
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2715 - 2735

May 22-27, 2022 c©2022 Association for Computational Linguistics

KGTuner: Efficient Hyper-parameter Search for
Knowledge Graph Learning

Yongqi Zhang1 Zhanke Zhou2 Quanming Yao3 Yong Li3
14Paradigm Inc., Beijing, China

2Hong Kong Baptist University, Hong Kong, China
3Department of Electronic Engineering, Tsinghua University, Beijing, China

zhangyongqi@4paradigm.com, cszkzhou@comp.hkbu.edu.hk, qyaoaa/liyong07@tsinghua.edu.cn

Abstract

While hyper-parameters (HPs) are important
for knowledge graph (KG) learning, existing
methods fail to search them efficiently. To
solve this problem, we first analyze the proper-
ties of different HPs and measure the trans-
fer ability from small subgraph to the full
graph. Based on the analysis, we propose
an efficient two-stage search algorithm KG-
Tuner, which efficiently explores HP config-
urations on small subgraph at the first stage
and transfers the top-performed configurations
for fine-tuning on the large full graph at the
second stage. Experiments show that our
method can consistently find better HPs than
the baseline algorithms within the same time
budget, which achieves 9.1% average relative
improvement for four embedding models on
the large-scale KGs in open graph benchmark.
Our code is released in https://github.
com/AutoML-Research/KGTuner. 1

1 Introduction

Knowledge graph (KG) is a special kind of graph
structured data to represent knowledge through en-
tities and relations between the entities (Wang et al.,
2017; Ji et al., 2021). Learning from KG aims to
discover the latent properties from KGs to infer
the existence of interactions among entities or the
types of entities (Wang et al., 2017; Zhang and
Yao, 2022). KG embedding, which encodes enti-
ties and relations as low dimensional vectors, is
an important technique to learn from KGs (Wang
et al., 2017; Ji et al., 2021). The existing models
range from translational distance models (Bordes
et al., 2013), tensor factorization models (Nickel
et al., 2011; Trouillon et al., 2017; Balažević et al.,
2019), neural network models (Dettmers et al.,
2017; Guo et al., 2019), to graph neural networks
(Schlichtkrull et al., 2018; Vashishth et al., 2020).

1The work is performed when Z. Zhou was an intern in
4Paradigm, and correspondence is to Q. Yao.

Hyper-parameter (HP) search (Claesen and
De Moor, 2015) is very essential for KG learn-
ing. In this work, we take KG embedding methods
(Wang et al., 2017), as a good example to study the
impact of HPs to KG learning. As studied, the HP
configurations greatly influence the model perfor-
mance (Ruffinelli et al., 2019; Ali et al., 2020). An
improper HP configuration will impede the model
from stable convergence, while an appropriate one
can make considerable promotion to the model per-
formance. Indeed, studying the HP configurations
can help us make a more scientific understanding
of the contributions made by existing works (Rossi
et al., 2021; Sun et al., 2020). In addition, it is also
important to search for an optimal HP configura-
tion when adopting KG embedding methods to the
real-world applications (Bordes et al., 2014; Zhang
et al., 2016; Saxena et al., 2020).

Algorithms for HP search on general machine
learning problems have been well-developed (Clae-
sen and De Moor, 2015). As shown in Figure 1(a),
the search algorithm selects a HP configuration
from the search space in each iteration, then the
evaluation feedback obtained by full model training
is used to update the search algorithm. The optimal
HP is the one achieving the best performance on
validation data in the search process. Representa-
tive HP search algorithms are within sample-based
methods like grid search, random search (Bergstra
and Bengio, 2012), and sequential model-based
Bayesian optimization (SMBO) methods like Hy-
peropt (Bergstra et al., 2013), SMAC (Hutter et al.,
2011), Spearmint (Snoek et al., 2012) as well as
BORE (Tiao et al., 2021), etc. Recently, some
subgraph-based methods (Tu et al., 2019; Wang
et al., 2021) are proposed to learn a predictor with
configurations efficiently evaluated on small sub-
graphs The predictor is then transferred to guide
HP search on the full graph. However, these meth-
ods fail to efficiently search a good configuration of
HPs for KG embedding models since the training

2715

https://github.com/AutoML-Research/KGTuner
https://github.com/AutoML-Research/KGTuner

!

ℳ(# $∗, & , '-'.)

search
algorithm

evaluate on
full graph '

updateselect

& !∗

! → #!

evaluate on
subgraph)"!

search
algorithm

update

$!
select

stage one: efficient evaluation on subgraph

→

(a) Conventional methods

! → !!

evaluate on
subgraph) ℳ(# $∗, *& ,)-'.)"!

search
algorithm

update

top10

search
algorithm

ℳ(# $∗, +&∗ , '-'.)

#!∗

select

#!∗

!!|$
select

evaluate on
full graph '

stage one: efficient evaluation on subgraph stage two: fine-tune the top configurations

transfer
update

!∗

→

!!|#∗

!!|$∗
↑ batch size

↑ dimension size

shrink

decouple

→

(b) KGTuner

Figure 1: The framework of conventional HP search algorithm and the proposed KGTuner.

cost of individual model is high and the correlation
of HPs in the huge search space is very complex.

To address the limitations of existing HP search
algorithms, we carry a comprehensive understand-
ing study on the influence and correlation of HPs
as well as their transfer ability from small subgraph
to full graph in KG learning. From the aspect of
performance, we classify the HPs into four differ-
ent groups including reduced options, shrunken
range, monotonously related and no obvious pat-
terns based on their influence on the performance.
By analyzing the validation curvature of these HPs,
we find that the space is rather complex such that
only tree-based models can approximate it well. In
addition, we observe that the consistency between
evaluation on small subgraph and that on the full
graph is high, while the evaluation cost is signifi-
cantly smaller on the small subgraph.

Above understanding motivates us to reduce the
size of search space and design a two-stage search
algorithm named as KGTuner. As shown in Fig-
ure 1(b), KGTuner explores HP configurations in
the shrunken and decoupled space with the search
algorithm RF+BORE (Tiao et al., 2021) on a sub-
graph in the first stage, where the evaluation cost of
HPs are small. Then in the second stage, the con-
figurations achieving the top10 performance at the
first stage are equipped with large batch size and
dimension size for fine-tuning on the full graph.

Within the same time budget, KGTuner can con-
sistently search better configurations than the base-
line search algorithms for seven KG embedding
models on WN18RR (Dettmers et al., 2017) and
FB15k-237 (Toutanova and Chen, 2015). By ap-
plying KGTuner to the large-scale benchmarks
ogbl-biokg and ogbl-wikikg2 (Hu et al., 2020), the
performances of embedding models are improved
compared with the reported results on OGB link
prediction leaderboard. Besides, we justify the im-
provement of efficiency via analyzing the design
components in KGTuner.

2 Background: HPs in KG embedding

We firstly revisit the important and common HPs
in KG embedding. Following the general frame-
work (Ruffinelli et al., 2019; Ali et al., 2020), the
learning problem can be written as

P ∗=argminP L(F (·,P), D+, D−)+r(P), (1)

where F is the form of an embedding model with
learnable parameters P , D+ is the set of positive
samples from the training data, D− represents neg-
ative samples, and r(·) is a regularization func-
tion. There are four groups of hyper-parameters
(Table 1), i.e., the size of negative sampling for
D−, the choice of loss function L, the form of reg-
ularization r(·), and the optimization argminP .
Embedding model. While there are many ex-
isting embedding models, we follow (Ruffinelli
et al., 2019) to focus on some representative mod-
els. They are translational distance models TransE
(Bordes et al., 2013) and RotatE (Sun et al., 2019),
tensor factorization models RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2015), ComplEx
(Trouillon et al., 2017) and TuckER (Balažević
et al., 2019), and neural network models ConvE
(Dettmers et al., 2017). Graph neural networks
for KG embedding (Schlichtkrull et al., 2018;
Vashishth et al., 2020; Zhang and Yao, 2022) are
not studied here for their scalability issues on large-
scale KGs (Ji et al., 2021).
Negative sampling. Sampling negative triplets is
important as only positive triplets are contained
in the KGs (Wang et al., 2017). We can pick up
m triplets by replacing the head or tail entity with
uniform sampling (Bordes et al., 2013) or use a full
set of negative triplets. Using the full set can be
defined as the 1VsAll (Lacroix et al., 2018) or
kVsAll (Dettmers et al., 2017) according to the
positive triplets used. The methods (Cai and Wang,
2018; Zhang et al., 2021) requiring additional mod-
els for negative sampling are not considered here.

2716

Table 1: The HP space. Conditioned HPs are in parenthesize. “adv.” and “reg.” are short for “adversarial”
and “regularization”, respectively. Please refer to the Appendix A for more details.

component name type range

negative sampling # negative samples cat {32, 128, 512, 2048, 1VsAll, kVsAll}

loss function
loss function cat {MR, BCE_(mean, sum, adv), CE}
gamma (MR) float [1, 24]

adv. weight (BCE_adv) float [0.5, 2.0]

regularization
regularizer cat {FRO, NUC, DURA, None}

reg. weight (not None) float [10−12, 102]
dropout rate float [0, 0.5]

optimization

optimizer cat {Adam, Adagrad, SGD}
learning rate float [10−5, 100]

initializer cat {uniform, normal, xavier_uniform, xavier_norm}
batch size int {128, 256, 512, 1024}

dimension size int {100, 200, 500, 1000, 2000}
inverse relation bool {True, False}

Loss function. There are three types of loss func-
tions. One can use margin ranking (MR) loss (Bor-
des et al., 2013) to rank the positive triplets higher
over the negative ones, or use binary cross entropy
(BCE) loss, with variants BCE_mean, BCE_adv
(Sun et al., 2019) and BCE_sum (Trouillon et al.,
2017), to classify the positive and negative triplets
as binary classes, or use cross entropy (CE) loss
(Lacroix et al., 2018) to classify the positive triplet
as the true label over the negative triplets.
Regularization. To balance the expressiveness
and complexity, and to avoid unbounded embed-
dings, the regularization techniques can be con-
sidered, such as regularizers like Frobenius norm
(FRO) (Yang et al., 2015; Trouillon et al., 2017),
Nuclear norm (NUC) (Lacroix et al., 2018) as well
as DURA (Zhang et al., 2020b), and dropout on the
embeddings (Dettmers et al., 2017).
Optimization. To optimize the embeddings, im-
portant optimization choices include the optimizer,
such as SGD, Adam (Kingma and Ba, 2014) and
Adagrad (Duchi et al., 2011), learning rate, initial-
izers, batch size, embedding dimension size, and
add inverse relation (Lacroix et al., 2018) or not.

3 Defining the search problem

Denote an instance x = (x1, x2 . . . , xn), which
is called an HP configuration, in the search
space X . Let F (P ,x) be an embedding model
with model parameters P and HPs x, we define
M(F (P ,x), Dval) as the performance measure-
ment (the larger the better) on validation data Dval

and L(F (P ,x), Dtra) as the loss function (the
smaller the better) on training data Dtra. We de-
fine the problem of HP search for KG embedding
models in Definition 1. The objective is to search
an optimal configuration x∗ ∈ X such that the em-
bedding model F can achieve the best performance
on the validation data Dval.

Definition 1 (Hyper-parameter search for KG em-
bedding). The problem of HP search for KG em-
bedding model is formulated as

x∗ = argmaxx∈XM
(
F (P ∗,x), Dval

)
, (2)

P ∗ = argminP L
(
F (P ,x), Dtra

)
. (3)

Definition 1 is a bilevel optimization problem
(Colson et al., 2007), which can be solved by many
conventional HP search algorithms. The most
common and widely used approaches are sample-
based methods like grid search and random search
(Bergstra and Bengio, 2012), where the HP con-
figurations are independently sampled. To guide
the sampling of HP configurations by historical ex-
perience, SMBO-based methods (Bergstra et al.,
2011; Hutter et al., 2011) learn a surrogate model
to select configurations based on the results that
have been evaluated. Then, the model parameters
P are optimized by minimizing the loss function
L on Dtra in Eq. (3). The evaluation feedbackM
of x on the validation data Dval is used to update
the surrogate.

There are three major aspects determining the
efficiency of Definition 1: (i) the size of search
space X , (ii) the validation curvature of M(·, ·)

2717

Figure 2: Ranking distribution of selected HPs. A value with larger area in the bottom indicates the
higher ranking of this value. The four figures correspond to the four groups: reduced options, shrunken
range, monotonously related, no obvious patterns. Full results are in the Appendix B.2.

in Eq. (2), and (iii) the evaluation cost in solving
argminP L in Eq. (3). However, the existing meth-
ods (Ruffinelli et al., 2019; Ali et al., 2020) directly
search on a huge space with commonly used sur-
rogate models and slow evaluation feedback from
the full KG due to the lack of understanding on the
search problem, leading to low efficiency.

4 Understanding the search problem

To address the mentioned limitations, we measure
the significance and correlation of each HP to de-
termine the feasibility of the search space X in
Section 4.1. In Section 4.2, we visualize the HPs
that determine the curvature of Eq. (2). To reduce
the evaluation cost in Eq. (3), we analyze the ap-
proximation methods in Section 4.3. Following
(Ruffinelli et al., 2019), the experiments run on
the seven embedding models in Section 2 and two
widely used datasets WN18RR (Dettmers et al.,
2017) and FB15k-237 (Toutanova and Chen, 2015).
The experiments are implemented with PyTorch
framework (Paszke et al., 2017), on a machine with
two Intel Xeon 6230R CPUs and eight RTX 3090
GPUs with 24 GB memories each. We provide the
implementation details in the Appendix D.1.

4.1 Search space: x ∈ X
Considering such large amount of HP configura-
tions in X , we take the simple and efficient ap-
proach where HPs are evaluated under control vari-
ate (Hutter et al., 2014; You et al., 2020), which
varies the i-th HP while fixing the other HPs. First,
we discretize the continuous HPs according to their
ranges. Then the feasibility of the search space
X is analyzed by checking the ranking distribu-
tion and consistency of individual HPs. These can
help us shrink and decouple the search space. The
detailed setting for this part is in the Appendix B.1.
Ranking distribution. To shrink the search space,
we use the ranking distribution to indicate what
HP values perform consistently. Given an anchor
configuration x, we obtain the ranking of differ-

ent values θ ∈ Xi by fixing the other HPs, where
Xi is the range of the i-th HP. The ranking distri-
bution is then collected over the different anchor
configurations in Xi, different models and datasets.
According to the violin plots of ranking distribution
shown in Figure 2, the HPs can be classified into
four groups:
(a) reduced options, e.g., Adam is the best opti-

mizer and inverse relation should not be intro-
duced;

(b) shrunken range, e.g., learning rate, reg. weight
and dropout rate are better in certain ranges;

(c) monotonously related: e.g., larger batch size
and dimension size tend to be better;

(d) no obvious patterns: e.g., the remaining HPs.
Consistency. To decouple the search space, we
measure the consistency of configurations’ rank-
ings when only a specific HP changes. For the i-th
HP, if the ranking of configurations’ performance is
consistent with different values of θ ∈ Xi, we can
decouple the search procedure of the i-th HP with
the others. We measure such consistency with the
spearman’s ranking correlation coefficient (SRCC)
(Schober et al., 2018).

Given a value θ ∈ Xi, we obtain the ranking
r(x, θ) of the anchor configurations x ∈ Xi by
fixing the i-th HP as θ. Then, the SRCC between
the two HP values θ1, θ2 ∈ Xi is computed as

1−
∑

x∈Xi
|r(x, θ1)−r(x, θ2)|2

|Xi| · (|Xi|2 − 1)
, (4)

where |Xi| means the number of anchor configura-
tions in Xi. SRCC indicates the matching rate of
rankings for the anchor configurations in Xi with
respect to xi = θ1 and xi = θ2. Then the consis-
tency of the i-th HP is evaluated by averaging the
SRCC over the different pairs of (θ1, θ2) for Xi,
the different models and different datasets. The
larger consistency (in the range [−1, 1]) indicates
that changing the value of the i-th HP does not in-
fluence much on the other configurations’ ranking.

2718

(a) Ground truth (b) GP prediction (c) MLP prediction (d) RF prediction

Figure 3: Curvature of the search space and three surrogate models. The search space curvature is quite
complex with many local maximum areas. The curvature of RF approximate the ground truth best.

Figure 4: Consistency of each HP.

As in Figure 4, the batch size and dimension
size show higher consistency than the other HPs.
Hence, the evaluation of the configurations can be
consistent with different choices of the two HPs.
This indicates that we can decouple the search of
batch size and dimension size with the other HPs.

4.2 Validation curvature:M(·, ·)
We analyze the curvature of the validation perfor-
manceM(·, ·) w.r.t x ∈ X . Specifically, we follow
(Li et al., 2017) to visualize the validation loss’
landscape by uniformly varying the numerical HPs
in two directions (20 configurations in each direc-
tion) on the model ComplEx and dataset WN18RR.
From Figure 3(a), we observe that the curvature is
quite complex with many local maximum areas.

To gain insights from evaluating these configu-
rations and guide the next configuration sampling,
we learn a surrogate model as the predictor to ap-
proximate the validation curvature. The curvatures
of three common surrogates, i.e., Gaussian process
(GP) (Williams and Rasmussen, 1995), multi-layer
perceptron (MLP) (Gardner and Dorling, 1998) and
random forest (RF) (Breiman, 2001), are in Fig-
ures 3(b)-3(d). The surrogate models are trained
with the evaluations of 100 random configurations
in the search space. As shown, both GP and MLP
fail to capture the complex local surface in Fig-
ure 3(a) as they tend to learn a flat and smooth
distribution in the search space. In comparison,
RF is better in capturing the local distributions.
Hence, we regard RF as a better choice in the
search space. A more detailed comparison on the
approximation ability of different surrogates is in
the Appendix B.3.

4.3 Evaluation cost: argminP L
The evaluation cost of the HP configuration on an
embedding model is the majority computation cost
in HP search. Thus, we firstly evaluate the HPs
that have influence on the evaluation cost, includ-
ing batch size, dimension size, number of negative
samples loss function and regularizer. Then, we
analyze the evaluation transfer ability from small
subgraph to the full graph.
Cost of different HPs. The cost of each HP value
θ ∈ Xi is averaged over the different anchor config-
urations in Xi, different models and datasets. For
fair comparsion, the time cost is counted per thou-
sand iterations. We find that the evaluation cost
increases significantly with larger batch size and
dimension size, while the number of negative sam-
ples and the choice of loss function or regularizer
do not have much influence on the cost. We pro-
vide two exemplar curves in Figure 5 and put the
remaining results in the Appendix B.4.

Figure 5: Computing time cost. The dots are the
average and the shades are the standard deviation.

Transfer ability of subgraphs. Subgraphs can
efficiently approximate the properties of the full
graph (Hamilton et al., 2017; Teru et al., 2020).
We evaluate the impact of subgraph sampling on
HP search by checking the consistency between
evaluations results on small subgraph and those on
the full graph.

First, we study how to sample subgraphs. There
are several approaches to sample small subgraphs
from a large graph (Leskovec and Faloutsos, 2006).
We compare four representative approaches in Fig-
ure 6, i.e., Pagerank node sampling (Pagerank), ran-
dom edge sampling (Random Edge), single-start
random walk (Single-RW) and multi-start random

2719

walk (Multi-RW). For a fair comparison, we con-
strain the subgraphs with about 20% of the full
graph. The consistency between the sampled sub-
graph with the full graph is evaluated by the SRCC
in (4). We observe that multi-start random walk is
the best among the different sampling methods.

Figure 6: Comparison of the sampling methods.

Apart from directly transferring the evaluation
from subgraph to full graph, we can alternatively
train a predictor with observations on subgraphs
and then transfers the model to predict the con-
figuration performance on the full graph. From
Figure 6, we find that directly transferring evalu-
ations from subgraphs to the full graph is much
better than transferring the predictor model.

In addition, we show the consistency and cost
in terms of different subgraph sizes (percentage of
entities compared to the full graph) in Figure 7. As
shown, evaluation on subgraphs can significantly
improve the efficiency. When the scale increases,
the consistency increases but the cost also increases.
To balance the consistency and cost, the subgraphs
with 20% entities are the better choices.

Figure 7: Consistency and cost of different sub-
graph sizes, where the shades are the standard
deviation.

5 Efficient search algorithm

By analyzing the ranking distribution and consis-
tency of HPs in Section 4.1, we observe that not all
the HP values are equivalently good, and some HPs
can be decoupled. These observations motivate us
to revise the search space in Section 5.1. Based
on the analysis in Section 4.2 and 4.3, we then
propose an efficient two-stage search algorithm in
Section 5.2.

5.1 Shrink and decouple the search space
To shrink the search space, we mainly consider
groups (a) and (b) of HPs in Section 4.1. From
the full results in the Appendix B.2, we observe
that Adam can consistently perform better than
the other two optimizers, the learning rate is bet-
ter in the range of [10−4, 10−1], the regularization
weight is better in [10−8, 10−2], dropout rate is bet-
ter in [0, 0.3], and add inverse relation is not a good
choice.

To decouple the search space, we consider batch
size and dimension size that have larger consistency
values than the other HPs, and are monotonously re-
lated to the performance as in group (c). However,
the computation costs of batch size and dimension
size increase prominently as shown in Figure 5.
Hence, we can set batch size as 128 and dimension
size as 100 to search the other HPs with low evalu-
ation cost and increase their values in a fine-tuning
stage.

Given the full search space X , we denote the
shrunken space as XS and the further decoupled
space as XS|D. We achieve hundreds of times size
reduction from XS to XS|D and we show the details
of changes in the Appendix C.

5.2 Two-stage search algorithm (KGTuner)
As discussed in Section 4.3, the evaluation cost
can be significantly reduced with small batch size,
dimension size and subgraph. This motivates us to
design a two-stage search algorithm, named KG-
Tuner, as in Figure 1(b) and Algorithm 1.

Algorithm 1 KGTuner: two-stage search algorithm
Require: KG embedding model F , dataset D, and budget B;
1: shrink the search space X to XS and decouple XS to XS|D;

state one: efficient evaluation on subgraph
2: sample a subgraph (with 20% entities) G from Dtra by

multi-start random walk;
3: repeat
4: sample a configuration x̂ from XS|D by RF+BORE;
5: evaluate x̂ on the subgraph G to get the performance;
6: update the RF with record

(
x̂,M(F (P ∗, x̂), Gval)

)
;

7: until B/2 budget exhausted;
8: save the top10 configurations in X ∗S|D;

state two: fine-tune the top configurations
9: increase the batch/dimension size in X ∗S|D to get X̃ ∗;

10: set y∗ = 0 and re-initialize the RF surrogate;
11: repeat
12: select a configuration x̃∗ from X̃ ∗ by RF+BORE;
13: evaluate on full graph G to get the performance;
14: update the RF with record

(
x̃∗,M(F (P ∗, x̃∗),Dval)

)
;

15: ifM(F (P ∗, x̃∗), Dval) > y∗ then
y∗←M(F (P ∗, x̃∗), Dval) and x∗ ← x̃∗; end if

16: until the remaining B/2 budget exhausted;
17: return x∗.

2720

Figure 8: Search algorithm comparison (viewed in color). The dots are the results collected per hour.

• In the first stage, we sample a subgraph G with
20% entities from the full graph Dtra by multi-
start random walk. Based on the understanding
of curvature in Section 4.2, we use the surrogate
model random forest (RF) under the state-of-the
art framework BORE (Tiao et al., 2021), denoted
as RF+BORE, to explore HPs in XS|D on the sub-
graph G in steps 3-7. The top10 configurations
evaluated in this stage are saved in a set X ∗S|D.

• In the second stage, we increase batch size and
dimension size for configurations in X ∗S|D to gen-
erate a new set X̃ ∗. Then, the configurations
in X̃ ∗ are searched by the RF+BORE again in
steps 11-16 until the remaining B/2 budget is ex-
hausted.

• Finally, the configuration x∗ achieving the best
performance on the full validation data Dval is
returned for testing.

5.3 Discussion

e now summarize the main differences of KGTuner
with the existing HP search algorithms, i.e. Ran-
dom (random search) (Bergstra and Bengio, 2012),
Hyperopt (Bergstra et al., 2013), SMAC (Hutter
et al., 2011), RF+BORE (Tiao et al., 2021), and
AutoNE (Tu et al., 2019).

Table 2: Comparison of HP search algorithms.

search space surrogate fast
shrink decouple model evaluation

Random × × × ×
Hyperopt × × TPE ×

Ax × × GP ×
SMAC × × RF ×

RF+BORE × × RF ×
AutoNE × × GP

√

KGTuner
√ √

RF
√

The comparison is based on three aspects, i.e.,
search space, surrogate model and fast evaluation,
in Table 2. KGTuner shrinks and decouples the
search space based on the understanding of HPs’
properties, and uses the surrogate RF based on
the understanding on validation curvature. The
fast evaluation on subgraph in KGTuner selects the

top10 configurations to directly transfer for fine-
tuning, while AutoNE (Tu et al., 2019) just uses
fast evaluation on subgraphs to train the surrogate
model, and transfers the surrogate model for HP
search on the full graph. In Figure 6, the transfer
ability of the surrogate model is shown to be much
worse than direct transferring.

6 Empirical evaluation

6.1 Overall performance

In this part, we compare the proposed algorithm
KGTuner with six HP search algorithms in Table 2.
For AutoNE, we allocate half budget for it to search
on the subgraph and another half budget on the full
graph with the transferred surrogate model. The
baselines search in the full search space (in Table 1)
with the same amount of budget as KGTuner. We
use the mean reciprocal ranking (MRR, the larger
the better) (Bordes et al., 2013) to indicate the per-
formance.

Efficiency. We compare the different search al-
gorithms in Figure 8 on an in-sample dataset
WN18RR and an out-of-sample dataset ogbl-biokg.
The time budget we set for WN18RR is one day’s
clock time, while that for ogbl-biokg is two days’
clock time. For each dataset we show two kinds
of figures. First, the best performance achieved
along the clock time in one experiment on a spe-
cific model ComplEx. Second, we plot the the
ranking of each algorithm averaged over all the
models and datasets. Since AutoNE and KGTuner
run on the subgraphs in the first stage, the starting
points of them locate after 12 hours. The starting
point of KGTuner is a bit later than AutoNE since
it constrains to use large batch size and dimension
size in the second stage, which is more expensive.
As shown, random search is the worst. SMAC
and RF+BORE achieve better performance than
Hyperopt and Ax since RF can fit the space better
than TPE and GP as in Section 4.2. Due to the
weak transfer ability of the predictor (see Figure 6)
and the weak approximation ability of GP (see Fig-

2721

ure 3), AutoNE also performs bad. KGTuner is
much better than all the baselines. We show the
full search process of the two-stage algorithms Au-
toNE and KGTuner on WN18RR in Figure 9(a).
By exploring sufficient number of configurations
in the first stage, the configurations fine-tuned in
the second stage can consistently achieve the best
performance.
Effectiveness. For WN18RR and FB15k-237,
we provide the reproduced results on TransE,
ComplEx and ConvE with the original HPs, HPs
searched by LibKGE and HPs searched by KG-
Tuner in Table 3. The full results on the remaining
four embedding models RotatE, RESCAL, Dist-
Mult and TuckER are in the Appendix D.2. Overall,
KGTuner achieves better performance compared
with both the original reported results and the re-
produced results in (Ruffinelli et al., 2019). We
observe that the tensor factorization models such
as RESCAL, ComplEx and TuckER have better
performance than the translational distance models
TransE, RotatE and neural network model ConvE.
This conforms with the theoretical analysis that
tensor factorization models are more expressive
(Wang et al., 2018).

Table 3: MRR of models with HPs tuned in different
methods. The bold numbers mean the best perfor-
mance of the same model.

source models WN18RR FB15k-237

original
TransE 0.226 0.296

ComplEx 0.440 0.247
ConvE 0.430 0.325

LibKGE
TransE 0.228 0.313

ComplEx 0.475 0.348
ConvE 0.442 0.339

KGTuner
TransE 0.233 0.327

ComplEx 0.484 0.352
ConvE 0.437 0.335

To further demonstrate the advantage of KG-
Tuner, we apply it to the Open Graph Benchmark
(OGB) (Hu et al., 2020), which is a collection of
realistic and large-scale benchmark datasets for ma-
chine learning on graphs. Many embedding models
have been tested there by two large-scale KGs for
link prediction, i.e., ogbl-biokg and ogbl-wikikg2.
Due to their scale, the evaluation cost of a HP con-
figuration is very expensive. We use KGTuner to
search HPs for embedding models, i.e., TransE, Ro-
tatE, DistMult, ComplEx and AutoSF (Zhang et al.,
2020a), on OGB. Since the computation costs of
the two datasets are much higher, we set the time

budget as 2 days for ogbl-biokg and 5 days for ogbl-
wikikg2. All the embedding models evaluated here
are constrained to have the same (or lower) num-
ber of model parameters2. More details on model
parameters, standard derivation, and validation per-
formance are in the Appendix D.3. As shown in
Table 4, KGTuner consistently improves the perfor-
mance of the four embedding models with the same
or fewer parameters compared with the results on
the OGB board.

Table 4: Performance in MRR in OGB link
prediction board https://ogb.stanford.edu/

docs/leader_linkprop/ and those reproduced
by KGTuner on ogbl-biokg and ogbl-wikikg2. Rel-
ative improvements are in parenthesize.

models ogbl-biokg ogbl-wikikg2

TransE 0.7452 0.4256
RotatE 0.7989 0.2530

original DistMult 0.8043 0.3729
ComplEx 0.8095 0.4027
AutoSF 0.8320 0.5186

TransE 0.7781 (4.41%↑) 0.4739 (11.34%↑)
RotatE 0.8013 (0.30%↑) 0.2944 (16.36%↑)

KGTuner DistMult 0.8241 (2.46%↑) 0.4837 (29.71%↑)
ComplEx 0.8385 (3.58%↑) 0.4942 (22.72%↑)
AutoSF 0.8354 (0.41%↑) 0.5222 (0.69%↑)

average improvement 2.23% 16.16%

6.2 Ablation study
In this subsection, we probe into how important
and sensitive the various components of KGTuner
are.
Space comparison. To demonstrate the effec-
tiveness gained by shrinking and decoupling the
search space, we compare the following variants:
(i) RF+BORE on the full space X ; (ii) RF+BORE
on the shrunken space XS; (iii) RF+BORE on the
decoupled spaceXS|D, which differs from KGTuner
by searching on the full graph in the first stage; and
(iv) KGTuner in Algorithm 1. All the variants, i.e.,
RF+BORE, have one day’s time budget. As in Fig-
ure 9(b), the size of search space matters for the
search efficiency. The three components, i.e., space
shrinkage, space decoupling, and fast evaluation
on subgraph, are all important to the success of
KGTuner.
Size of subgraphs. We show the influence of sub-
graph sizes with different ratios of entities (10%,
20%, 30%, 40%, 50%) from the full graph in Fig-

2We run all models on ogbl-wikikg2 with 100 dimension
size to avoid out-of-memory, instead of 500 on OGB board.

2722

https://ogb.stanford.edu/docs/leader_linkprop/
https://ogb.stanford.edu/docs/leader_linkprop/

(a) Full search processes (b) Search space (c) Subgraph size (d) First-stage budget

Figure 9: (a): full search processes of the two-stage algorithms. (b-d): ablation studies on KGTuner.
Model ComplEx and dataset WN18RR are used in these experiments.

ure 9(c). Using subgraphs with too large or too
small size is not guaranteed to find good configura-
tions. Based on the understanding in Figure 7, the
subgraph with small size have poor transfer ability
and those with large size are expensive to evalu-
ate. Hence, we should balance the transfer ability
and evaluation cost by sampling subgraphs with
20% ∼ 30% entities.

Budget allocation. In Algorithm 1, we allocate B/2
budget for both the first and second stage. Here,
we show the performance of different allocation
ratios, i.e., B/4, B/2, and 3B/4 in the first stage and
the remaining budget in the second stage. As in
Figure 9(d), allocating too many or too few budgets
to the first stage is not good. It either fails to explore
sufficient configurations in the first stage or only
fine-tunes a few configurations in the second stage.
Allocating the same budget to the two stages is in
a better trade-off.

7 Related works

In analyzing the performance of KG embedding
models, Ruffinelli et al. (2019) pointed out that the
earlier works in KG embedding only search HPs
in small grids. By searching hundreds of HPs in
a unified framework, the reproduced performance
can be significantly improved. Similarly, Ali et al.
(2020) proposed another unified framework to eval-
uate different models. Rossi et al. (2021) evaluated
16 different models and analyzed their properties
on different datasets. All of these works empha-
size the importance of HP search, but none of them
provide efficient algorithms to search HPs for KG
learning. AutoSF (Zhang et al., 2020a) evaluates
the bilinear scoring functions and set up a search
problem to design bilinear scoring functions, which
can be complementary to KGTuner.

Understanding the HPs in a large search space
is non-trivial since many HPs only have moderate
impact on the model performance (Ruffinelli et al.,
2019) and jointly evaluating them requires a large

number of experiments (Fawcett and Hoos, 2016;
Probst et al., 2019). Considering the huge amount
of HP configurations (with 105 categorical choices
and 5 continuous values), it is extremely expensive
to exhaustively evaluate most of them. Hence, we
adopt control variate experiments to efficiently eval-
uate HPs’ properties instead of the quasi-random
search in (Ruffinelli et al., 2019; Ali et al., 2020).

Technically, we are similar to AutoNE (Tu et al.,
2019) and e-AutoGR (Wang et al., 2021) by lever-
aging subgraphs to improve search efficiency on
graph learning. Since they do not target at KG
embedding methods, directly adopt them is not a
good choice. Besides, based on the understanding
in this paper, we demonstrate that transferring the
surrogate model from subgraph evaluation to the
full graph is inferior to directly transferring the top
configurations for KG embedding models.

8 Conclusion

In this paper, we analyze the HPs’ properties in
KG embedding models with search space size, val-
idation curvature and evaluation cost. Based on
the observations, we propose an efficient search
algorithm KGTuner that efficiently explores con-
figurations in a reduced space on small subgraph
and then fine-tunes the top configurations with in-
creased batch size and dimension size on the full
graph. Empirical evaluations show that KGTuner
is robuster and more efficient than the existing HP
search algorithms and achieves competing perfor-
mance on large-scale KGs in open graph bench-
marks. In the future work, we will understand the
HPs in graph neural network based models and
apply KGTuner on them to solve the scaling limita-
tions in HP search.

Acknowledgements

This work was supported in part by The National
Key Research and Development Program of China
under grant 2020AAA0106000.

2723

References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-

rent Vermue, Mikhail Galkin, Sahand Sharifzadeh,
Asja Fischer, Volker Tresp, and Jens Lehmann. 2020.
Bringing light into the dark: A large-scale evaluation
of knowledge graph embedding models under a uni-
fied framework. Technical report, arXiv:2006.13365.

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019. Tucker: Tensor factorization for
knowledge graph completion. In EMNLP.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. In NIPS, pages 2546–2554.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. JMLR,
13(2).

James Bergstra, Dan Yamins, David D Cox, et al. 2013.
Hyperopt: A python library for optimizing the hy-
perparameters of machine learning algorithms. In
Proceedings of the 12th Python in science confer-
ence, volume 13, page 20. Citeseer.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.
Question answering with subgraph embeddings. In
EMNLP.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS, pages 2787–2795.

Leo Breiman. 2001. Random forests. ML, 45(1):5–32.

Liwei Cai and William Yang Wang. 2018. Kbgan: Ad-
versarial learning for knowledge graph embeddings.
In NAACL, pages 1470–1480.

Marc Claesen and Bart De Moor. 2015. Hyperparam-
eter search in machine learning. Technical report,
arXiv:1502.02127.

Benoît Colson, Patrice Marcotte, and Gilles Savard.
2007. An overview of bilevel optimization. Ann.
Oper. Res., 153(1):235–256.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2017. Convolutional 2D
knowledge graph embeddings. In AAAI.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12(7).

Chris Fawcett and Holger H Hoos. 2016. Analysing dif-
ferences between algorithm configurations through
ablation. Journal of Heuristics, 22(4):431–458.

Matt W Gardner and SR Dorling. 1998. Artificial neural
networks (the multilayer perceptron) – a review of ap-
plications in the atmospheric sciences. Atmospheric
environment, 32(14-15):2627–2636.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT press.

Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learn-
ing to exploit long-term relational dependencies in
knowledge graphs. In ICML, pages 2505–2514.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In NIPS, pages 1025–1035.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
2014. An efficient approach for assessing hyper-
parameter importance. In ICML, pages 754–762.
PMLR.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
2011. Sequential model-based optimization for gen-
eral algorithm configuration. In ICLIO, pages 507–
523. Springer.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition and applications.
TNNLS.

Seyed Mehran Kazemi and David Poole. 2018. SimplE
embedding for link prediction in knowledge graphs.
In NeurIPS.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In ICLR.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In ICML, pages
2863–2872. PMLR.

Jure Leskovec and Christos Faloutsos. 2006. Sampling
from large graphs. In SIGKDD, pages 631–636.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2017. Visualizing the loss landscape
of neural nets. In NIPS.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML, vol-
ume 11, pages 809–816.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Philipp Probst, Anne-Laure Boulesteix, and Bernd
Bischl. 2019. Tunability: importance of hyperpa-
rameters of machine learning algorithms. JMLR,
20(1):1934–1965.

2724

Carl Edward Rasmussen. 2003. Gaussian processes in
machine learning. In Summer school on machine
learning, pages 63–71. Springer.

Andrea Rossi, Denilson Barbosa, Donatella Firmani,
Antonio Matinata, and Paolo Merialdo. 2021. Knowl-
edge graph embedding for link prediction: A com-
parative analysis. TKDD.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2019. You can teach an old dog new tricks!
on training knowledge graph embeddings. In ICLR.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In ACL, pages 4498–4507.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In ESWC, pages 593–607. Springer.

Patrick Schober, Christa Boer, and Lothar A Schwarte.
2018. Correlation coefficients: appropriate use and
interpretation. Anesthesia & Analgesia, 126(5):1763–
1768.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. NIPS, 25.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In ICLR.

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha
Talukdar, and Yiming Yang. 2020. A re-evaluation
of knowledge graph completion methods. In ACL,
pages 5516–5522.

Komal Teru, Etienne Denis, and Will Hamilton. 2020.
Inductive relation prediction by subgraph reasoning.
In ICML, pages 9448–9457. PMLR.

Louis C Tiao, Aaron Klein, Matthias Seeger, Edwin V
Bonilla, Cedric Archambeau, and Fabio Ramos. 2021.
Bore: Bayesian optimization by density-ratio estima-
tion. In ICML.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In ACL Workshop, pages 57–66.

Théo Trouillon, Christopher R Dance, Johannes Welbl,
Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2017. Knowledge graph completion via
complex tensor factorization. JMLR, 18(1):4735–
4772.

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu
Zhu. 2019. AutoNE: Hyperparameter optimization
for massive network embedding. In SIGKDD, pages
216–225.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. ICLR.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. TKDE, 29(12):2724–
2743.

Xin Wang, Shuyi Fan, Kun Kuang, and Wenwu Zhu.
2021. Explainable automated graph representation
learning with hyperparameter importance. In ICML,
pages 10727–10737. PMLR.

Yanjie Wang, Rainer Gemulla, and Hui Li. 2018. On
multi-relational link prediction with bilinear models.
In AAAI.

Christopher KI Williams and Carl Edward Rasmussen.
1995. Gaussian processes for regression. In NIPS,
pages 514–520.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
ICLR.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020.
Design space for graph neural networks. NeurIPS,
33.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing
Xie, and Wei-Ying Ma. 2016. Collaborative knowl-
edge base embedding for recommender systems. In
SIGKDD, pages 353–362.

Yongqi Zhang and Quanming Yao. 2022. Knowledge
graph reasoning with relational digraph. Technical
report, arXiv:2108.06040.

Yongqi Zhang, Quanming Yao, and Lei Chen. 2021.
Simple and automated negative sampling for knowl-
edge graph embedding. VLDB-J, 30(2):259–285.

Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei
Chen. 2020a. AutoSF: Searching scoring functions
for knowledge graph embedding. In ICDE, pages
433–444.

Zhanqiu Zhang, Jianyu Cai, and Jie Wang. 2020b.
Duality-induced regularizer for tensor factorization
based knowledge graph completion. NeurIPS, 33.

2725

A Details of the search space

Denote a knowledge graph as G = {E,R,D}, where E is the set of entities, R is the set of relations, and
D is the set of triplets with training/validation/test splits D = Dtra ∪Dval ∪Dtst.

Basically, the KG embedding models use a scoring function f and the model parameters P to measure
the plausibility of triplets. We learn the embeddings such that the positive and negative triplets can be
separated by f and P . In Table 5, we provide the forms f of the embedding model we used to evaluate
the search space X in Section 3.

Table 5: Definitions of the embedding models. ◦ is a rotation operation in the complex value space; ⊗
is the Hermitian dot product in the complex value space; Re(·) returns the real part of a complex value;
Wi,j,k is the ijk-th element in a core tensorW ∈ Rd×d×d; and conv is a convolution operator on the
head and relation embeddings. For more details, please refer to the corresponding references.

model type model f(h, r, t) embeddings

translational distance TransE (Bordes et al., 2013) −‖h+ r − t‖1 h, r, t ∈ Rd

RotatE (Sun et al., 2019) −‖h ◦ r − t‖c1 h, r, t ∈ Cd

tensor factorization

RESCAL (Nickel et al., 2011) h> ·Rr · t h, t ∈ Rd,Rr ∈ Rd×d

DistMult (Yang et al., 2015) h> · diag(r) · t h, t, r ∈ Rd

ComplEx (Trouillon et al., 2017) h> ⊗ diag(r)⊗ t h, t, r ∈ Cd

TuckER (Balažević et al., 2019)
∑d

i

∑d
j

∑d
kWi,j,khi · rj · tk h, t, r ∈ Rd

neural network ConvE (Dettmers et al., 2017) ReLU(conv(h, r))> · t h, t, r ∈ Rd

A.1 Negative sampling
Since KG only contains positive triplets in Dtra (Wang et al., 2017), we should rely on the negative
sampling to avoid trivial solutions of the embeddings. Given a positive triplet (h, r, t) ∈ Dtra, the
corresponding set of negative triplets is represented as

D−(h,r,t) =
{
(h̃, r, t) /∈ Dtra : (h, r, t) ∈ Dtra, h̃ ∈ E

}
∪
{
(h, r, t̃) /∈ Dtra : (h, r, t) ∈ Dtra, t̃ ∈ E

}
.

A common practice is to sample m negative triplets from D−(h,r,t). The value of m can be any integer
smaller than the number of entities. We follow (Sun et al., 2019) to sample from the range of m in
{32, 128, 512, 2048} for simplicity.

An alternative choice is to use all the negative triplets in D−(h,r,t), leading to the 1VsAll (Lacroix et al.,
2018) and kVsAll (Dettmers et al., 2017) settings.

• In 1VsAll, (h, r, t) is in the positive part and all the triplets in the set {(h̃, r, t) /∈ Dtra : (h, r, t) ∈
Dtra, h̃ ∈ E} or {(h, r, t̃) /∈ Dtra : (h, r, t) ∈ Dtra, t̃ ∈ E} are in the negative part;

• In kVsAll, the positive part contains all the triplets sharing the same head-relation pair or tail-
relation part, i.e. {(h, r, t′) ∈ Dtra} or {(h′, r, t) ∈ Dtra}, with the corresponding negative part
{(h, r, t̃) /∈ Dtra : (h, r, t) ∈ Dtra, t̃ ∈ E} or {(h̃, r, t) /∈ Dtra : (h, r, t) ∈ Dtra, h̃ ∈ E}.

Hence, the choice of negative sampling can be set in the range
{32, 128, 512, 2048,1VsAll,kVsAll}.

A.2 Loss function
For simplicity, we denote D+ and D− as the sets of positive and negative triplets, respectively. Then, we
summarize the commonly used loss functions as follows:

• Margin ranking (MR) loss. This loss ranks the positive triplets to have larger score than the negative
triplets. Hence, the ranking loss is defined as

L =
∑

(h,r,t)∈D+

∑
(h̃,r,t̃)∈D−

−
∣∣γ − f(h, r, t) + f(h̃, r, t̃)

∣∣
+
,

2726

where γ > 0 is the margin value and |a|+ = max(a, 0). The MR loss is widely used in early developed
models, like TransE (Bordes et al., 2013) and DistMult (Yang et al., 2015). The value of γ, conditioned
on MR loss, is another HP to search.

• Binary cross entropy (BCE) loss. It is typical to set the positive and negative triplets as a binary
classification problem. Let the labels for the positive and negative triplets as +1 and −1 respectively,
the BCE loss is defined as

L =
∑

(h,r,t)∈D+
log
(
σ(f(h, r, t))

)
+
∑

(h̃,r,t̃)∈D−
w(h̃,r,t̃) log

(
1− σ(f(h̃, r, t̃))

)
,

where σ(x) = 1
1+exp(−x) is the sigmoid function. The choice of w(h̃,r,t̃) leads to three different loss

functions

– BCE_mean (Sun et al., 2019), with w(h̃,r,t̃) =
1/|D−

(h,r,t)
|.

– BCE_sum (Dettmers et al., 2017), with w(h̃,r,t̃) = 1.
– BCE_adv (Sun et al., 2019), with

w(h̃,r,t̃) =
exp(α · f(h̃, r, t̃))∑

(h′,r,t′)∈D− exp(α · f(h′, r, t′))
,

where α > 0 is the adversarial weight conditioned on BCE_adv loss.

• Cross entropy (CE) loss. Since the number of negative triplets is fixed, we can also regard the (h, r, t)
as the true label over the negative ones. The loss can be written as

L =
∑

(h,r,t)∈D+
−f(h, r, t) + log

(∑
(h′,r,t′)∈{(h,r,t)∪D−}

exp(f(h′, r, t′))

)
,

where the left part is the score of positive triplet and the right is the log sum scores of the joint set of
positive and negative triplets.

A.3 Regularization
To avoid the embeddings increasing to unlimited values and reduce the model complexity, regularization
techniques are often used. Denote P ′ as the embeddings participated in one iteration,

• the Frobenius norm is defined as the sum of L2 norms rFRO = ‖P ′‖22 =
∑

ij P
′2
ij (Yang et al., 2015);

• the NUC norm is defined as sum of L3 norms rFRO = ‖P ′‖33 =
∑

ij |Pij |3 (Lacroix et al., 2018);

• DURA operates on triplets (Zhang et al., 2020b). Denote h, r, t as the embeddings for the triplet
(h, r, t), DURA constrains the composition of h and r to approximate t with rDURA = ‖c(h, r)− t‖22,
where the composition function c(h, r) depends on corresponding scoring functions.

The regularization functions are then weighted by the regularization weight in the range [10−12, 102].
Apart from using explicit forms of regularization, we can also add dropout on the embeddings (Dettmers

et al., 2017). Specifically, each dimension in the embeddings h, r, t will have a probability to be
deactivated as 0 in each iteration. The probability is controlled by the dropout rate in the range [0, 0.5]. In
some cases, working without regularization can also achieve good performance (Ali et al., 2020).

A.4 Optimization
To solve the learning problem, we should setup an appropriate optimization procedure. First, we can
directly use the training set or add inverse relations to augment the data (Kazemi and Poole, 2018; Lacroix
et al., 2018). This will not influence the training data, but will introduce additional parameters for the
inverse relations. Second, we should choose the dimension of embeddings in small sizes [100, 200] or
large sizes [500, 1000, 2000]. Then, the embeddings are initialized by the initialization methods such
as uniform, normal, xavier_norm, and xavier_uniform (Goodfellow et al., 2016). The optimization is
conducted with optimizers like standard SGD, Adam (Kingma and Ba, 2014) and Adagrad (Duchi et al.,
2011) with learning rate in the range [10−5, 0] Since the training is conducted on mini-batch, a batch size
is determined in the range {128, 256, 512, 1024}.

2727

B Details of HP understanding

In this part, we provide the details of configuration generation and the full results related to the HP
understanding.

B.1 Configure generation

Since there are infinite numbers of values for a continuous HP, it is intractable to fully evaluate their
ranges. To better analyze the continuous HPs, we discretize them in Table 6 according to their ranges.
Then, for each HP i = 1 . . . n with range Xi, we sample a set Xi ⊂ X of s anchor configurations through
quasi random search (Bergstra and Bengio, 2012) and uniformly distribute them to evaluate the different
embedding models and datasets.

Table 6: Discretized HP values.

name original range discretized range

gamma [1, 24] {1, 6, 12, 24}
adv. weight [0.5, 2.0] {0.5, 1, 2}
reg. weight [10−12, 102] 102 in log scale
dropout rate [0, 0.5] 0.1 in linear scale
learning rate [10−5, 100] 101 in log scale

We use the control variate experiments to evaluate each HP. For the i-th HP, we enumerate the values
θ ∈ Xi for each anchor configuration x ∈ Xi, while fix the other HPs. In this way, we can observe the
influence of xi without the influence of the other HPs. For example, when evaluating the optimizers, we
enumerate the optimizers Adam, Adagrad and SGD for the anchor configurations in Xi. This generates a
set of |Xi| · |Xi| configurations. In this paper, the number of anchor configurations |Xi| is 175 for each HP.

B.2 Details for search space understanding

In this part, we add the ranking distribution of all the HPs. In addition, we also show the normalized MRR
of each HP as a complementary. The normalization is conducted on each dataset with y−ymin

ymax−ymin
such that

the results of the HPs can be evaluated in the same value range.
The full results for the four types of HPs in Section 4.1 are provided in Figures 10-13. The larger area

in the bottom in the voilin plots and the top area in the box plots indicate better performance. The HPs
can be classified into four types:

(a). fixed choices: Adam is the fixed optimizer, and inverse relation is not preferred. See Figure 10.

(b). limited range: Learning rate, regularization weight and dropout rate should be limited in the ranges
[10−4, 10−1], [10−12, 10−2] and [0, 0.3], respectively. See Figure 11

(c). monotonously related: Batch size and dimension size have monotonic performance. The larger value
tends to lead better results. See Figure 12.

(d). no obvious patterns: The choice of loss function, value of gamma, adversarial weight, number of
negative samples, regularizer, initializer do not have obvious patterns. See Figure 13.

In addition, we provide the details of Spearman’s ranking correlation coefficient (SRCC). Given a set of
anchor configurations Xi to analyze the i-th HP, we denote r(x, θ) as the rank of different x ∈ Xi with
fixed xi = θ. Then, the SRCC between two HP values θ1, θ2 ∈ Xi is

SRCC(θ1, θ2) = 1−
∑

x∈Xi
|r(x, θ1)− r(x, θ2)|2

|Xi| · (|Xi|2 − 1)
, (5)

where |Xi| means the number of anchor configurations in Xi. We evaluate the consistency of the i-th HP
by averaging the SRCC over the different pairs of (θ1, θ2) ∈ Xi ×Xi, the different models and datasets.

2728

(a) optimizer (b) add inverse relation

Figure 10: HPs that have fixed choice since one configure has significant advantage.

(a) learning rate (b) reg. weight

(c) dropout rate

Figure 11: HPs that have limited ranges since they only perform well in certain ranges.

B.3 Approximation ability of surrogate models

In Section 4.2, we have shown that the curvature of a learned random forest (RF) model is more similar
with the real curvature of the ground truth. Here, we further demonstrate this point through a synthetic
experiment.

Specifically, 100 random configurations with evaluated performance are sampled. We use 10/20/30
random samples from them to train the surrogates since only a small number of HP configurations are
available for the surrogate during searching. The remaining configurations are used for testing. Then, we
evaluate the fitting ability of each model by the mean square error (MSE) of the estimated prediction to
the target prediction. For GP (Rasmussen, 2003), we show the prediction with the Matern kernel used
in AutoNE (Tu et al., 2019). For RF (Breiman, 2001), we build 200 tree estimators to fit the training
samples. The MLP here (Gardner and Dorling, 1998) is designed as a three-layer feed-forward network
with 100 hidden units and ReLU activation function in each layer. The average value and std of MSE
over five different groups of configurations are shown in Table 7. As can been seen, random forest show
much lower prediction error than GP and MLP with different number of training samples. This further
demonstrates that RF can better fit such a complex HP search space.

Table 7: Comparison of different surrogate models in MSE.

train configurations 10 20 30

GP 0.0693±0.02 0.029±0.01 0.019±0.01
MLP 2.121±0.4 2.052±0.3 0.584±0.1
RF 0.003±0.002 0.002±0.001 0.001±0.001

2729

(a) batch_size (b) dimension

Figure 12: HPs that is monotonic with different choices of values.

(a) loss (b) gamma (MR)

(c) adv weight (BCE_adv) (d) # negative sample

(e) regularizer (f) initializer

Figure 13: HPs that do not have obvious patterns. All of the values should be searched.

B.4 Results of cost evaluation

We show the average cost and standard derivation of five HPs, i.e. batch size, dimension size, number of
negative samples, loss functions, and regularizer, in Figure 14. As can be seen, the cost of batch size and
dimension size increase much when the size increases. But for the number of negative samples, choices of
loss functions and regularizers, the influence on cost is not strong as indicated by the average cost.

C Detail for the search algorithm

C.1 Search space

We show the shrunken and decoupled search space compared with the full space in Table 8. To evaluate
the ratio of space change after shrinkage and decoupling, we measure the learning rate and regularization
weight in log scale. The size of the whole space X compared with the decoupled XS|D is

3× 14

6
× 5

3
× 5

3
× 2× 4× 5 = 777.8.

2730

Figure 14: Computing time cost. The dots are the average and the shades are the standard deviation.

Hence, the reduced and decoupled space is hundreds times smaller than the full space.

Table 8: The revised HP values in the reduced and decoupled search space compared with the full space.
name ranges in the whole space revised ranges

optimizer {Adam, Adagrad, SGD} Adam
learning rate [10−5, 100] [10−4, 10−1]
reg. weight [10−12, 102] [10−8, 10−2]
dropout rate [0, 0.5] [0, 0.3]

inverse relation {True, False} {False}

batch size {128, 256, 512, 1024} 128
dimension size {100, 200, 500, 1000, 2000} 100

C.2 Search algorithm
We visualize the searching process of the traditional one-stage method and the proposed two-stage method
in Figure 15. Since the evaluation cost on the full graph is rather high, the one-stage method can only
take a few optimization trials. Thus the search space remains unexplored for a large proportion, and the
performance of the optimal configuration is hard to be guaranteed. As for the proposed two-stage method
KGTuner, it efficiently explores the search space on the sampled subgraph at the first stage, and then
fine-tunes the top-K configurations on the full graph.

Figure 15: Diagram of one-stage search method and the proposed two-stage method.

In Algorithm 1, we increase the batch size and dimension size in stage two. We set the searched range
for batch size in stage two as [512, 1024] and dimension size as [1000, 2000]. There are some exceptions
due to the memory issues, i.e., dimension size for RESCAL is in [500, 1000]; dimension size for TuckER
is in [200, 500]. For ogbl-wikikg2, since the used GPU only has 24GB memory, we cannot run models
with 500 dimensions which requires much more memory in the OGB board. Instead, we set the dimension
as 100 to be consistent with the smaller models in OGB board with 100 dimensions, and increase the
batch size in [512, 1024] in the second stage. In addition, we show the details for the search procedure by
RF+BORE in Algorithm 2.

2731

Algorithm 2 Full procedure of HP search with RF+BORE (in stage one)
Require: KG embedding F , dataset G, search space XS|D , budget B/2, RF model y = c(x), threshold τ = 0.8.
1: initialize the RF model andH = ∅;
2: split triplets in G with ratio 9 : 1 into Gtra and Gval;
3: repeat
4: randomly sample a set of configurations XS|D ⊂ XS|D;
5: select x̂ = argmaxx∈X

S|D
y(x);

6: train embedding model into converge
P ∗ = argminP L

(
F (P , x̂), Gtra

)
;

7: evaluate the performance ŷx̂ =M
(
F (P ∗, x̂), Gval

)
;

8: recordH ← H∪ {(x̂, ŷx̂)};
% BORE:

9: set label 0 for configuration inH with ŷx̂ < τ , and label 1 for ŷx̂ ≥ τ ;
10: update RF model y = c(x) to classify the two labels;
11: until B/2 exhausted.

D Additional experimental results

D.1 Implementation details
Evaluation metrics. We follow (Bordes et al., 2013; Wang et al., 2017; Ruffinelli et al., 2019) to use
the filtered ranking-based metrics for evaluation. For each triplet (h, r, t) in the validation or testing set,
we take the head prediction (?, r, t) and tail prediction (h, r, ?) as the link prediction task. The filtered
rankings on the head and tail are computed as

rankh =
∣∣∣{e ∈ E :

(
f(e, r, t) ≥ f(h, r, t)

)
∧
(
(e, r, t) /∈ Dtra ∪Dval ∪Dtst)

)}∣∣∣+ 1,

rankt =
∣∣∣{e ∈ E :

(
f(h, r, t) ≥ f(h, r, e)

)
∧
(
(h, r, e) /∈ Dtra ∪Dval ∪Dtst)

)}∣∣∣+ 1,

respectively, where | · | is the number of elements in the set. The the two metrics used are:

• Mean reciprocal ranking (MRR): the average of reciprocal of all the obtained rankings.

• Hit@k: the ratio of ranks no larger than k.

For both the metrics, the large value indicates the better performance.

Dataset statistics. We summarize the statistics of different benchmark datasets in Table 9. As shown,
ogbl-biokg and ogbl-wikikg2 have much larger size compared with WN18RR and FB15k-237.

Table 9: Statistics of the KG completion datasets.
dataset #entity #relation #train #validate #test

WN18RR (Dettmers et al., 2017) 41k 11 87k 3k 3k
FB15k-237 (Toutanova and Chen, 2015) 15k 237 272k 18k 20k

ogbl-biokg (Hu et al., 2020) 94k 51 4,763k 163k 163k
ogbl-wikikg2 (Hu et al., 2020) 2,500k 535 16,109k 429k 598k

Baseline implementation. All the baselines compared in this paper are based on their own original
open-source implementations. Here we list the source links:

• Hyperopt (Bergstra et al., 2013), https://github.com/hyperopt/hyperopt;

• Ax, https://github.com/facebook/Ax;

• SMAC (Hutter et al., 2011), https://github.com/automl/SMAC3;

• BORE (Tiao et al., 2021), https://github.com/ltiao/bore;

• AutoNE (Tu et al., 2019), https://github.com/tadpole/AutoNE.

2732

https://github.com/hyperopt/hyperopt
https://github.com/facebook/Ax
https://github.com/automl/SMAC3
https://github.com/ltiao/bore
https://github.com/tadpole/AutoNE

Searched hyperparameters. We list the searched hyperparameters for each embedding model on the
different datasets in Tables 10-13 for reproduction.

Table 10: Searched optimal hyperparameters for the WN18RR dataset.

HP/Model ComplEx DistMult RESCAL ConvE TransE RotatE TuckER

negative samples 32 128 128 512 128 2048 128

loss function BCE_mean BCE_adv BCE_mean BCE_adv BCE_adv BCE_adv BCE_adv
gamma 2.29 12.88 2.41 12.16 3.50 3.78 12.97

adv. weight 0.00 1.41 0.00 0.78 1.14 1.66 1.94

regularizer NUC NUC DURA DURA FRO FRO DURA
reg. weight 1.21× 10−3 9.58× 10−3 1.76× 10−3 9.79× 10−3 4.19× 10−4 5.13× 10−8 2.22× 10−3

dropout rate 0.28 0.29 0.00 0.02 0.00 0.00 0.00

optimizer Adam Adam Adam Adam Adam Adam Adam
learning rate 6.08× 10−4 4.58× 10−3 1.73× 10−3 6.88× 10−4 1.02× 10−4 1.24× 10−3 2.60× 10−3

initializer x_uni norm uni x_uni norm norm x_uni

batch size 1024 1024 512 512 512 512 512
dimension size 2000 2000 1000 1000 1000 1000 200
inverse relation False False False False False False False

Table 11: Searched optimal hyperparameters for the FB15k-237 dataset.

HP/Model ComplEx DistMult RESCAL ConvE TransE RotatE TuckER

negative samples 512 kVsAll 2048 512 512 128 2048

loss function BCE_adv CE CE BCE_sum BCE_adv BCE_adv BCE_adv
gamma 13.05 2.90 4.17 14.52 6.76 14.46 13.51

adv. weight 1.93 0.00 0.00 0.00 1.99 1.12 1.95

regularizer DURA NUC DURA DURA FRO NUC DURA
reg. weight 9.75× 10−3 2.13× 10−3 8.34× 10−3 6.42× 10−3 2.16× 10−4 2.99× 10−4 2.66× 10−4

dropout rate 0.22 0.29 0.01 0.07 0.02 0.01 0.01

optimizer Adam Adam Adam Adam Adam Adam Adam
learning rate 9.70× 10−4 4.91× 10−4 9.30× 10−4 2.09× 10−4 2.66× 10−4 5.89× 10−4 3.35× 10−4

initializer uni x_uni x_uni norm x_norm norm norm

batch size 1024 1024 2048 1024 512 1024 1024
dimension size 2000 1000 500 500 1000 2000 500
inverse relation False False False False False False False

2733

Table 12: Searched optimal hyperparameters for the ogbl-biokg dataset.

HP/Model ComplEx DistMult TransE RotatE AutoSF

negative samples 512 512 128 128 512

loss function CE CE CE BCE_adv CE
gamma 12.90 11.82 7.60 18.34 12.90

adv. weight 0.00 0.00 0.00 1.94 0.00

regularizer NUC NUC NUC DURA NUC
reg. weight 1.38× 10−3 1.20× 10−6 6.99× 10−3 1.09× 10−6 1.38× 10−4

dropout rate 0.01 0.00 0.00 0.00 0.01

optimizer Adam Adam Adam Adam Adam
learning rate 1.89× 10−3 1.25× 10−3 1.24× 10−4 1.11× 10−4 1.89× 10−3

initializer uni x_uni x_uni norm uni
batch size 1024 1024 1024 1024 1024

dimension size 2000 1000 2000 2000 2000
inverse relation False False False False False

Table 13: Searched optimal hyperparameters for the ogbl-wikikg2 dataset

HP/Model ComplEx DistMult TransE RotatE AutoSF

negative samples 32 32 128 32 2048

loss function CE CE CE CE CE
gamma 6.00 6.00 21.05 23.94 18.91

adv. weight 0.00 0.00 0.00 0.00 0.00

regularizer DURA DURA FRO DURA DURA
reg. weight 9.58× 10−7 1.98× 10−4 1.56× 10−5 8.10× 10−3 1.38× 10−4

dropout rate 0.00 0.00 0.01 0.07 0.07

optimizer Adam Adam Adam Adam Adam
learning rate 1.34× 10−4 1.98× 10−4 6.05× 10−4 4.07× 10−2 1.04× 10−2

initializer x_norm x_norm x_norm x_norm x_norm
batch size 1024 1024 1024 1024 1024

dimension size 100 100 100 100 100
inverse relation False False False False False

2734

D.2 Results on general benchmarks
We compare the types of results on WN18RR and FB15k-237 in Table 14. In the first part, we show the
results reported in the original papers. In the second part, we show the reproduced results in (Ruffinelli
et al., 2019). And in the third part, we show the results of the HPs searched by KGTuner.

Table 14: Performance on WN18RR and FB15k-237 dataset. The bold numbers mean the best perfor-
mances of the same model, and the underlines mean the second best.

WN18RR FB15k-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Original

ComplEx 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428
DistMult 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419
RESCAL 0.420 - - 0.447 0.270 - - 0.427

ConvE 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501
TransE 0.226 - - 0.501 0.294 - - 0.465
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533

TuckER 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544

LibKGE
(Ruffinelli et al., 2019)

ComplEx 0.475 0.438 0.490 0.547 0.348 0.253 0.384 0.536
DistMult 0.452 0.413 0.466 0.530 0.343 0.250 0.378 0.531
RESCAL 0.467 0.439 0.480 0.517 0.356 0.263 0.393 0.541

ConvE 0.442 0.411 0.451 0.504 0.339 0.248 0.369 0.521
TransE 0.228 0.053 0.368 0.520 0.313 0.221 0.347 0.497

KGTuner (ours)

ComplEx 0.484 0.440 0.506 0.562 0.352 0.263 0.387 0.530
DistMult 0.453 0.407 0.468 0.548 0.345 0.254 0.377 0.527
RESCAL 0.479 0.436 0.496 0.557 0.357 0.268 0.390 0.535

ConvE 0.437 0.399 0.449 0.515 0.335 0.242 0.368 0.523
TransE 0.233 0.032 0.399 0.542 0.327 0.228 0.369 0.522
RotatE 0.480 0.427 0.501 0.582 0.338 0.243 0.373 0.527

TuckER 0.480 0.437 0.500 0.557 0.347 0.255 0.382 0.534

D.3 Full results for OGB

Table 15: Full results on ogbl-biokg and ogbl-wikikg2 dataset.

ogbl-biokg ogbl-wikikg2
Test MRR Val MRR #parameters Test MRR Val MRR #parameters

ComplEx 0.8095±0.0007 0.8105±0.0001 187,648,000 0.4027±0.0027 0.3759±0.0016 1,250,569,500
OGB DistMult 0.8043±0.0003 0.8055±0.0003 187,648,000 0.3729±0.0045 0.3506±0.0042 1,250,569,500
board RotatE 0.7989±0.0004 0.7997±0.0002 187,597,000 0.2530±0.0034 0.2250±0.0035 250,087,150

TransE 0.7452±0.0004 0.7456±0.0003 187,648,000 0.4256±0.0030 0.4272±0.0030 1,250,569,500
AutoSF 0.8309±0.0008 0.8317±0.0007 187,648,000 0.5186±0.0065 0.5239±0.0074 250,113,900

KGTuner

ComplEx 0.8385±0.0009 0.8394±0.0007 187,648,000 0.4942±0.0017 0.5099±0.0023 250,113,900
DistMult 0.8241±0.0008 0.8245±0.0009 93,824,000 0.4837±0.0078 0.5004±0.0075 250,113,900
RotatE 0.8013±0.0015 0.8024±0.0012 187,597,000 0.2948±0.0026 0.2650±0.0034 250,087,150
TransE 0.7781±0.0009 0.7787±0.0008 187,648,000 0.4739±0.0021 0.4932±0.0013 250,113,900
AutoSF 0.8354±0.0013 0.8361±0.0012 187,648,000 0.5222±0.0021 0.5397±0.0023 250,113,900

2735

