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Abstract

Recent works of opinion expression identifi-
cation (OEI) rely heavily on the quality and
scale of the manually-constructed training cor-
pus, which could be extremely difficult to sat-
isfy. Crowdsourcing is one practical solution
for this problem, aiming to create a large-scale
but quality-unguaranteed corpus. In this work,
we investigate Chinese OEI with extremely-
noisy crowdsourcing annotations, constructing
a dataset at a very low cost. Following Zhang
et al. (2021), we train the annotator-adapter
model by regarding all annotations as gold-
standard in terms of crowd annotators, and test
the model by using a synthetic expert, which is
a mixture of all annotators. As this annotator-
mixture for testing is never modeled explicitly
in the training phase, we propose to generate
synthetic training samples by a pertinent mixup
strategy to make the training and testing highly
consistent. The simulation experiments on our
constructed dataset show that crowdsourcing
is highly promising for OEI, and our proposed
annotator-mixup can further enhance the crowd-
sourcing modeling.

1 Introduction

Opinion mining is a fundamental topic in the natu-
ral language processing (NLP) community, which
has received great attention for decades (Liu and
Zhang, 2012). Opinion expression identification
(OEI) is a standard task of opinion mining, which
aims to recognize the text spans that express partic-
ular opinions (Breck et al., 2007). Figure 1 shows
two examples. This task has been generally solved
by supervised learning (İrsoy and Cardie, 2014)
with the well-established corpus annotated by ex-
perts. Almost all previous studies are based on En-
glish datasets such as MPQA (Wiebe et al., 2005).

By carefully examining this task, we can find
that the corpus annotation of opinion expressions is
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Wuhan is a heroic city
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这几天觉得心里好累

I feel so tired these days

这几天觉得心里好累

I feel so tired these days

这几天觉得心里好累

I feel so tired these days

Figure 1: Two examples of opinion expression identi-
fication with crowdsourcing and expert annotations in
our constructed dataset. The left and right sentences are
of positive and negative polarities, respectively.

by no means an easy process. It is highly ambigu-
ous across different persons. As shown in Figure 1,
it is very controversial to define the boundaries
of opinion expressions (Wiebe et al., 2005). Ac-
tually, this problem is extremely serious for lan-
guages such as Chinese, which is based on charac-
ters even with no explicit and clearly-defined word
boundaries. Thus, Chinese-alike languages will
inevitably involve more ambiguities.

In order to obtain a high-quality corpus, we
usually need to train the annotators with great ef-
forts, making them acquainted with a specific fine-
grained guideline drafted by experts, and then start
the data annotation strictly. Finally, it is better with
a further expert checking on borderline cases where
the annotators disagree most to ensure the quality
of the annotated corpus. Apparently, the whole pro-
cess is quite expensive. Thus, crowdsourcing with
no training (just a brief guideline) and no expert
checking is more practical in real considerations
(Snow et al., 2008). While on the other hand, the
difficulty of the Chinese OEI task might lead to
very low-quality annotations by crowdsourcing.

In this work, we present the first study of Chi-
nese OEI by using crowdsourcing. We manually
construct an OEI dataset by crowdsourcing, which
is used for training. Indeed, the dataset is cheap but
with a great deal of noises according to our initial
observation. We also collect the small-scale devel-
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opment and test corpus with expert annotations for
evaluation.1 Our dataset is constructed over a set
of Chinese texts closely related to the COVID-19
topic. Following, we start our investigation by us-
ing a strong BERT-BiLSTM-CRF model, treating
the OEI task as a standard sequence labeling prob-
lem following the previous studies (Breck et al.,
2007; İrsoy and Cardie, 2014; Katiyar and Cardie,
2016). Our primary goal is to answer whether
these extremely-noisy crowdsourcing annotations
include potential value for the OEI task.

In order to make the best use of our crowdsourc-
ing corpus, we follow Zhang et al. (2021) to treat
all crowd annotations as gold-standard in terms of
different annotators. We introduce the annotator-
adapter model, which employs the crowdsourcing
learning approach of Zhang et al. (2021) in OEI
for the first time. It jointly encodes both texts and
annotators, then predicts the corresponding crowd-
sourcing annotations in the BERT-BiLSTM-CRF
architecture. Concretely, we train the annotator-
adapter model by each individual annotator and the
corresponding annotations, then test the model by
using a pseudo expert annotator, which is a linear
mixture of crowd annotators. Considering that this
expert is never modeled during the training, we
further exploit a simple mixup (Zhang et al., 2018)
strategy to simulate the expert decoding accurately.

Experimental results show that crowdsourcing is
highly competitive, giving an overall F1 score of
53.86 even with a large-scale of noises, while the
F1 score of expert corpus trained model is 57.08.
We believe that this performance gap is totally
acceptable for building OEI application systems.
In addition, our annotator-mixup strategy can fur-
ther boost the performance of the annotator-adapter
model, giving an F1 increase of 54.59− 53.86 =
0.73. We conduct several analyses to understand
the OEI with crowdsourcing and our suggested
methods comprehensively.

In summary, we make three majoring contribu-
tions as a whole in this work:

• We present the initial work of investigating
the OEI task with crowdsourcing annotations,
showing its capability on Chinese.

• We construct a Chinese OEI dataset with
crowdsourcing annotations, which is not only
valuable for Chinese OEI but also instructive
for crowdsourcing researching.

1In addition, we provide expert annotations of trainset to
train a upper-bound model.

No. Chinese / English

1
澳大利亚籍返京女子不隔离外出跑步 /
The Australian woman running outside

without isolation in Beijing
2 单玉厚 / Yuhou Shan
3 李文亮医生 / Dr. Li Wenliang
4 是谁发现了病毒 / Who finds the virus
5 方方日记 / Fang Fang’s Diary
6 歌诗达赛琳娜号 / Goethe Serena

7
新冠可通过气溶胶传播 /

COVID-19 can transmit via aerosol

Table 1: Seven hot topics we targeted.

• We introduce the annotator-adapter for crowd-
sourcing OEI and propose the annotator-
mixup strategy, which can effectively improve
the crowdsourcing modeling.

All of our codes and dataset will be available at
github.com/izhx/crowd-OEI for research purpose.

2 Dataset

The outbreak of COVID-19 brings strong demand
for building robust Chinese opinion mining sys-
tems, which are practically built in a supervised
manner. A large-scale training corpus is the key
to the system construction, while almost all exist-
ing related datasets are in English (Wiebe et al.,
2005). Hence, we manually construct a Chinese
OEI dataset by crowdsourcing. We focus on opin-
ion expressions with positive or negative polarities
only. The construction consists of four steps: (1)
text collection, (2) annotator recruitment, (3) crowd
annotation, and (4) expert checking and correction.

2.1 Text Collection
We choose the Sina Weibo2, which is a Chinese
social media platform similar to Twitter, as our
data source. To collect the texts strongly related
to COVID-19, we select around 8k posts that are
created from January to April 2020 and related to
seven hot topics (Table 1). To make these posts
ready for annotating, we use HarvestText3 to clean
them and segment the resulting texts into sentences.
Next, we conduct another cleaning step to remove
the duplicates and sentences with relatively poor
written styles (e.g., high-proportion of non-Chinese
symbols, very short /long length, etc.).

After the above procedure, there are still a large
proportion of sentences that involve no sentiment.

2https://weibo.com
3https://github.com/blmoistawinde/HarvestText
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So we filter out them by a BERT sentiment clas-
sifier that trained on an open-access Weibo senti-
ment classification dataset.4 Only sentences with
high confidence of not expressing any sentiment are
dropped,5 we can therefore keep the most valuable
contents while avoiding unnecessary annotations
and thus reduce the overall annotating cost.

2.2 Annotator Recruitment

We have five professionals who have engaged in the
annotation of sentiment and opinion-related tasks
previously and are with rich experience as experts.
They annotate 100 sentences together as examples
(i.e., label the positive and negative opinion ex-
pressions inside the texts), and establish a simple
guideline based on their consensus after several dis-
cussions. The guideline includes the task definition
and a description of annotation principle.6

Next, we recruit 75 (crowd) students in our uni-
versity for annotating. They come from different
grades and different majors, such as Chinese, Lit-
erature, and Translation. We offer them the above
annotation guideline to understand the task. We
choose the doccano7 to build up our annotation
platform, and let these annotators be familiar with
our task by the expert-annotated examples.

2.3 Crowd Annotation

When all crowd workers are ready, we start the
crowd annotation phase. The prepared texts are
split into micro-tasks so that each one consists of
500 sentences. Then we assign 3 to 5 workers to
each micro-task, and their identities are remained
hidden from each other. Each worker will not ac-
cess a new task unless their current one is finished.

In the annotation of each sentence, workers need
to label the positive and negative opinion expres-
sions according to the guideline and their under-
standings. The number of positive or negative ex-
pressions in one sentence has no limit. They can
also mark a sentence as “No Opinion” and skip it if
they think there are no opinion expressions inside.

2.4 Expert Checking and Correction

After all crowd annotations are accomplished, we
randomly select a small proportion of sentences and

4ChineseNlpCorpus - weibo_senti_100k
5Note that there are still a small number of sentences in

our final dataset that have no opinion expression inside.
6We share the guideline in the Appendix A.
7https://github.com/doccano/doccano

Dataset Number of Average
Span
Length

Section Quality Unique Positive Negative
Annotation Expression Expression

Train
crowd 32582 11640 35263 5.05
silver 8047 4167 11411 4.71
gold 8047 3488 10096 4.79

Dev crowd 3427 2338 3905 5.22
gold 803 706 1035 5.02

Test crowd 6265 3573 5290 4.48
gold 1517 999 1373 4.30

Table 2: Data statistics of our constructed dataset. For
gold and silver corpus, each annotation corresponds
to one sentence. For the crowd corpus, each sentence
has 3 to 5 annotations. So we have a total number of
803 + 1517 + 8047 = 10, 367 unique sentences and
32, 582 + 3427 + 6265 = 42, 274 crowd annotations.

let experts reannotate them, resulting in the gold-
standard development and test corpus.8 Specif-
ically, for each sentence, we let 2 experienced
experts individually reannotate it with references
from the corresponding crowdsourcing annotations.
They will give the final annotation of each sentence
if their answers reach an agreement. And if they
have divergences, a third expert will help them to
modify answers and reach the agreement.

Then, we let all five experts go through the re-
maining dataset9, selecting the best annotations for
each sentence, which can be regarded as the silver-
standard training corpus. In the selection, Each
sentence is assigned to 1 expert, and the expert is
only allowed to choose one (or several identical)
best answer(s) from all the candidate crowdsourc-
ing annotations. Finally, only for comparisons, we
also annotated the gold-standard training corpus,
which will not be used in our model training.

2.5 Dataset Statistics

In the end, we arrive at 42, 274 crowd annotations
by 70 valid annotators,10 covering 10, 367 sen-
tences. A total number of 803 + 1517 = 2320
sentences, including expert annotations, would be
used for development and test evaluations. Table 2
shows the overall data statistics. The average num-
ber of annotators per sentence is 4.05, and each
annotator labels an average of 827 sentences in the
whole corpus. The overall Cohen’s Kappa value of
the crowd annotations is 0.35. When ignoring the

8The corresponding crowdsourcing annotations consist of
the crowdsourcing development and test corpus.

9The remaining part is the crowdsourcing training corpus.
10We removed 5 annotators who gave up this work in their

first assigned task as a basic quality assurance.
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characters which no annotators think that they are
in any expression, the Kappa is only 0.17.11

The Kappa values are indeed very low, indicat-
ing the great and unavoidable ambiguities of the
task with natural annotations.12 However, these
values do not make much sense since we do not im-
pose any well-designed comprehensive guidelines
during annotation. In fact, a comprehensive guide-
line for crowd workers is almost impracticable in
our task, because they are quite often to disagree
with a particular guideline by their own unique and
naive understandings. If we impose such a guide-
line to them forcibly, the annotation cost would be
increased drastically (i.e., at least ten times more
expensive according to our preliminary investiga-
tion) for their reluctance as well as endless expert
guidance. In the remaining of this work, we will
try to verify the real value of these crowdsourcing
annotations empirically: Is the collected training
corpus really beneficial for our Chinese OEI task?

3 Methodology

The OEI task aims to extract all polarized text spans
that express certain opinions in a sentence. It can
be naturally converted into a sequence labeling
problem by using the BIO schema, tagging each
token by the boundary information of opinion ex-
pressions, where “B-X” and “I-X” (i.e., “X” can
be either “POS” or “NEG” denoting the polarity)
indicate the start and other positions of a certain
expression, and “O” denotes a token do not be-
long to any expression. In this work we adopt the
CRF-based system (Breck et al., 2007) to the neu-
ral setting and enhance it with BiLSTM encoder as
well as pre-trained BERT representation.

3.1 BERT-BiLSTM-CRF Baseline
Given a sentence x = x1 · · ·xn (where n denotes
the sentence length), we first convert it into con-
textual representations r1 · · · rn by the pre-trained
BERT with adapter tuning (Houlsby et al., 2019):

r1 · · · rn = ADBERT(x1 · · ·xn). (1)

Unlike the standard BERT exploration, AD-
BERT introduces two extra adapter modules inside
each transformer layer, as shown in Figure 2 for the

11To compute the Kappa value of sequential annotations,
we treat each token (not sentence) as an instance, and then
aggregate the results of one sentence by averaging.

12The average value of F1 scores that each annotator against
the expert is 41.77%, which is significantly lower than 60%+
of crowdsourcing NER dataset (Rodrigues et al., 2014b).

Layer Norm

+

Adapter

2x Feed-forward
layer

Layer Norm

+

Adapter

Feed-forward layer

Multi-headed
attention

Transformer
Layer

Adapter
Module+

Feed-forward
up-project

GELU
Nonlinearity

Feed-forward
down-project

Figure 2: The Adapter (right) and Transformer inte-
grated with Adapter inside (left). During the adapter
tuning, green layers are trainable, including the adapters,
the LayerNorm, and other task-specific modules.

details. With this modification, we do not need fine-
tuning all BERT parameters, and instead, learning
the parameters of adapters is enough for obtaining
a strong performance. Thus ADBERT is more pa-
rameter efficient. The standard adapter layer can
be formalized as:

down-proj: hmid = GELU(Wdownhin + bdown),

up-proj: hout = Wuphmid + bup + hin,

(2)

where Wdown, Wup, bdown and bup are model pa-
rameters, which are much smaller than the parame-
ters of transformer in scale, and the dimension size
of hmid is also smaller than that of the correspond-
ing transformer dimension.13

The rest part of the baseline is a standard
BiLSTM-CRF model, which is a stack of BiL-
STM, MLP and CRF layers, and then we can obtain
sequence-level scores for each candidate output y:

score(y) = BiLSTM-CRF([r1 · · · rn]),

p(y) =
exp

(
score(y)

)∑
Ỹ exp

(
score(ỹ)

) , (3)

where p(y) is the probability of the given ground-
truth, and Ỹ is all possible outputs for score normal-
ization. The model parameters are updated by the
sentence-level cross-entropy loss L = − log p(y∗)
when y∗ is regarded as gold-standard.

13The dimension sizes of hin and hout are consistent with
the corresponding transformer hidden states.
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Crowdsourcing training. In the crowdsourcing
setting, we only have annotations from multiple
non-expert annotators, thus no gold-standard label
is available for our training. To handle the situation,
we introduce two straightforward and widely-used
methods. First, we treat all annotations uniformly
as training instances, despite that they may offer
noises for our training objective, which is denoted
by All for short. Second, we exploit majority
voting14 to obtain an aggregated answer of each
sentence for model training, denoted as MV.

3.2 Annotator Adapter

In most previous crowdsourcing studies, there is
a common agreement that crowd annotations are
noisy, which should be rectified during training
(Rodrigues et al., 2014a; Nguyen et al., 2017; Simp-
son and Gurevych, 2019). Zhang et al. (2021)
propose to regard all crowdsourcing annotations
as gold-standard, and introduce a representation
learning model to jointly encode the sentence and
the annotator and extract annotator-aware features,
which models the unique understandings of anno-
tators (this setting is indeed very consistent with
our corpus). Since our constructed dataset has no
gold-standard training labels15, we adopt their un-
supervised representation learning approach, which
is named annotator-adapter. It applies the
Parameter Generator Network (PGN) (Platanios
et al., 2018; Jia et al., 2019; Üstün et al., 2020) to
generate annotator-specific adapter parameters for
the ADBERT, as shown in Figure 3.

Given an input sentence-annotator pair (x =
x1, . . . , xn, a), we exploit an embedding layer to
convert the annotator ID a into its vectorial form
ea, and then PGN is used to generate the model pa-
rameters of several high-level adapter layers inside
BERT conditioned by ea. Concretely, we apply
PGN to the last p layers of BERT, where p is one
hyper-parameter of our model. We refer to PGN-
ADBERT for the updated input representation.

Formally, for an adapter defined by Equation 2,
all its parameters are dynamically generated by:

Wdown = TWdown × ea, bdown = Tbdown × ea,

Wup = TWup × ea, bup = Tbup × ea,

(4)

14The voting is conducted at the token-level and then merge
continuous tokens if they belong to a same-type expression.

15We have added the gold-standard annotations in the revi-
sion of this work, but we keep this data setting.

CRF

BiLSTM

BERT Layer Ln ⊕ AdapterAdapters PGNs
Params

......

BERT Layer Ln−p+1⊕ AdaptersAdapters PGNs
Params

BERT Layer Ln−p ⊕ AdaptersAdapters

......

BERT Layer L1 ⊕ AdapterAdapters

......

x1 · · ·xn ea

ya
1 · · · ya

n

PGN-
ADBERT

Encoding

Decoding

Figure 3: The annotator-adapter model. Given a joint
input of the text x1 · · ·xn and the annotator ID a, we
first convert a to its embedding ea. Then, PGN use ea

generate annotator-specific parameters for the adapters
in top p BERT layers (i.e., from Ln to Ln−p+1) to com-
pute annotator-aware input representations. Finally, the
BiLSTM encode the representations to high-level fea-
tures and the CRF decoder predict the labels ya1 · · · yan
that a gives to x1 · · ·xn.

where TWdown , Tbdown , TWup and Tbup are learnable
model parameters for the PGN-ADBERT. For any
matrix-format model parameter W ∈ RM×N , we
have TW ∈ RM×N×d, where d is the dim of the
annotator embedding. Similarly, for the vectorial
parameter b ∈ RN , we have Tb ∈ RN×d.

Thus, the overall input representation of the
annotator-adapter can be rewritten as:

r1 · · · rn = PGN-ADBERT(x1 · · ·xn, ea), (5)

which jointly encodes the text and the annotator.
At the training stage, it uses the embedding of

crowd annotators to generate crowd model param-
eters to learn crowd annotations. At the inference
stage, it uses the centroid point of all annotator
embeddings to estimate the expert, predicting the
high-quality opinion expressions for raw texts. This
expert embedding can be computed directly by:

eexpert =
1

|A|
∑
a∈A

ea, (6)

where A represents all annotators.

3.3 Annotator Mixup
By scrutinizing the annotator-adapter model, we
can find that there is a minor mismatch during the
model training and testing. During the training,
the input annotators are all encoded individually.
While during the testing, the input expert is a mix-
ture of the crowd annotators, which is never mod-
eled. To tackle this divergence, we introduce the
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mixup (Zhang et al., 2018) strategy over the indi-
vidual annotators to generate a number of synthetic
samples with linear mixtures of annotators, making
the training and testing highly similar.

The mixup strategy is essentially an effective
data augmentation method that has received in-
creasing attention recently in the NLP community
(Zhang et al., 2020; Sun et al., 2020). The method
is applied between two individual training instances
originally, by using linear interpolation over a hid-
den input layer and the output. In this work, we
confine the mixup onto the two training instances
with the same input sentence for annotator mixup.

Formally, given two training instances (x1 ◦
a1,y1) and (x2 ◦ a2,y2), the mixup is executed
only when x1 = x2, thus the interpolation is actu-
ally performed between (a1,y1) and (a2,y2). Con-
cretely, the input interpolation is conducted at the
embedding layer, and the output interpolation is
directly mixed at the sentence-level:

emix = λea1 + (1− λ)ea2 ,
ymix = λy1 + (1− λ)y2,

(7)

where λ ∈ [0, 1] is a hyper-parameter which is
usually sampled from the Beta(α, α) distribution,
and y∗ is the one-hot vectorial form, where ∗ ∈
[1, 2,mix].16 Finally, the loss objective of the new
instance is calculated by:

Lmix = − log
exp

(
score(ymix)

)∑
Ỹ
exp

(
score(ỹ)

) , (8)

where all scores are computed based on x1/x2 and
emix, and Ỹ is all possible outputs for x1/x2.

Finally, we can produce a number of augmented
instances by the annotator mixup. These instances,
together with the original training instances, are
used to optimize our model parameters. The en-
hanced model is able to perform inference more
robustly by using the mixture (i.e, average) of an-
notators, which is the estimation of the expert.

4 Experiment

4.1 Setting
Evaluation. We use the span-level precision (P),
recall (R) and their F1 for evaluation, since OEI
is essentially a span recognition task. Following
Breck et al. (2007); İrsoy and Cardie (2014), we

16Note that y∗ is at the sentence-level, where the dimension
size is the number of all possible outputs of the given input.
We mix the loss of y1 and y2 instead of themself in practice.

exploit three types of metrics, namely exact match-
ing, proportional matching and binary matching,
respectively. The exact metric is straightforward
and has been widely applied for span-level entity
recognition tasks, which regards a predicted opin-
ion expression as correct only when its start-end
boundaries and polarity are all correct. Here we
exploit the exact metric as the major method. The
two other metrics are exploited because the ex-
act boundaries are very difficult to be unified even
for experts. The binary method treats an expres-
sion as correct when it contains an overlap with
the ground-truth expression, and the proportional
method uses a balanced score by the proportion of
the overlapped area referring to the ground-truth.

We use the best-performing model on the devel-
opment corpus to evaluate the performance of the
test corpus. All experiments are conducted on a
single RTX 2080 Ti card at an 8-GPU server with
a 14 core CPU and 128GB memory. We run each
setting by 5 times with different random seeds, and
the median evaluation scores are reported.

Hyper-parameters. We exploit the bert-base-
chinese for input representations.17 The adapter
bottleneck size and the BiLSTM hidden size are
set to 128 and 400, respectively. For the annotator-
adapter, we set the annotator embedding size d = 8
and generate the adapter parameters for the last
p = 6 BERT layers. For the annotator mixup, we
set α of the Beta(α, α) distribution to 0.5.

We apply the sequential dropout to the input
representations, which randomly sets the hidden
vectors in the sequence to zeros with a probabil-
ity of 0.2, to avoid overfitting. We use the Adam
algorithm to optimize the parameters with a con-
stant learning rate 1 × 10−3 and a batch size 64,
and apply the gradient clipping mechanism by a
maximum value of 5.0 to avoid gradient explosion.

Baselines. Two annotator-agnostic baselines (i.e.,
ALL and MV) and the silver-corpus trained model
Silver are all implemented in the same base-
line structure and hyper-parameters. We also im-
plement two annotator-aware methods presented
in Nguyen et al. (2017), where the annotator-
dependent noises have been modeled explicitly.
The LSTM-Crowd model encodes the output la-
bel bias (i.e., noises) for each individual annotator
(biased-distributions) towards the expert (zeroed-
distribution), and the LSTM-Crowd-cat model

17https://github.com/google-research/bert
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Method Exact Proportional Binary
P R F1 P R F1 P R F1

Gold 61.12 53.54 57.08 81.97 72.28 76.82 85.79 77.51 81.44
Silver 55.27 53.25 54.24 75.79 73.01 74.37 81.23 78.25 79.71

ALL 61.06 45.49 52.14 82.47 61.44 70.42 86.98 64.80 74.27
MV 53.95 50.97 52.42 74.23 70.13 72.12 78.98 74.62 76.74

LSTM-Crowd (Nguyen et al., 2017) 60.55 47.68 53.35 83.79 61.32 70.82 88.71 64.92 74.98
LSTM-Crowd-cat (Nguyen et al., 2017) 59.07 47.51 52.66 77.56 62.39 69.15 83.70 67.33 74.63
BSC-seq (Simpson and Gurevych, 2019) 40.80 59.27 48.33 55.35 82.41 66.23 60.66 90.33 72.58

Annotator-Adapter (Zhang et al., 2021) † 61.08 48.16 53.86 81.70 65.40 72.65 87.20 69.81 77.55
Annotator-Adapter + mixup † 61.27 49.22 54.59 81.82 68.30 74.45 87.02 71.48 78.49

Table 3: The test results, where all methods are backended by BERT-BiLSTM-CRF for a fair comparison. The Gold
and Silver denotes models trained with expert annotations and sentence-level expert aggregation (silver-standard
in §2.4), respectively. The † indicates statistical significance compared to baselines with p < 0.01 by paired t-test.

applies a similar idea but implementing at the BiL-
STM hidden layer. During the testing, zero-vectors
are exploited to simulate the expert accordingly.
Their main idea is to reach a robust training on the
noisy dataset, which is totally different from our ap-
proach. In addition, we aggregate crowd labels of
the training corpus by a Bayesian inference method
(Simpson and Gurevych, 2019), namely BSC-seq,
based on their code18 and then evaluate its results
with the same BERT-BiLSTM-CRF architecture.

4.2 Main Results
Table 3 shows the test results on our dataset. In
general, the exact matching scores are all at a rela-
tively low level, demonstrating that precise opinion
boundaries are indeed difficult to identify. With
the gradual relaxation of metrics (from exact to
binary), scores are increased accordingly, showing
that these models can roughly locate the opinion
expressions to a certain degree.

Dataset comparison. Similar to the tasks like
NER (Zhou et al., 2021), POS tagging, dependency
parsing (Straka, 2018) and so on, in which English
models have performed better than the Chinese,
we see the same pattern in our OEI task. The ex-
act matching F1 57.08 of the Gold corpus trained
model still has a performance gap compared with
that of the English MPQA dataset (i.e., 63.71 by
a similar BERT-based model of Xia et al. (2021)).
This may due to (1) the opinion boundaries in the
word-based English MPQA are easier to locate than
our character-based Chinese dataset; (2) the social
media domain of our dataset, is more difficult than
the news domain of MPQA.

18https://github.com/UKPLab/arxiv2018-bayesian-
ensembles

Method comparison. First, we compare two
annotator-agnostic methods (i.e., All and MV) with
annotator-aware ones (i.e., the rest of models). As
shown in Table 3, we can see that annotator-aware
modeling is effective as a whole, bringing bet-
ter performance on exact matching. In particu-
lar, our basic annotator-adapter model is able to
give the best F1 among these selected baselines,
demonstrating its advantage in crowdsourcing mod-
eling. When the annotator-mixup is applied, the
test scores are further boosted, showing the effec-
tiveness of our annotator mixup. The overall ten-
dencies of the two other metrics are similar by
comparing our models with the others.

Our final performance is not only comparable
to the silver corpus trained model, which we
can take it as a weak upper-bound. but also close
to the upper-bound model with expert annotations
(i.e., Gold). Thus, our result for Chinese OEI is
completely acceptable, demonstrating that crowd-
sourcing annotations are indeed with great value
for model training. The observation indicates that
crowdsourcing could be a highly-promising alter-
native to build a Chinese OEI system at a low cost.

4.3 Analysis
Here we conduct fine-grained analyses to better
understand the task and these methods in-depth,
where the evaluation by exact matching is used
in this subsection. There are several additional
analyses which are shown in the Appendix.

Performance by the opinion expression length.
Intuitively, the identification of opinion expressions
can be greatly affected by the length of the expres-
sions, and longer expressions might be more chal-
lenging to be identified precisely. Figure 4 shows

2807

https://github.com/UKPLab/arxiv2018-bayesian-ensembles
https://github.com/UKPLab/arxiv2018-bayesian-ensembles


1-2 3 4 5 6 7 8+

25

30

35

40

MV LSTM-crowd

Annotator Adapter
+ mixup

Figure 4: F1 scores of exact matching in terms of the
opinion expression length. We bucket the opinion ex-
pressions into seven categories, where each category
includes more than 100 opinion expressions.

the F1 scores in terms of expression lengths by
the four models we focused. We can see that the
F1 score decreases dramatically when the expres-
sion length becomes larger than 4, which is consis-
tent with our intuition. In addition, the annotator-
adapter model is better than previous methods, and
the mixup model can reach the best performance on
almost all the categories, indicating the robustness
of our annotator mixup.

Influence of the opinion number per sentence.
One sentence may have more than one opinion
expressions, where these opinions might be mutu-
ally helpful or bring increased ambiguities. It is
interesting to study the model behaviors in terms
of opinion numbers. Here we conduct experimen-
tal comparisons by dividing the test corpus into
three categories: (1) only one opinion expression
exists in a sentence; (2) at least two opinions ex-
ist, and they are of the same sentiment polarity;
(3) both positive and negative opinion expressions
exist. As shown in Figure 5, the sentences with
multiple opinions of a consistent polarity can ob-
tain the highest F1 score. The potential reason
might be that the expressed opinions of these sen-
tences are usually highly affirmative with strong
sentiments, and the consistent expressions can be
mutually helpful according to our assumption. For
the other two categories, it seems that they are
equally difficult according to the final scores. For
all three categories, two annotator-adapter models
demonstrate better performance than the others.

Self-evaluation of crowd annotators. The an-
notator adapter uses a pseudo expert embedding
to predict opinion expressions and evaluate perfor-
mance on the gold-standard annotations of experts.
It is interesting to examine the self-evaluation per-
formance on the crowd annotations of the test cor-
pus as well. During the inference, we use the crowd

O MOSP MOCP

47

50

53

56
Annotator Adapter + mixup MV LSTM-crowd

Figure 5: F1 scores of exact matching by follow-
ing three category sentences: (1) one-opinion (O),
(2) multiple-opinion single-polarity (MOSP), and (3)
multiple-opinion contradict-polarity (MOCP).

Model Exact
P R F1

ALL 52.24 34.17 41.32
MV 43.79 38.70 41.09

LSTM-Crowd 46.57 38.19 41.97
LSTM-Crowd-cat 52.10 32.79 40.25

Annotator-Adapter 55.81 42.80 48.45
Annotator-Adapter + mixup 52.76 43.68 47.79

Table 4: The evaluation results on the crowd test set,
i.e., we compute F1 scores between model predictions
and crowd annotations. The ALL and MV have no
modifications. The other annotator-aware models have
replaced the expert vector with the specific annotator
vector corresponding to the annotations when testing.

annotators as inputs, and calculate the model per-
formance on the corresponding crowd annotations.

Table 4 shows the results. First, two annotator-
agnostic models (i.e., ALL and MV) have similar
poor performance since they are trying to esti-
mate the expert annotation function rather than
learn crowd annotations. Second, the perfor-
mance of two annotator-noise-modeling methods,
LSTM-Crowd and LSTM-Crowd-cat, respec-
tively, is close to the annotator-agnostic ones, show-
ing that they are also incapable to model individual
annotators. Then, our two annotator-adapter mod-
els achieve leading performance compared with
all baseline methods, giving a significant gap (at
least 47.79− 41.97 = 5.82 in F1). They are more
capable of predicting crowd annotations, demon-
strating the ability to model the annotators effec-
tively. To our surprise, the mixup annotator-adapter
model does not exceed the basic one, indicating that
the mixed annotator embeddings in training could
slightly hurt the modeling of individual annotators.

5 Related Work

OEI is one important task in opinion mining (Liu,
2012), and has received great interests (Breck et al.,
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2007; İrsoy and Cardie, 2014; Xia et al., 2021).
The early studies can be dated back to Wilson et al.
(2005) and Breck et al. (2007), which exploit CRF-
based methods for the task with manually-crafted
features. SemiCRF is exploited next in order to ex-
ploit span-based features (Yang and Cardie, 2012).
Recently, neural network models have attracted the
most attention. İrsoy and Cardie (2014) present a
deep bi-directional recurrent neural network (RNN)
to identify opinion expressions. BiLSTM is also
used in Katiyar and Cardie (2016) and Zhang et al.
(2019), showing improved performance on OEI.
Fan et al. (2019) design an Inward-LSTM to incor-
porate the opinion target information for identify-
ing opinion expressions given their target, which
can be seen as a special case of our task. Xia et al.
(2021) employ pre-trained BERT representations
(Devlin et al., 2019) to increase the identification
performance of joint extraction of the opinion ex-
pression, holder and target by a span-based model.

All the above studies are in English and based
on the MPQA (Wiebe et al., 2005), or customer
reviews (Wang et al., 2016, 2017; Fan et al., 2019)
since there are very few datasets available for other
languages. Hence, we construct a large-scale Chi-
nese corpus for this task by crowdsourcing, and bor-
row a novel representation learning model (Zhang
et al., 2021) to handle the crowdsourcing annota-
tions. In this work, we take the general BERT-
BiLSTM-CRF architecture as the baseline, which
is a competitive model for OEI task.

Crowdsourcing as a cheap way to collect a large-
scale training corpus for supervised models has
been gradually popular in practice (Snow et al.,
2008; Callison-Burch and Dredze, 2010; Traut-
mann et al., 2020). A number of models are de-
veloped to aggregate a higher-quality corpus from
the crowdsourcing corpus (Raykar et al., 2010; Ro-
drigues et al., 2014a,b; Moreno et al., 2015), aiming
to reduce the gap over the expert-annotated corpus.
Recently, modeling the bias between the crowd
annotators and the oracle experts has been demon-
strated effectively (Nguyen et al., 2017; Simpson
and Gurevych, 2019; Li et al., 2020), focusing on
the label bias between the crowdsourcing annota-
tions and gold-standard answers, regarding crowd-
sourcing annotations as annotator-sensitive noises.
Zhang et al. (2021) do not hold crowdsourcing
annotations as noisy labels, while regard them as
ground-truths by the understanding of individual
crowd annotators. In this work, we follow the

idea of Zhang et al. (2021) to explorate our crowd-
sourcing corpus, and further propose the annotator
mixup to enhance the learning of the expert repre-
sentation for the test stage.

6 Conclusion

We presented the first work of Chinese OEI by
crowdsourcing, which is also the first crowd-
sourcing work of OEI. First, we constructed an
extremely-noisy crowdsourcing corpus at a very
low cost, and also built gold-standard dataset by
experts for experimental evaluations. To verify the
value of our low-cost and extremely-noisy corpus,
we exploited the annotator-adapter model presented
by Zhang et al. (2021) to fully explore the crowd-
sourcing annotations, and further proposed an
annotator-mixup strategy to enhance the model. Ex-
perimental results show that the annotator-adapter
can make the best use of our crowdsourcing cor-
pus compared with several representative baselines,
and the annotator-mixup strategy is also effective.
Our final performance can reach an F-score of
54.59% by exact matching. This number is actually
highly competitive by referring to the model trained
on expert annotations (57.08%), which indicates
that crowdsourcing can be highly recommendable
to set up a Chinese OEI system fast and cheap,
although the collected corpus is extremely noisy.

Ethical/Broader Impact

We construct a large-scale Chinese opinion expres-
sion identification dataset with crowd annotations.
We access the original posts by manually traversing
the relevant Weibo topics or searching the corre-
sponding keywords, and then copy and anonymize
the text contents. All posts we collected are open-
access. In addition, we also anonymize all annota-
tors and experts (only keep the ID for the research
purpose). All annotators were properly paid by
their actual efforts. This dataset can be used for
both the Chinese opinion expression identification
task as well as crowdsourcing sequence labeling.
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Model Exact F1 Prop F1 Binary F1
p

4 46.00 60.95 65.02
6 53.86 72.65 77.55
8 53.39 72.54 78.32
10 53.21 72.55 78.08
12 52.82 71.04 74.52

α in Beta(α, α)
0.2 54.86 72.92 78.19
0.5 55.15 73.37 77.79
0.8 55.18 73.00 77.48
1.0 54.78 72.35 76.98

Mixup Training Strategy
One-Stage 55.15 73.37 77.79
Two-Stage 54.59 74.45 78.49

Fine-tuning Based Models
ALL 52.35 69.58 76.99
MV 47.52 69.07 76.09
Silver 54.47 73.16 79.99
(2017) 53.17 70.81 77.23
(2017)-cat 53.01 70.03 76.95

Table 5: Experimental results of various settings.

A Annotation Guideline

In this annotation task, we will give a number of
sentences that have a high probability of express-
ing positive or negative sentiment, and your goal is
to label the words that expresses these sentiments
in each sentence. An intuitive criteria for deter-
mining whether words are expressing sentiment
is that if these words are replaced, the sentiment
expressed by the sentence will also change. Senti-
mental words will not usually be names of people,
places, time or pronouns, etc. It is important to
note that (1) you need to carefully understand the
emotion expressed by the sentence, not judge it
according to your own values, and (2) the labeled
words usually do not include the target of the sen-
timent, such as pronouns, names of people, etc.,
which are generally not affected by the replace-
ment of these words.

B Hyper-parameter Tuning

We also implement the baseline models in the
fine-tuning style, results (in Table 5) show that
the adapter-based models are comparable and
parameter-efficient.

PGN Adapter Layers First, we examine the in-
fluence of PGN adapter layers mentioned in §3.2
by p, which is a hyper-parameter in our annotator-
adapter. As shown in Table 5, we can see that the
performance is stable between p ∈ [6, 8, 10]. After
considering both the parameter scale and the capa-
bility of our model, we set p = 6 for a trade-off.
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Annotator Mixup The mixup includes a hyper-
parameter α to control the interpolation by the dis-
tribution Beta(α, α). Here we show the influence
of α by setting it with 0.2, 0.5, 0.8, and 1.0. We
find that the model performance has no significant
differences between these values, as shown in Ta-
ble 5. To train our mixup model, we also have a
reasonable small trick: training the mixup model in
two stages. First, the model is trained only with the
original corpus. When the model achieves the best
performance on the devset, we begin the second-
stage training by using the original corpus as well
as the augmented corpus. Their performance dif-
ference is shown in Table 5, which indicates that
the two-stage training is important for our mixup
model.

C Expert-Evaluation of Crowd
Annotators

We evaluate the performance of each learned anno-
tator of three annotator-aware models towards the
expert’s view. The goal is achieved by using the
individual annotator embeddings as input to obtain
the output predicted by this specific annotator, and
then measure the output performance based on the
gold-standard test corpus. Table 7 shows the results.
There is a huge discrepancy between the scores of
different learned annotators of LSTM-Crowd or
annotator-adapter, demonstrating annota-
tors have different abilities in predicting gold labels.
This is mainly because the annotators have different
abilities meanwhile the annotations they gave have
different qualities. All annotators in the annotator-
adapter model are unable to outperform the ex-
pert (centroid point), verifying that the estimated
expert is strong and reasonable. In addition, the
learned annotators of our mixup model have closer
performances since the annotator-mixup change
the learning objective from modeling annotators to
modeling the expert, which can further boost the
performance of the estimated expert.

D Case Study

For a more intuitive understanding of our task and
various models, we offer a paradigmatic example
from the test set to analyze their outputs. Table 6
shows the gold annotation and model predictions.
As shown, the ALL method can correctly recognize
all three opinions, but fails to predict the correct
boundaries. The MV method splits one opinion into
two, and is able to recall one full opinion expres-

Model Text and Opinions

Gold

现在驱车在这清冷寂寥的街路上，这些热闹的闪亮的
灯光倒让人有心安的感觉。

Now driving on this cold and lonely street, these
lively and shiny lights make me ease.

ALL

现在驱车在这清冷寂寥的街路上，这些热闹的闪亮的
灯光倒让人有心安的感觉。

Now driving on this cold and lonely street, these
lively and shiny lights make me ease.

MV

现在驱车在这清冷寂寥的街路上，这些热闹的闪亮的
灯光倒让人有心安的感觉。

Now driving on this cold and lonely street, these
lively and shiny lights make me ease.

LSTM-
Crowd

现在驱车在这清冷寂寥的街路上，这些热闹的闪亮的
灯光倒让人有心安的感觉。

Now driving on this cold and lonely street, these
lively and shiny lights make me ease.

Our
Vanilla

现在驱车在这清冷寂寥的街路上，这些热闹的闪亮的
灯光倒让人有心安的感觉。

Now driving on this cold and lonely street, these
lively and shiny lights make me ease.

Our
Final

现在驱车在这清冷寂寥的街路上，这些热闹的闪亮的
灯光倒让人有心安的感觉。

Now driving on this cold and lonely street, these
lively and shiny lights make me ease.

Table 6: Case Study. The blue rectangles and red boxes
with round corners are negative and positive, respec-
tively.

sion exactly. The LSTM-Crowd is similar to ALL
yet slightly better. Both the annotator-adapter and
our mixup models can obtain better results for this
example. Note that all three opinions are difficult
to be fully recognized even by crowd annotators.
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Annota- LSTM- Annotator- + Annota- LSTM- Annotator- + Annota- LSTM- Annotator- +
tor ID Crowd Adapter mixup tor ID Crowd Adapter mixup tor ID Crowd Adapter mixup

0 50.76 47.31 54.63 24 28.45 11.99 44.04 48 40.27 40.52 55.27
1 44.02 40.05 51.84 25 51.69 47.50 55.56 49 47.28 50.45 54.80
2 53.30 48.20 55.18 26 49.05 40.18 53.26 50 51.27 47.89 52.72
3 38.63 13.01 45.14 27 51.58 48.08 54.19 51 50.86 49.45 54.42
4 43.37 29.78 55.22 28 51.69 38.10 48.99 52 54.92 40.82 49.88
5 55.02 47.95 53.84 29 51.46 46.31 55.06 53 47.63 31.20 52.81
6 45.02 46.13 54.66 30 45.30 33.83 55.20 54 49.60 43.54 54.85
7 52.93 43.56 55.60 31 46.19 44.14 49.29 55 54.88 41.97 55.44
8 35.40 22.55 46.86 32 50.02 41.63 53.52 56 55.98 52.35 56.12
9 46.61 37.30 54.58 33 36.78 40.17 54.43 57 53.56 44.90 53.13
10 50.33 45.37 54.76 34 39.01 34.48 52.80 58 45.19 31.42 48.81
11 49.98 48.87 54.17 35 48.17 49.09 52.66 59 53.09 43.95 53.65
12 53.90 48.53 55.69 36 54.45 47.14 56.18 60 35.27 13.13 52.97
13 54.51 49.11 54.88 37 53.32 43.87 54.44 61 52.46 34.26 54.79
14 49.86 48.65 53.08 38 51.08 43.25 52.08 62 41.95 38.49 51.39
15 41.64 32.81 49.25 39 42.33 31.08 52.68 63 35.73 43.76 54.10
16 53.51 41.33 53.95 40 46.63 42.81 53.46 64 52.56 40.93 52.93
17 50.11 34.24 52.71 41 46.50 40.38 53.45 65 48.70 34.95 51.83
18 52.80 41.83 54.98 42 50.31 44.68 51.85 66 46.21 30.29 52.67
19 42.29 35.71 51.46 43 54.73 48.57 51.47 67 46.24 33.75 49.53
20 51.38 47.30 52.00 44 47.34 31.86 52.75 68 35.36 15.34 50.08
21 35.39 37.10 47.02 45 46.83 28.98 54.59 69 32.06 22.67 52.54
22 52.62 43.67 53.10 46 54.26 40.30 52.05 Expert 53.35 53.86 54.5923 53.49 47.08 54.62 47 49.73 41.55 54.41

Table 7: The F1 scores by using different crowd annotators as input on the gold testset. Exact matching scores are
reported. The LSTM-Crowd just learns an estimation of expert assisted by modeling the label bias of annotators,
while the annotator-adapter model learns the different understandings of each annotator but not the expert annotations.
Our final mixup model is much more stable across different annotators. The observation indicates that, with the
application of annotator-mixup, all annotators can learn from each other and improve towards the expert level
together, which can enhance the expert-modeling.
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