrac et al., 2016; Yang et al.,
2021a), reasoning about them (Takechi et al., 2003;
Tandon et al., 2019; Rajagopal et al., 2020), or
showing their downstream applications (Pareti,
2018; Zhang et al., 2020d; Yang et al., 2021b;
Zhang et al., 2020b; Lyu et al., 2021), specifi-
cally on intent reasoning (Sap et al., 2019; Dalvi
et al., 2019; Zhang et al., 2020c). Most procedural
datasets are collected by crowdsourcing then man-
ually cleaned (Singh et al., 2002; Regneri et al.,
2010; Li et al., 2012; Wanzare et al., 2016; Rashkin
et al., 2018) and are hence small. Existing work has
also leveraged wikiHow for large-scale knowledge-
base construction (Jung et al., 2010; Chu et al.,
2017; Park and Motahari Nezhad, 2018), but our
work is the first to provide a comprehensive in-
trinsic and extrinsic evaluation of the resulting
knowledge-base.

9 Conclusion

We propose a search-then-rerank algorithm to ef-
fectively construct a hierarchical knowledge-base
of procedures based on wikiHow. Our hierar-
chies are shown to help users accomplish tasks
by accurately providing decomposition of a step
and improve the performance of downstream tasks
such as retrieving instructional videos. One inter-
esting extension is to further study and improve
the robustness of our two-stage method to tackle
more complex linguistic structures of steps and
goals (e.g., negation, conjunction). Another direc-
tion is to enrich the resulting knowledge-base by
applying our method to other web resources,12 or
to other modalities (e.g., video clips). Future work

12e.g., https://www.instructables.com/, https://www.diynet
work.com/how-to
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could also explore other usages such as comparing
and clustering procedures based on their deep hier-
archies; or applying the procedural knowledge to
control robots in the situated environments.
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A Crowdsourcing Details

As discussed in section 5, we use Amazon Mechan-
ical Turk (mTurk) to collect human judgements of
linked wikiHow articles. Our mTurk task design
HTML is attached in the supplementary materials.
Each task includes an overview, examples of rat-
ings, and 11 questions including 1 control question.
Each question has the following prompt:

Imagine you’re reading an article about
the goal c_goal, which includes a step
step. Then, you’re presented with a
new article r_goal. Does this new
article help explain how to do the step
step?

where c_goal is the original corresponding goal
of the step, and r_goal is the retrieved goal
by the model. Both c_goal and r_goal have
hyperlinks to the wikiHow article. The options of
rating are:

1. The article explains exactly how to do the step.

2. The article is helpful, but it either doesn’t have
enough information or has too much unrelated
information.

3. The article explains something related, but I
don’t think I can do the step with the instruc-
tions.

4. The article is unhelpful/unrelated.

5. I don’t know which option to choose, because:
[text entry box]

The control question contains either a step and
r_goal with the exact same texts once lower-
cased (in which case the expected answer is always
#1), or a step and a randomly selected unrelated
r_goal (in which case the expected answer is
always #4). We estimate that answering each ques-
tion would take 30 seconds, with a pay of $0.83 per
task which equates to an hourly rate of $9.05. We
require workers to be English-speaking, with the
mTurk Master qualification and a lifetime approval
rate of over 90%.

To sample examples to annotate, we first ob-
tain all the steps corresponding to the same
1000 goals as we did in subsection 6.1. To
evaluate the DEBERTA-UL’s ability to predict
unlinkable, we randomly sample 500 steps pre-
dicted as unlinkable and another 500 predicted
as otherwise. Then, for these 1000 steps, we ob-
tain linked goal predictions of our three models:

Algorithm 1: Video-based filtering
Data: goal g, cost function f , candidate steps

p = [p1, ..., pn], relevant videos vtr
g

Result: best_query
k ← 15;
best_query ← [g];
min_cost← f(best_query,vtr

g);
r ← min(n, k);
while r ≥ 0 do

in_cost← 1e10;
for p in p do

if p not in best_state then
query ← [best_query, p];
cost← f(query,vtr

g);
if cost < in_cost then

in_cost← cost;
in_query ← query;

end
end

end
if in_cost < min_cost then

min_cost← in_cost;
best_query ← in_query;

else
break

r = r − 1;
end

DEBERTA-UL, DEBERTA, and the SP model. If
DEBERTA-UL predicts a step to be unlinkable
by ranking the placeholder token first, the second
ranked goal is instead considered. After removing
duplicates of predicted step-goal pairs, we are left
with 1448 examples.

When performing analyses, we only consider
the responses from crowdworkers that pass more
control questions than they fail.

B Video Retrieval Setup

B.1 Dataset Construction

Existing works also practice similar data splits that
share the labels of videos/images across the train-
ing, development and the test set. For example,
image retrieval tasks use the same objects labels
for training and evaluations (Wan et al., 2014); Ac-
tivity Net (Heilbron et al., 2015), a popular bench-
mark for human activity understanding, uses the
same 203 activities across different splits; Yang
et al. (2021b) trains a step inference model with a
training set that shares the same goals with the test
set.

This data split is meaningful on its own. We
can view the original queries as initial schemas for
complex procedures. Then we induce more gener-
alizable schemas by matching them with schema
instantiations (in our case, the videos that display
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Figure 4: The full version of Figure 3

the procedures). We evaluate the quality of the
induced schemas by matching them with unseen
instantiations. The large-scale DARPA KAIROS
project13 adopted a similar setup, which we believe
indicates its great interest to the community.

In terms of the scale of the video retrieval
dataset, though we only select 1000 goals from
23k goals from Howto1M, there are already 150k
videos in total while widely-used video datasets
like COIN (Tang et al., 2019) only contain 180
goals and 10k videos. In addition, exiting works
like (Yang et al., 2021b) also experimented with a
sampled dataset of similar scale.

B.2 Evaluation Metrics
We report precision@N , recall@N and mean
rank (MR) following existing works on video re-
trieval (Luo et al., 2021)

recall@N =
1

M

M∑
i=1

∑
vj∈vgi

1(r(vj) <= N)

|vgi |

precision@N =
1

M

M∑
i=1

∑
vj∈vgi

1(r(vj) <= N)

N

MR =
1

M

M∑
i=1

∑
vj∈vgi

r(vj)

|vgi |
(3)

where M is the number of goals in total, vgi is a
set of ground truth videos of goal gi is the rank of
video v and 1 is the indicator function.

13https://www.darpa.mil/program/knowledge-directed-art
ificial-intelligence-reasoning-over-schemas

C Experiment Reproducibility

Candidate Goal Retrieval The detailed param-
eter information of SP can be found in S5.1
in (Wieting et al., 2021). Encoding all steps and
goals in wikiHow took around two hours on a
2080Ti (12GB) GPU. For SBERT, the encoding
took around an hour on a v100 GPU (32GB).
Reranking We used the transformers li-
brary (Wolf et al., 2020) for re-ranking. The two
re-ranking models we used are “bert-base-uncased”
and “deberta-v2-large-mnli”. We finetuned each
model on our training set for five epochs and se-
lected the best model on the validation set. Fine-
tuning took around two hours on a 2080Ti (12GB)
GPU for BERT and eight hours on a v100 GPU
(32GB) for DEBERTA. We used the default hyper-
parameters provided by the transformers li-
brary.

D Risks

Our resulting hierarchy contains events from wik-
iHow, which may contain unsafe content that slip
through its editorial process, although this is rela-
tively unlikely.

E License of Used Assets

The wikiHow texts used in this work are licensed
under CC BY-NC-SA 3.0.
FAISS is licensed under MIT License.
BERT is licensed under Apache License 2.0.
DeBERTa is licensed under MIT License.
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The SP model is licensed under BSD 3-Clause
"New" or "Revised" License ElasticSearch is
licensed under Apache License 2.0.
HowTo100M is licensed under Apache License 2.0.
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