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Abstract

Recent advances in prompt-based learning
have shown strong results on few-shot text
classification by using cloze-style templates.
Similar attempts have been made on named
entity recognition (NER) which manually de-
sign templates to predict entity types for ev-
ery text span in a sentence. However, such
methods may suffer from error propagation in-
duced by entity span detection, high cost due
to enumeration of all possible text spans, and
omission of inter-dependencies among token
labels in a sentence. Here we present a sim-
ple demonstration-based learning method for
NER, which lets the input be prefaced by task
demonstrations for in-context learning. We
perform a systematic study on demonstration
strategy regarding what to include (entity ex-
amples, with or without surrounding context),
how to select the examples, and what tem-
plates to use. Results on in-domain learning
and domain adaptation show that the model’s
performance in low-resource settings can be
largely improved with a suitable demonstra-
tion strategy (e.g., 4-17% improvement on 25
train instances). We also find that good demon-
stration can save many labeled examples and
consistency in demonstration contributes to
better performance. 1

1 Introduction

Neural sequence models have become the de facto
approach for named entity recognition (NER) and
have achieved state-of-the-art results on various
NER benchmarks (Lample et al., 2016; Ma and
Hovy, 2016; Liu et al., 2018). However, these
data-hungry models often rely on large amounts of
labeled data manually annotated by human experts,
which are expensive and slow to collect (Huang
et al., 2020; Ding et al., 2021b), especially for
specialized domains (e.g., research papers). To

∗Authors contributed equally.
1https://github.com/INK-USC/fewNER

improve NER performance on low-resource (label
scarcity) settings, prior works seek auxiliary su-
pervisions, such as entity dictionary (Peng et al.,
2019; Shang et al., 2018; Yang et al., 2018; Liu
et al., 2019) and labeling rules (Safranchik et al.,
2020; Jiang et al., 2020), to either augment human-
labeled data with pseudo-labeled data, or incor-
porate meta information such as explanation (Lin
et al., 2020; Lee et al., 2020, 2021), context (Wang
et al., 2021), and prompts (Ding et al., 2021a; Cui
et al., 2021) to facilitate training. However, such
methods have the following challenges: (1) hu-
man efforts to create auxiliary supervisions (e.g.,
dictionaries, rules, and explanations); (2) high com-
putational cost to make predictions. For example,
Ding et al. (2021a) shows effectiveness on entity
type prediction given the entity span by construct-
ing a prompt with the structure “[entity span] is
[MASK]". However, when the entity span is not
given, cloze-style prompts need to be constructed
over all the entity candidates in the sentence with
the structure “[entity candidate] is [MASK]" to
make a prediction (Cui et al., 2021). Such brute-
force enumerations are often expensive.

In this paper, we propose demonstration-based
learning (Gao et al., 2021; Liu et al., 2021), a
simple-yet-effective way to incorporate automati-
cally constructed auxiliary supervision. The idea
was originally proposed in prompt-based learning
to show some task examples before the cloze-style
template so that the model can better understand
and predict the masked slot (Gao et al., 2021). This
paper proposes modified version of demonstration-
based learning for NER task. Instead of reformat-
ting the NER task into the cloze-style template, we
augment the original input instances by appending
automatically created task demonstrations and feed
them into pre-trained language models (PTLMs)
so that the model can output improved token rep-
resentations by better understandings of the tasks.
Unlike existing efforts which require additional hu-
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(a) Prompt-based Learning for NER

Paris is the president of student union. 

(b) Demonstration-based Learning for NER

Paris is the president of student union. Paris is [MASK]. 

Paris is the president of student union. Paris is is [MASK]. 

Paris is the president of student union. president of is [MASK]. 

…

LM Head Paris is the president of student union. 

Paris is the president of student union. [SEP] Fischer is PER. [SEP] Seoul is LOC. [SEP]  

LM

…

…

Token Classifier

Figure 1: Prompt-based learning frameworks for NER mostly neglect entity span detection which leads to a huge
time cost to generate prompts over all the entity candidates in the sentence, while our demonstration-based learning
framework integrates prompt into the input itself to make better input representations for the token classification.

man labor to create such auxiliary supervisions, our
model can be automatically constructed by pick-
ing up proper task examples from the train data.
Moreover, unlike approaches that need to change
the format of token classification into cloze-style
mask-filling prediction which can neglect latent re-
lationships among token labels, our approach can
be applied to existing token classification module
in a plug-and-play manner (See Figure 1 (a) vs (b)).

We investigate the effectiveness of task demon-
stration in two different low-resource settings: (1)
in-domain setting which is a standard NER bench-
mark settings where the train and test dataset come
from the same domain; and (2) domain-adaptation
setting which uses sufficient labeled data in source
domain to solve new tasks in a target domain. Here,
we study which variants of task demonstration are
useful to train an accurate and label-efficient NER
model and further explore ways to adapt the source
model to target domain with a small amount of tar-
get data. We propose two ways of automatic task
demonstration construction: (1) entity-oriented
demonstration selects an entity example per entity
type from train data to construct the demonstra-
tion. It allows the model to get a better sense of
entity type by showing its entity example; and (2)
instance-oriented demonstration retrieves instance
example similar to input sentence in train data. It
allows the model to get a better sense of the task
by showing similar instances and their entities.

We show extensive experimental results on
CoNLL03, Ontonotes 5.0 (generic domain), and
BC5CDR (biomedical domain) over 3 different
templates and 5 selection/retrieval strategies for
task demonstrations. For entity-oriented demon-
stration, we present 3 selection strategies to choose
appropriate entity example per entity type: (1)
random randomly selects entity example per en-
tity type; (2) popular selects the entity exam-
ple which occurs the most per entity type in the

train data; and (3) search selects the entity ex-
ample per entity type that shows the best perfor-
mance in the development set. And for instance-
oriented demonstration, we present 2 retrieval
strategies to choose appropriate instance exam-
ple (SBERT (Reimers and Gurevych, 2019) vs.
BERTScore (Zhang et al., 2020)).

Our findings include: (1) good demonstration
can save many labeled examples to reach a simi-
lar level of performance in low-resource settings.
Our approach consistently outperforms standard
fine-tuning by up to 3 points in terms of F1 score
(p-value < 0.02); (2) demonstration becomes more
effective when we also provide context. For ex-
ample, not only showing ‘Fischler is PER’, but
also the sentence that contains ‘Fischler’ as person,
such as ‘France backed Fischler’s proposal’; and (3)
consistency in demonstration contributes to better
performance. Our experiments show that using con-
sistent demonstration for all instances rather than
varying per instance lead to better performance

2 Related Works

NER with additional supervision Recent at-
tempts addressing label scarcity have explored var-
ious types of human-curated resources as auxiliary
supervision. One of the research lines to exploit
such auxiliary supervision is distant-supervised
learning. These methods use entity dictionar-
ies (Peng et al., 2019; Shang et al., 2018; Yang et al.,
2018; Liu et al., 2019) or labeling rules (Safranchik
et al., 2020; Jiang et al., 2020) to generate noisy-
labeled data for learning a NER model. Although
these approaches largely reduce human efforts in
annotation, the cross-entropy loss may make the
model be overfitted to the wrongly labeled tokens
due to noisy labels (Meng et al., 2021). Another
line of research is incorporating such auxiliary su-
pervision during training and inference in a setting
of supervised learning. These approaches usually
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(a) Entity-Oriented Demonstration

𝑫𝒕𝒓𝒂𝒊𝒏

𝑷𝑬𝑹:
𝑳𝑶𝑪:
𝑶𝑹𝑮:
𝑴𝑰𝑺𝑪:

Selection
(Random vs. Popular vs. Search )

𝑭𝒊𝒔𝒄𝒉𝒍𝒆𝒓

𝑻𝒂𝒊𝒘𝒂𝒏

𝑮𝒆𝒓𝒎𝒂𝒏

Paris is the president of student union. 

[SEP] Fischler is PER. [SEP] Taiwan is LOC. [SEP] EU is ORG. [SEP] German is MISC.

Template Modification

(b) Instance-Oriented Demonstration

𝑫𝒕𝒓𝒂𝒊𝒏 Retrieval
(SBERT vs. BERTScore)

[SEP] Paris is a student of USC. [SEP] Paris is PER. USC is ORG.

Template Modification

Paris is a student of USC.
Score: 0.832

Paris is the president of student union. 

𝑬𝑼

+ +

Figure 2: Task Demonstration for NER. (a) Entity-oriented demonstration selects an entity example per each
entity type from the train data to append to the sentence; while (b) instance-oriented demonstration retrieves an
instance from the train data to append to the sentence (along with the entities therein).

incorporate external information that is encoded
including POS labels, syntactic constituents, de-
pendency relations (Nie et al., 2020; Tian et al.,
2020), explanations (Lin et al., 2020; Lee et al.,
2020, 2021), retrieved context (Wang et al., 2021)
and prompts (Ding et al., 2021a; Cui et al., 2021).

Demonstration-based Learning Providing a
few training examples in a natural language
prompt has been widely explored in autoregres-
sive LMs (Brown et al., 2020; Zhao et al., 2021).
Such prompt augmentation is called demonstration-
based learning (Gao et al., 2021). This is designed
to let prompt be prefaced by a few examples before
it predicts label words for [MASK] in the cloze-
style question. Recent works on this research line
explore a good selection of training examples (Gao
et al., 2021) and permutation of them as demonstra-
tion (Kumar and Talukdar, 2021).

3 Problem Definition

In this section, we introduce basic concepts of
named entity recognition, standard fine-tuning for
sequence labeling, and domain adaptation for se-
quence labeling. We then formally introduce our
goal – generating task demonstration and then de-
veloping a learning framework that uses them to
improve NER models.

3.1 Named Entity Recognition

Here, we let x = [x(1), x(2), . . . x(n)] denote the
sentence composed of a sequence of n words
and y = [y(1), y(2), . . . y(n)] denote the sequence
of NER tags. The task is to predict the entity
tag y(i) ∈ Y for each word x(i), where Y is a
pre-defined set of tags such as {B-PER, I-PER,
. . . , O}. In standard fine-tuning, NER model
M parameterized by θ is trained to minimize
the cross entropy loss over token representations
h = [h(1), h(2), . . . h(n)] which are generated from
the pre-trained contextualized embedder as follows:

L = −
n∑
i=1

log fi,yi(h;θ) (1)

where f is the model’s predicted conditional proba-
bility that can be either from linear or CRF layers.

3.2 In-domain Low-resource Learning

We let Dtrain and Dtest denote the labeled train and
test dataset, respectively, consisting of {(xi,yi)}.
Here, we expect the number of labeled instances in
Dtrain is extremely limited (e.g., N < 50). Given
such small labeled instances, our goal is to train
an accurate NER model with task demonstrations
compared to standard fine-tuning and show the ef-
fectiveness of demonstration-based learning. We
evaluate the trained models on Dtest.

3.3 Low-resource Domain Adaption

Domain adaptation aims to exploit the abundant
data of well-studied source domains to improve
the performance in target domains of interest. We
consider two different settings: (1) label-sharing
setting in which the label space L =

{
l1, . . . , l|L|

}
(e.g., li = PERSON ) of source-domain data
S and target-domain data T are equal; (2) label-
different setting which L is different.

In domain adaptation, we first train a model
Ms on source-domain data S. Next, we initial-
ize the weights of the new modelMt by weights
of Ms. Here, we can either transfer the whole
model weights or only the weights of contextual-
ized embedder fromMs toMt. Then, we further
tuneMt on target-domain data T . In our prelim-
inary experiments, we find that transferring only
the embedder fromMs toMt is much more ef-
fective than transferring the whole model weights
(See first rows in Table 2 and Table 3). For this pa-
per, we focus on the effectiveness of our models to
adapt to the target domain with a T , for which the
number of instances is extremely limited. We then
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(a) Entity-Oriented Demonstration
Input X Paris is the president of student union.

Label space L PER, ORG

Selected Entity e PER: Fischler , ORG: EU

Retrieved Instance s Paris is a student of USC.

no-context Fischler is PER. [SEP] EU is ORG.

context France backed Fischler’s proposal. Fischler is PER. [SEP] EU rejects German call. EU is ORG.

lexical France backed PER’s proposal. [SEP]ORG rejects German.

(b) Instance-Oriented Demonstration

context Paris is a student of USC. Paris is PER. USC is ORG.

lexical PER is a student of ORG.

Figure 3: Demonstration Template T . Given input x and label space L, entity-oriented demonstration selects
entity e per each label l ∈ L to construct three types of templates (no-context, context, lexical) while
instance-oriented demonstration retrieve instance s to create two types of templates (context, lexical).

compare the results of tasks with demonstration to
those without demonstration.

4 Demonstration-based NER

In this work, we focus on how to create effective
task demonstration x̃ to elicit better token repre-
sentations for x, and then we propose an efficient
learning framework that can be improved by the ef-
fect of [x; x̃]. This section introduces the concepts
of demonstration-based learning, and provides de-
tails of the approach. Here, we study example
sampling strategies and templates to construct the
demonstration (Sec 4.1) and how we can train the
NER model with the demonstration (Sec 4.2).

4.1 Task Demonstration

Task demonstration x̃ = [[SEP] ; x̂1; · · · ; x̂l] is
constructed by selecting entity example e or re-
trieving instance example s from Dtrain (Ttrain for
domain adaptation) and modifying by template
T to form x̂i. The demonstration sequence x̃
is then appended to the original input x to cre-
ate a demonstration-augmented input [x; x̃]. Here,
[SEP] in front of x̃ is to separate x and x̃. The key
challenge of constructing task demonstration is to
choose appropriate e or s and template T that can
be helpful to demonstrate how the model should
solve the task. As shown in Figure 2, we cate-
gorize the demonstration into (1) entity-oriented
demonstration; and (2) instance-oriented demon-
stration by whether we choose e or s respectively,
for demonstration.

Entity-oriented demonstration. Given an en-
tity type label set L =

{
l1, . . . , l|L|

}
, we select

an entity example e per label l from Dtrain. Then,
we modify it using template T . To select e per
each l, we first enumerate all the e ∈ Dtrain and cre-
ate a mapping {li : [e1, . . . , en] | li ∈ L} between
l and corresponding list of entities. Then for each
label l, we select e by three selection strategies:

(1) random randomly chooses e from the list;
(2) popular chooses e that occurs the most fre-
quently in the list; and (3) search conducts grid
search over possible entity candidates per label.
Here, we sample top-k frequent entities per label,
and search over combinations of entity candidates
(= k|L|). We find the best combination that max-
imizes the F1 score on the dev set Ddev. Here, x̃i

for every xi is different in random while x̃i for
every xi is same in popular and search.

Instance-oriented demonstration. Given an in-
put x, we retrieve an instance example s that is the
most relevant to the input from Dtrain. Then, we
modify the s along with its {e, l} ∈ s by template
T . For retrieval, we present two strategies: (1)
SBERT (Reimers and Gurevych, 2019) retrieves
semantically similar sentence using pre-trained bi-
encoder. It produces CLS embeddings indepen-
dently for an input x and s ∈ Dtrain, and com-
pute the cosine similarity between them to rank
s ∈ Dtrain; (2) BERTScore (Zhang et al., 2020),
which is originally used as a text generation metric,
retrieves token-level semantically similar sentence
by computing a sum of cosine similarity between
token representations of two sentences. Since the
NER task aims to token classification, sentence-
level similarity may retrieve a sentence that is se-
mantically relevant but has no relevant entities.

Fixed vs Variable demonstration. As described
in previous sections, the demonstration in some
strategies varies per instance while in others it
stays fixed globally. We can divide the demon-
stration strategies into two categories: (1) Variable
demonstration: random, SBERT, BERTScore
(2) Fixed demonstration: popular, search

Demonstration template. As shown in Figure 3,
we select three variants of template T :
(1) no-context shows selected e per l with a
simple template “e is l.", without including the spe-
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cific sentence where the entities show up. Between
each pair of (e, l) (of different entity labels l), we
concatenate with separator [SEP]. This template is
only applied to the entity-oriented demonstration.
(2) context in entity-oriented demonstration
shows selected e per l along with an instance sen-
tence s that contains e as a type of l. For each
triple of (e, l, s), it is modified into “s. e is l." and
concatenated with [SEP]. For instance-oriented
demonstration, it shows the retrieved instance s
along with all the entities mentioned in the sentence
e ∈ s. It is modified into “s. e1 is l1. . . . en is ln.".
(3) lexical in entity-oriented demonstration also
shows selected e per l along with an instance sen-
tence s. But here we only show s, which the entity
span e is replaced by its label string l. For instance-
oriented demonstration, we show retrieved s by
replacing e ∈ s with the corresponding l. We ex-
pect such templates can form labeling rules and let
the model know how to label the sentence.

4.2 Model Training with Demonstration
Transformer-based standard fine-tuning for NER
first feeds the input sentence x into a transfomer-
based PTLMs to get the token representations h.
The token representations h are fed into a CRF
layer to get the conditional probability pθ(y | h),
and the model is trained by minimizing the condi-
tional probability by cross entropy loss:

L = −
n∑
i=1

log pθ(y | h) (2)

In our approach, we define a neural network
parameterized by θ that learns from a concatenated
input [x; x̃]. For both model training and inference,
we feed the input and retrieve the representations:

[h; h̃] = [h(1), . . . h(n), h̃(1), . . . h̃(n)] = embed([x; x̃]) (3)

As shown in Figure 1, we then feed h into the CRF
layer to get predictions and train by minimizing the
conditional probability pθ(y | h) as Equation 2.

For domain adaptation, we first trainMs with
standard fine-tuning. Then, transfer the weights of
embedder ofMs toMt and further fine-tuneMt

with our approach.

5 Experimental Setup
5.1 Datasets
We consider three NER datasets as target tasks.
We consider two datasets for a general domain

Dataset Label Train Data

25 50

CoNLL03 PER (Person) 16.0±3.52 29.2±4.52
LOC (Location) 15.6±3.92 30.4±4.07
ORG (Organization) 21.8±2.31 32.6±3.77
MISC (Miscellaneous) 11.0±2.52 15.6±2.33

Ontonotes 5.0 PER (Person) 10.8±2.22 21.4±4.02
LOC (Location) 16.0±3.52 25.0±7.32
ORG (Organization) 13.8±3.48 24.2±6.17
MISC (Miscellaneous) 23.8±5.56 62.6±7.93

BC5CDR Disease 25.8±6.01 29.2±4.52
Chemical 51.0±7.49 65.8±7.12

Table 1: Data statistics. Average number of entities
per each entity type over 5 different subsamples.

(CoNLL03 (Tjong Kim Sang, 2002), Ontonotes
5.0 (Weischedel et al., 2013)) and one dataset for a
bio-medical domain (BC5CDR (Li et al., 2016)).
CoNLL03 is a general domain NER dataset that
has 22K sentences containing four types of general
named entities: LOCATION, PERSON, ORGANIZA-
TION, and MISCELLANEOUS entities that do not be-
long in any of the three categories. Ontonotes 5.0
is a corpus that has roughly 1.7M words along with
integrated annotations of multiple layers of syn-
tactic, semantic, and discourse in the text. Named
entities in this corpus were tagged with a set of
general 18 well-defined proper named entity types.
We split the data following (Pradhan et al., 2013).
BC5CDR has 1,500 articles containing 15,935
CHEMICAL and 12,852 DISEASE mentions.

5.2 Baselines

To show its effectiveness in few-shot NER, we also
show baselines of few-shot NER methods NNShot
and StructShot (Yang and Katiyar, 2020). NNshot
is simple token-level nearest neighbor classifica-
tion system while StructShot extends NNshot with
a decoding process using abstract tag transition
distribution. Here, both the classification model
and the transition distribution should be pre-trained
on the source dataset. Thus, we consider this as
domain adaptation setting.

5.3 Experiments and Implementation Details

We implement all the baselines and our frameworks
using PyTorch (Paszke et al., 2019) and Hugging-
Face (Wolf et al., 2020). We set the batch size
and learning rate to 4 and 2e-5, respectively, and
use bert-base-cased model for all the exper-
iments. For each variant, we run 50 epochs over
5 different sub-samples and 3 random seeds with
early-stopping 20 and show its average and stan-
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Demonstration / Method Strategy Template CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

BERT+CRF w/o demonstration - - 52.72 ±2.44 62.75 ±0.98 38.97 ±4.62 54.51 ±3.27 52.56 ±0.46 60.20 ±2.01

BERT+CRF w/ SBERT lexical 48.92 ±2.81 57.68 ±0.37 36.58 ±4.61 44.47 ±2.58 49.41 ±0.94 51.98 ±2.14
Instance-oriented demonstration (variable) context 53.62 ±1.64 64.21 ±1.87 42.18 ±5.21 53.07 ±3.46 54.71 ±2.09 59.78 ±1.47

BERTScore lexical 49.55 ±3.18 58.85 ±1.06 35.42 ±3.88 44.70 ±2.41 49.37 ±0.19 51.61 ±2.45
(variable) context 53.97 ±1.52 64.66 ±2.04 37.56 ±5.29 53.13 ±3.22 54.81 ±2.11 59.63 ±1.94

BERT+CRF w/ random no-context 53.95 ±1.89 63.31 ±2.14 42.25 ±3.61 55.71 ±3.82 53.58 ±0.48 59.97 ±1.89
Entity-oriented demonstration (variable) lexical 55.20 ±2.24 63.60 ±2.32 44.02 ±4.73 56.31 ±3.83 53.79 ±0.61 59.65 ±1.71

context 54.84 ±2.12 63.51 ±2.83 43.57 ±3.73 56.76 ±3.69 54.08 ±0.97 59.94 ±1.70

popular no-context 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
(fixed) lexical 56.22 ±3.88 64.95 ±2.04 45.31 ±5.02 58.24 ±3.17 54.14 ±0.67 60.67 ±1.58

context 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.80 61.31 ±1.51

search no-context 54.63 ±2.12 64.50 ±2.76 42.88 ±5.41 56.96 ±4.09 53.97 ±1.32 60.84 ±2.14
(fixed) lexical 56.57 ±3.61 65.11 ±2.71 44.87 ±5.09 58.51 ±3.42 54.39 ±1.57 60.76 ±2.12

context 57.00 ±4.03 64.82 ±3.16 45.74 ±5.57 59.00 ±3.27 55.83 ±1.25 62.87 ±2.41

Table 2: In-domain performance comparison (F1-score) on CoNLL03, Ontonotes 5.0, and BC5CDR by different number
of training instances. We randomly sample k training instances with a constraint that sampled instances should cover all the
IOBES labels in the whole dataset. Best variants are bold and second best ones are underlined. Scores are average of 15 runs (5
different sub-samples and 3 random seeds) and the backbone LM model is bert-base-cased.

Baselines
Label Sharing Label Different

CoNLL03 -> Ontonotes CoNLL03 -> BC5CDR

25 50 25 50

BERT+CRF w/o demonstration 61.22 ±1.93 66.44 ±1.75 52.31 ±1.02 62.10 ±1.01
NNShot 46.67 ±5.48 46.34 ±2.66 44.93 ±1.78 48.12 ±2.72
StructShot 43.61 ±4.58 43.02 ±3.19 25.86 ±4.14 27.81 ±2.10

Strategy Template

SBERT lexical 63.34 ±1.53 68.52 ±0.98 53.50 ±2.26 60.52 ±0.71
(variable) context 62.33 ±1.63 67.86 ±0.89 51.93 ±1.96 60.09 ±1.27

BERTScore lexical 62.26 ±1.43 68.68 ±0.25 52.07 ±2.11 59.90 ±0.05
(variable) context 62.46 ±1.69 67.46 ±0.79 53.58 ±1.98 58.95 ±0.38

random no-context 62.28 ±1.70 69.32 ±1.34 53.61 ±1.04 62.57 ±0.97
(variable) lexical 62.41 ±1.85 68.84 ±1.78 53.85 ±1.12 62.30 ±0.75

context 62.58 ±2.20 69.26 ±1.51 54.05 ±0.63 63.04 ±0.31

popular no-context 62.31 ±1.60 69.39 ±1.59 54.33 ±0.80 62.87 ±0.23
(fixed) lexical 62.50 ±2.41 69.34 ±1.38 54.30 ±1.12 63.05 ±0.45

context 62.59 ±2.38 69.91 ±1.24 54.45 ±0.96 63.40 ±0.33

search no-context 62.38 ±2.47 69.57 ±1.50 54.51 ±2.25 62.93 ±1.96
(fixed) lexical 62.51 ±2.43 68.93 ±1.69 54.70 ±2.26 62.88 ±2.90

context 62.63 ±2.94 69.98 ±1.63 54.97 ±1.99 63.55 ±1.58

Table 3: Domain adaptation performance comparison
(F1-score) on Ontonotes 5.0 and BC5CDR by different num-
ber of training instances. Ms is trained on CoNLL03 and
Mt is initialized with embedder of Ms. Scores are average
of 15 runs (5 different sub-samples and 3 random seeds) and
the backbone LM model is bert-base-cased.

dard deviation of F1 scores. Unlike existing sam-
pling methods for few-shot NER (Yang and Kati-
yar, 2020), in which the training sample refers to
one entity span in a sentence, we consider a real-
world setting that humans annotate a sentence. We
sub-sample data-points by random sampling with
a constraint that sampled instances should cover
all the BIOES labels (Chiu and Nichols, 2016) in
the whole dataset. For Ontonotes, we aggregate
all other entity types rather than person, location,
and organization into miscellaneous to set the label
sharing setting for domain adaptation experiments.
Table 1 presents statistics of average number of en-
tities per entity type over 5 different sub-samples.

6 Experimental Results
We first compare the overall performance of all
baseline models and our proposed framework with
the amount of training data 25 and 50 to show the
impact of our approach in a low-resource scenario,
assuming a task that needs to be annotated from
scratch. Then, we show performance analysis to
show the effectiveness of our approach and whether
the model really learns from the demonstration.

6.1 Performance Comparison

In-domain setting In Table 2, we can observe
that most variants of demonstration-based learn-
ing consistently and significantly (with p-value <
0.02) outperform the baseline by a margin ranging
from 1.5 to 7 F1 score in three low-resource NER
datasets (25, 50 train instances respectively). It
demonstrates the potential of our approach for serv-
ing as a plug-and-play method for NER models.

Domain adaptation setting First, we observe
that simple domain adaptation technique can im-
prove the performance (First rows of Table 2 vs.
Table 3). Here, we only transfer the embedder
weights ofMs toMt, and we expect the perfor-
mance gain can be attributed to the embedder of
Ms, which is trained in task adaptive pre-training
manner on NER task formats (Gururangan et al.,
2020). In Table 3, we can see that the most variants
of demonstration-based learning allow the source
modelMs to be adapted to the target domain in
fast with a small amount of target data T , com-
pared to baselines without demonstration including
few-shot NER methods.
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Figure 4: Performance (F1-score) of randomly select one
fixed entity per entity type for demonstration (fixed
random) on CoNLL03 by different numbers of train data
(20, 30, 40). Error bars show standard deviation across 3 trials
using 3 different random seeds for entity selection.

6.2 Performance Analysis

Entity vs. Instance-oriented demonstration.
instance-oriented demonstration performs worse
than entity-oriented demonstration due to the diffi-
culty of finding an appropriate similar instance in
a low resource train data. In our analysis, we find
that the average cosine similarity between retrieved
example s and input x is less than 0.4 which shows
many of the retrieved examples are not appropriate
similar examples to the input.

Fixed vs. Variable demonstration. As men-
tioned in section 4.1, random doesn’t pick a fixed
set of demonstrations the same way as popular
and search. Instead, it picks random demonstra-
tions for each input instance. In a low-resource
setting, there are often no significantly popular
entities. Therefore, the fact that popular out-
performs random in our experiments might sug-
gest that the consistency of demonstration selec-
tion, rather than popularity of selected entities, is
a crucial factor in better few-shot learning. To test
this, we randomly select one entity per entity type
and attach it as the demonstration to all instances,
we call it (fixed random). As shown in Fig-
ure 4, it outperforms random and is on par with
popular and search. We believe this serves
as evidence for two hypotheses: (1) consistency
of demonstration is essential to performance, and
(2) in low-resource settings, the effectiveness of
combinations of entities as demonstrations might
be a rather random function and not too affected
by the combination’s collective popularity in the
training dataset, which further implies that the idea
of search is on the right track.

Performance in other model variants To show
the effectiveness of demonstration-based learning
as plug-and-play method, we present performance
in other model variants: bert-large-cased,

LM Strategy Template
In-domain Label Sharing

CoNLL03 CoNLL03 -> Ontonotes

25 50 25 50

BL - - 52.08 ±2.02 66.42 ±2.14 63.50 ±0.96 70.59 ±1.16
RB - - 59.67 ±4.65 70.17 ±3.93 68.43 ±2.09 74.11 ±1.19
RL - - 59.15 ±2.93 71.51 ±3.44 68.16 ±2.65 74.45 ±1.02

BL popular context 57.60 ±3.37 67.11 ±2.31 64.09 ±2.95 70.88 ±1.09
RB popular context 59.76 ±4.27 70.21 ±3.41 69.09 ±2.63 74.53 ±1.32
RL popular context 59.99 ±2.16 72.15 ±3.81 68.78 ±2.89 74.93 ±1.07

Table 4: Performance comparison (F1-score) with
various backbone LMs: bert-large-cased (BL);
roberta-base (RB); and roberta-large (RL).
Scores are average of 15 runs (5 different sub-samples and 3
random seeds).
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(b) Ontonotes

Figure 5: Performance (F1-score) trend with entity-
oriented demonstration on CoNLL03 and Ontonotes by dif-
ferent numbers of train data (15, 20, 30, 40, 50).

roberta-base and roberta-large. As
shown in Table 4, our method shows consistent
improvement over baselines (p-value < 0.05). It
shows that demonstration-based learning can be ap-
plied to any other model variants and output better
contextualized representations for NER tasks and
show its potential for scalability.

Effectiveness of search. search consis-
tently outperforms all other strategies. It shows
that not only the entity selection, but also the com-
bination of entity examples per each entity type
affects the performance. To see whether it consis-
tently outperforms the baseline over various low-
resource data points, we show the performance
trend of entity-oriented demonstration in Figure 5.

Templates of entity-oriented demonstration.
entity-oriented demonstration becomes more ef-
fective when not only showing the entity exam-
ple per each entity type, but also the correspond-
ing instance example as a context. context and
lexical consistently outperform no-context.
We explore other templates as well, and these three
are the best among them. We present details on
Appendix A. To see whether the order of entity
type in entity-oriented demonstration affects the
performance, we present analysis of entity type
permutation, e.g., person - organization -
location - miscellaneous. There is no
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Figure 6: Performance (F1-score) variance by differ-
ent permutation of entity type orders. Performance
is based on template basic, strategy popular, and
CoNLL03.

Train Infer CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

X X 52.72 ±2.44 62.75 ±0.98 38.97 ±4.62 54.51 ±3.27 52.56 ±0.46 60.20 ±2.01
X O 51.24 ±2.10 61.02 ±2.05 40.48 ±3.90 52.12 ±3.85 52.16 ±0.55 58.12 ±1.67
O X 37.71 ±4.65 53.17 ±3.47 31.98 ±4.25 45.27 ±5.19 51.94 ±1.04 57.73 ±1.52
O O 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.80 61.31 ±1.51

Table 5: Effects of demonstration (F1-score)
with/without the demonstration (denoted by “O" and
“X", respectively) at training and inference time.

clear pattern of which entity type order is better
(spearman correlation between F1-scores over dif-
ferent entity type orders with 25 and 50 training
instances < 0), but all the permutations outperform
the baseline as shown in Figure 6, which show
that demonstration-based learning can be effective
regardless of the order (See Appendix Figure 8).

Demonstration perturbation. To investigate
whether the model really learns from demonstra-
tion, we explore the performance of our approach
with perturbed demonstration which selects ran-
dom entities, labels, and context sentences as
demonstration. Here, we present two studies: (1)
Test perturbation which train with correct demon-
stration and test with perturbed demonstration; and
(2) Train-test perturbation which both train and
test with perturbed demonstration. Figure 7 shows
perturbed demonstration disturbs the model in a
large margin for both case. This shows that the
model affects by demonstration, and proper demon-
stration can improve the model’s performance. Full
results are available in Appendix Table 9.

Effects of demonstration in train & inference.
Table 5 shows the effects of demonstration in train-
ing and inference stage. A comparison of row 0
with row 3 shows that applying demonstration in
the training stage but not in the inference stage
would make the model perform worse than the
fine-tuning baseline. This is another evidence that
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Figure 7: Performance (F1-score) difference be-
tween original and perturbed demonstration. Per-
formance is based on template basic, strategy
popular, and CoNLL03 25 train instances.

Strategy Template CoNLL03 BC5CDR

50% 100% 50% 100%

- - 91.24 ±0.13 91.82 ±0.12 84.58 ±0.17 85.89 ±0.32
random context 90.60 ±0.13 91.22 ±0.38 84.32 ±0.07 85.58 ±0.14
popular context 90.81 ±0.11 91.85 ±0.07 84.12 ±0.48 85.61 ±0.12

Table 6: Performance (F1-score) in fully supervised
setting by different percentages of train data.

consistency of demonstration is essential to the
method’s performance.

Fully supervised setting. Table 6 shows the
performance in fully supervised setting, where
the train data is sufficient. We can see that
demonstration-based learning yields similar perfor-
mance as baselines (p-value < 0.1), which shows
that demonstrations are rather redundant when data
is abundant.

7 Conclusion

In this paper, we propose demonstration-based
learning for named entity recognition. Specif-
ically, we present entity-oriented demonstration
and instance-oriented demonstration and show that
they successfully guide the model towards better
understandings of the task in low-resource settings.
We observe that entity-oriented demonstration is
more effective than instance-oriented demonstra-
tion, and search strategy consistently outper-
forms all other variants. Moreover, we find that
consistent demonstration for all the instances is cru-
cial to the superior performance of our approach.
We believe that our work provides valuable cost re-
duction when domain-expert annotations are too ex-
pensive and opens up possibilities for future work
in automatic demonstration search for few-shot
named entity recognition.
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A Template Analysis

Here we present 4 other variants of templates that
we have not presented in entity-oriented demon-
stration: (1) context-all shows selected e per
l along with an instance sentence s that contains
e as a type of l. Unlike context, it shows all
the e ∈ s. For each triple of (e, l, s), it is modi-
fied into “s. e1 is l1. . . . en is ln." and concatenated
with [SEP]. (2) lexical-all shows selected e
per l in instance example s and further replaces the
entity span e by its label string l. Unlike lexical,
it replaces all the e ∈ s by its label string l. (3)
structure follows augmented natural language
format, which is a structured format (Paolini et al.,
2021). It shows selected e per l along with an
instance sentence s that contains e as a type of
l. For each triple of (e, l, s), e in s is replaced
with [ e | l ] and concatenated with [SEP]. (4)
structure-all also follows augmented natu-
ral language format, and shows selected e per l
along with an instance sentence s that contains e
as a type of l. Unlike structure it shows all
the e ∈ s. For each triple of (e, l, s), for each ei
in s it is replaced with [ ei | li ] and concatenated
with [SEP].done Table. 7 shows that context
and lexical are more effective than others.

B Effects of Batch Size

Table 8 shows the main results in Table 2 with batch
size 10. Overall performance is much lower than
Table 2. It shows that choosing a lower batch size
is important in a extremely low resource, where the
number of train data is 25 or 50.
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Template CoNLL03 Ontonotes 5.0 BC5CDR

50 100 150 200 50 100 150 200 50 100 150 200

- 58.51 ±2.99 69.44 ±4.40 73.94 ±5.69 75.83 ±5.61 46.34 ±4.46 60.36 ±7.52 65.69 ±7.41 68.81 ±7.52 55.68 ±5.33 64.24 ±2.79 68.37 ±2.55 71.09 ±2.84

no-context 58.23 ±3.09 69.52 ±3.32 72.99 ±4.63 76.33 ±4.49 49.63 ±3.49 62.10 ±6.53 67.48 ±6.20 69.68 ±7.00 56.04 ±5.34 64.32 ±2.63 68.55 ±2.82 71.14 ±3.29

context 59.14 ±2.53 69.75 ±3.50 73.35 ±4.24 76.59 ±3.96 52.93 ±4.64 63.37 ±7.02 68.05 ±6.40 70.23 ±6.28 57.10 ±4.55 64.42 ±3.14 68.46 ±2.94 71.27 ±3.43

lexical 59.62 ±3.12 69.22 ±3.94 74.23 ±4.26 77.01 ±4.07 52.69 ±4.47 62.80 ±7.12 67.78 ±6.02 70.02 ±6.86 57.83 ±4.53 64.52 ±3.36 68.51 ±2.57 71.14 ±3.04

structure 60.61 ±2.60 68.35 ±3.85 73.95 ±4.60 76.56 ±4.38 53.35 ±3.59 63.45 ±6.23 68.10 ±5.99 69.99 ±6.74 57.45 ±4.79 64.72 ±2.79 68.32 ±2.77 71.55 ±3.20
context-all 58.82 ±2.01 69.22 ±3.37 71.22 ±3.45 76.07 ±4.53 52.85 ±4.23 62.80 ±7.40 68.22 ±6.18 69.87 ±6.63 57.92 ±4.58 64.69 ±2.72 68.83 ±2.28 71.32 ±3.13

lexical-all 59.34 ±2.72 69.71 ±3.65 74.16 ±4.47 77.31 ±4.04 52.46 ±4.47 63.03 ±7.33 67.22 ±6.82 70.21 ±6.68 56.76 ±5.01 64.42 ±2.91 68.05 ±3.18 71.17 ±3.13

structure-all 59.27 ±2.28 69.17 ±3.28 73.69 ±4.43 76.14 ±4.21 53.33 ±4.39 62.69 ±6.48 67.99 ±6.08 70.09 ±6.34 56.99 ±5.56 64.42 ±2.71 68.43 ±2.94 70.92 ±3.12

Table 7: Template performance comparison (F1-score) in popular strategy on CoNLL03, Ontonotes 5.0, and
BC5CDR by different number of training instances. We randomly sample k training instances with a constraint
that sampled instances should cover all the IOBES labels in the whole dataset. Best variants are bold and second
best ones are underlined. For efficient training, here the batch size is 10.

Demonstration Strategy Template CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

No Demonstration - - 42.65 ±4.77 60.14 ±3.28 29.11 ±5.21 49.00 ±4.92 50.59 ±3.64 57.44 ±4.51

Instance-oriented SBERT lexical 39.25 ±5.57 54.13 ±4.72 26.41 ±5.84 41.09 ±4.07 47.08 ±5.65 50.78 ±4.77
Demonstration (variable) context 41.09 ±5.82 59.92 ±4.78 30.55 ±6.61 48.46 ±5.03 51.72 ±5.81 57.53 ±4.58

BERTScore lexical 40.27 ±6.36 55.85 ±4.39 23.84 ±6.10 41.34 ±3.99 47.24 ±5.53 49.73 ±5.43
(variable) context 41.42 ±6.5 60.65 ±4.64 25.79 ±5.74 42.21 ±3.23 51.85 ±5.87 56.68 ±5.31

Entity-oriented random no-context 44.19 ±4.98 58.87 ±3.80 33.07 ±7.14 50.02 ±5.48 51.07 ±2.85 58.08 ±3.45
Demonstration (variable) lexical 46.83 ±3.69 59.94 ±3.82 34.52 ±6.58 50.69 ±5.64 51.72 ±2.75 57.62 ±3.33

context 47.39 ±3.89 59.81 ±3.58 35.39 ±7.10 50.80 ±5.63 51.86 ±2.71 58.12 ±2.97

popular no-context 46.51 ±4.50 60.67 ±2.97 34.50 ±6.51 52.38 ±4.61 51.12 ±3.28 57.71 ±4.46
(fixed) lexical 49.92 ±3.52 60.75 ±3.29 36.99 ±6.11 54.56 ±4.59 52.23 ±3.56 58.53 ±4.64

context 50.54 ±3.43 61.08 ±3.10 37.97 ±6.14 54.66 ±4.43 52.78 ±2.71 58.69 ±4.17

search no-context 47.80 ±3.45 60.74 ±3.50 34.44 ±6.04 53.06 ±4.78 51.65 ±2.94 58.32 ±4.08
(fixed) lexical 50.77 ±3.32 61.67 ±3.66 37.41 ±6.74 54.62 ±4.17 52.89 ±3.43 58.80 ±4.23

context 51.57 ±3.25 62.26 ±2.75 38.17 ±6.60 54.99 ±4.09 53.01 ±3.42 59.15 ±3.96

Table 8: In-domain performance comparison (F1-score) on CoNLL03, Ontonotes 5.0, and BC5CDR by dif-
ferent number of training instances. We randomly sample k training instances with a constraint that sampled
instances should cover all the IOBES labels in the whole dataset. Best variants are bold and second best ones are
underlined. Scores are average of 15 runs (5 different sub-samples and 3 random seeds) and the backbone LM
model is bert-base-cased. Unlike Table 2, here the batch size is 10.

Template Test CoNLL03 Ontonotes 5.0 BC5CDR

Perturbation 25 50 25 50 25 50

no-context X 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
no-context O 53.83 ±3.65 62.86 ±2.16 41.59 ±5.76 54.63 ±3.89 53.06 ±0.84 59.67 ±1.55

context X 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.8 61.31 ±1.51
context O 51.93 ±5.96 62.21 ±2.66 41.63 ±5.61 53.80 ±4.74 54.12 ±0.95 59.63 ±1.24

Template Train-Test CoNLL03 Ontonotes 5.0 BC5CDR

Perturbation 25 50 25 50 25 50

no-context X 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
no-context O 54.13 ±2.31 62.88 ±2.36 42.34 ±4.91 55.17 ±3.46 53.16 ±0.70 59.93 ±2.31

context X 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.8 61.31 ±1.51
context O 54.67 ±3.04 63.93 ±1.92 43.55 ±5.64 56.09 ±3.37 53.59 ±0.82 59.45 ±1.66

Table 9: Perturbation Analysis.
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Figure 8: Performance comparison (F1-score) by different entity type order in entity-oriented demonstration.
Performance is based on template basic and strategy popular, and dataset is CoNLL03. We construct the
demonstration by different entity type order (P: Person, L: Location, O: Organization, M: Miscellaneous). Scores
are average of 15 runs (5 different subsamples and 3 random seeds).
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