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Abstract
Self-attention mechanism has been shown to
be an effective approach for capturing global
context dependencies in sequence modeling,
but it suffers from quadratic complexity in time
and memory usage. Due to the sparsity of the
attention matrix, much computation is redun-
dant. Therefore, in this paper, we design an effi-
cient Transformer architecture, named Fourier
Sparse Attention for Transformer (FSAT), for
fast long-range sequence modeling. We pro-
vide a brand-new perspective for constructing
sparse attention matrix, i.e. making the sparse
attention matrix predictable. Two core sub-
modules are: (1) A fast Fourier transform based
hidden state cross module, which captures and
pools L2 semantic combinations in O(L logL)
time complexity. (2) A sparse attention ma-
trix estimation module, which predicts domi-
nant elements of an attention matrix based on
the output of the previous hidden state cross
module. By reparameterization and gradient
truncation, FSAT successfully learned the in-
dex of dominant elements. The overall com-
plexity about the sequence length is reduced
from O(L2) to O(L logL). Extensive exper-
iments (natural language, vision, and math)
show that FSAT remarkably outperforms the
standard multi-head attention and its variants in
various long-sequence tasks with low computa-
tional costs, and achieves new state-of-the-art
results on the Long Range Arena benchmark.

1 Introduction

Models based on the Transformer architecture
(Vaswani et al., 2017) have been firmly established
as state of the art approaches across a range of
domains like language (Brown et al., 2020; Clark
et al., 2020; Devlin et al., 2018), and vision (Carion
et al., 2020; Dosovitskiy et al., 2020). The Trans-
former architecture perceiving long-range context
heavily relies on the multi-head self-attention mech-
anism, in which the relevance of every token pairs

is computed to decide the attention scores and to-
ken’s representations are the weighted average of
all tokens using the attention scores.

Despite its effectiveness, self-attention mech-
anism’s quadratic time and memory complexity
about the sequence length is an obstacle to ex-
tend Transformer for very long sequences, such
as document-level text tasks, high-resolution im-
ages, videos, etc. Shen et al. (2021, 2018) elaborate
the issue of high computational complexity. For
instance, more than 68GB GPU memory and 1.6T
multiply-accumulation operations are required for
a 64× 64× 32 3D feature volume.

Great efforts have been made to develop Trans-
former’s variants for long-range sequence mod-
eling tasks. Tay et al. (2020c) categorize the re-
searches of efficient Transformers: (a) Fixed pat-
terns or combination of patterns (Beltagy et al.,
2020; Zaheer et al., 2020), in which the field to
be attended is pre-defined by fixed pattern. (b)
Learnable patterns (Kitaev et al., 2020; Tay et al.,
2020a), in which tokens are sorted or clustered
in a data-driven fashion. (c) Memory (Ma et al.,
2021; Lee et al., 2019), in which spacial tokens
with global view are introduced to compress the
input sequence. (d) Low-rank methods (Tay et al.,
2021; Wang et al., 2020), which adopt low-rank
approximations of the self-attention matrix. (e)
Kernels (Katharopoulos et al., 2020; Choromanski
et al., 2020a,b), which view the attention mecha-
nism through kernelization. (f) Recurrence (Rae
et al., 2019), which connects multiple segments via
recurrence structure. Despite their variety, approxi-
mating the quadratic-cost attention matrix by the
sparsity of attention matrix is the common idea.

In this paper, we propose predictable sparse at-
tention, and name it as Fourier Sparse Attention
for Transformer (FSAT) due to fast Fourier trans-
form is a key operation in our method. FSAT is
a brand-new perspective of efficient Transformer,
i.e. learning the sparse structure of an attention ma-
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trix in end-to-end fashion. Specifically, we firstly
compute the semantic relevance of token pairs and
then use it to predict the indices of dominant (non-
zero) elements of an attention matrix, and finally
attention scores are filled according to the predicted
sparse structure. In this process, two problems have
to be solved: (1) Efficiently capturing semantic rel-
evance of L2 token pairs where L is the length of an
input sequence. (2) Learning discrete indices with
gradient descent algorithm. To this end, we propose
pooled hidden state cross to efficiently calculate
and compress semantic relevance in O(L logL)
time complexity. For end-to-end training, we get
continuous and meaningful gradients for learning
discrete indices by reparameterization and gradient
truncation. Consequently, FSAT is out of the scope
of Tay et al. (2020c)’s taxonomy. It’s worth noting
that predictable sparse attention is different from
the methods of learnable patterns. Although these
methods use learnable algorithms to sort or clus-
ter tokens, they still exploit fixed patterns (chun-
ked patterns). Instead, FSAT directly predicts the
sparse structure of an attention matrix without any
pre-defined pattern.

In order to fit the predicted sparse attention ma-
trix, the key and value vectors in self-attention
mechanism are projected from pooled hidden state
cross vectors, which can be viewed as 2-order fea-
tures of the tokens. As an extra benefit, model’s ex-
pressiveness may increase. Therefore, unlike some
efficient Transformer variants which approximate
the quadratic-cost attention matrix at the expense
of accuracy, FSAT not only reduces computational
complexity but also improves model accuracy in
some tasks. On Long Range Arena benchmark,
FSAT outperforms the Transformer and several re-
cent efficient self-attention methods by a large mar-
gin.

To summarize, our contributions are as follows:

• We propose Fourier Sparse Attention for
Transformer (FSAT) to extend Transformer
for long sequences. The overall complexity
about the sequence length is reduced from
O(L2) to O(L logL).

• We introduce the pooled hidden state cross to
implement FSAT.

• Empirically, extensive experiments (natural
language, vision, and math) demonstrate the
advantages of our proposed methods, and new

state-of-the-art results are achieved on the
Long Range Arena benchmark.

2 Related Works

2.1 Efficient Transformer

Tay et al. (2020c) have provided a comprehen-
sive overview of existing efficient Transformers.
Some promising models are compared with our
method in the experiments. Big bird (Zaheer et al.,
2020) uses random, sliding window and global at-
tention to build hybrid attention pattern. Performer
(Choromanski et al., 2020a,b) utilizes orthogonal
random features to approximate softmax-attention
kernels with linear complexity. Linformer (Wang
et al., 2020) achieves linear complexity by adopt-
ing random projections based on the JL lemma
to compress the attention length to a fix length.
Longformer (Beltagy et al., 2020) combines local
windowed attention with task-motivated global at-
tention for long documents. Reformer proposed
in Kitaev et al. (2020) clusters similar tokens by
locality-sensitive-hashing, and dot-product atten-
tion is performed inside clusters.

2.2 Feature Crosses

Feature crosses, which synthesize crossing com-
binations of features, is a widely used technique
for extending features’ predictive ability in ma-
chine learning. For example, Takahashi et al.
(2018) demonstrate their gender identification sys-
tem leveraging synergy of both texts and images
by feature cross technique. Yu et al. (2018) and
Seo et al. (2016) utilize crossed feature to design a
trilinear attention function. Chen et al. (2021) ex-
plore how to search the best feature crosses by sub-
modular optimization. More researches involving
feature crosses focus on feature selection (Zadeh
et al., 2017; Wei et al., 2015; Hoque et al., 2014;
Nie et al., 2010; Guyon and Elisseeff, 2003; Kwak
and Choi, 2002; Rogati and Yang, 2002; Weston
et al., 2000).

2.3 Fourier Transform in Transformer

Recently, Fourier transform in Transformer has
garnered interest. Choromanski et al. (2020a,b)
propose Performer by approximating softmax
attention-kernels via orthogonal random Fourier
features. Tamkin et al. (2020) propose BERT +
Prism model using spectral filters in the activa-
tions of neurons for producing multi-scale repre-
sentations, and got positive experimental results at
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Figure 1: The process of feature mapping, hidden state
cross, and sum-pooling along antidiagonals, correspond-
ing to Formula 2.

utterance- and document-level tasks. More radi-
cally, Lee-Thorp et al. (2021) reform Transformer
by replacing the entire self-attention sub-layer with
discrete Fourier transforms along sequence dimen-
sion and hidden dimension respectively.

3 Self-attention with Pooled Hidden State
Cross

In this section, we start by explaining the moti-
vation of introducing pooled hidden state cross,
then introduce how to compute pooled hidden state
cross, and finally discuss the way to equip self-
attention with pooled hidden state cross.

3.1 Why Pooled Hidden State Cross

Three desiderata motivate our use of pooled hid-
den state cross: (1) Long-range semantic depen-
dency and relevance can be captured by hidden
state crosses, since the combinations of every to-
ken pair have been included. Capturing semantic
relevance is also the basis of the predictable sparse
attention proposed in the next section. (2) Hidden
state cross is a way to extract 2-order token fea-
tures, intuitively it may generate more expressive
feature representations. (3) Crossing and pooling
hidden states are conducted depth-wisely, so that
they can be efficiently implemented via fast Fourier
transform.

3.2 Pooled Hidden State Cross

Inspired by the feature cross technique, we propose
the concept of hidden state cross. Briefly speak-
ing, feature cross technique (a.k.a feature combi-
nation) synthesizes new feature xy by multiplying
feature x and feature y. We extend it to the level
of hidden state of deep learning models. Specifi-

cally, given the hidden states of a token sequence
x⃗0, · · · , x⃗L−1, we define

c⃗ij = f1(x⃗i)⊙ f2(x⃗j) (1)

as the crossed hidden state vector of the i-th and
the j-th token, where f(·) is a parameterized non-
linear feature mapping function, subscripts indi-
cate containing different parameters, and ⊙ is the
Hadamard product. We expect that the semantic
combination of two tokens can be learned and en-
coded in the crossed hidden state vector.

Problems arise when computing the hidden state
crosses of L2 token pairs. Firstly, the computa-
tional complexity is O(L2) about the sequence
length L, which is computationally prohibitive for
long sequences. Secondly, the output should be
L2 vectors which is too large to be attended in
the Transformer model. To alleviate the problems,
crossed hidden states are sum-pooled in this paper.

c⃗k =
∑

i+j=k

c⃗ij =
∑

i+j=k

f1(x⃗i)⊙ f2(x⃗j) (2)

Figure 1 illustrates the computation. The pooled
hidden state cross c⃗k represents the sum of crossed
hidden states along the k-th antidiagonal. There-
fore, the output vectors are compressed from L2

vectors, i.e. {c⃗ij}i,j∈[0,L−1], to 2L− 1 vectors, i.e.
{c⃗k}k∈[0,2L−2].

3.2.1 Implementation via Fast Fourier
Transform

Formula 2 can be efficiently implemented by
Fast Fourier Transform (FFT). Specifically, hid-
den states are firstly non-linearly converted by the
feature mapping functions, and then 1D discrete
Fourier transform is applied along the sequence di-
mension to transform the mapped hidden states into
frequency domain, crossing and pooling are then
conducted via multiplication in frequency domain,
finally by applying inverse 1D discrete Fourier
transform the pooled hidden state crosses are trans-
formed back from frequency domain. By the Her-
mitian property, the imaginary part of the output is
zero. Thus, we can safely only keep the real part of
the output and avoid involving complex numbers
into the model. Formally,

C0 = ℜ(F−1(F(f1(X))⊙F(f2(X)))) (3)

in which, X ∈ RL×D denotes the matrix consisting
of the L D-dimensional hidden states. F and F−1
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are 1D Fourier transform and inverse 1D Fourier
transform respectively. ℜ means keeping the real
part of complex numbers. C0 ∈ R(2L−1)×D is
the output matrix of pooled hidden state crosses.
The computational complexity about the sequence
length is reduced from O(L2) to O(L logL) by
FFT.

3.2.2 Central Token Symmetry
Formula 3 has the output matrix of shape (2L −
1) × D, which doubles the sequence length. To
keep the computational complexity of attention not
increasing, the length is needed to be reduced. As
is shown in Figure 1, sum-pooling along antidi-
agonal produces a symmetric token combination
(cross) about a central token. Specifically, in even-
numbered antidiagonals, the central token is the
k
2 -th token. For instance, the token combinations
of the 10th antidiagonal include token 5-5, 4-6, 3-7,
and so on. In odd-numbered antidiagonals, the sym-
metric center is between ⌊k2⌋-th token and ⌈k2⌉-th
token. For instance, the 11th antidiagonal includes
the token combinations of token 5-6, 4-7, 3-8, etc.
Therefore, we can reduce the length by merging
the consecutive even-numbered and odd-numbered
antidiagonals so that token combinations of near
symmetric centers are together. In the previous ex-
ample, token combinations of the 10th antidiagonal
and the 11th antidiagonal are summed up. Besides,
token combinations of two same tokens are sub-
tracted, e.g. token combination 5-5. Formally,

C = LN(C1 +C2 − f1(X)⊙ f2(X)) (4)

where C1 ∈ RL×D (padding a row of zero to align
its the length to C2) and C2 ∈ RL×D are the
odd-numbered and even-numbered rows of matrix
C0 respectively, LN denotes layer normalization
which ensures stable training, C ∈ RL×D is the
output.

3.3 Revise Self-attention
In this section, we revise the multi-head self-
attention to utilize our pooled hidden state cross.
The output of an attention layer is calculated as
follows.

A(X,C) = (

H∏
h=1

Ψ(
QhKhT

√
d

)Vh)Wo (5)

where d is the dimension of a single head, super-
script h denotes the h-th head,

∏
denotes the con-

catenation operation of H heads along the last di-
mension, Ψ is a row-wise scoring function (e.g.

Query
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Confidence i js →

i

j

jI

jI j
s

→

T

i jq k

Figure 2: An illustration of the weighted directed graph
with a single key vertex, and its in-neighbors. The edge
pointing from the bold dominant query vertex to the
key vertex corresponds to a dominant attention element
in the attention matrix. Decreasing confidences are
assigned to the edges away from the dominant query
vertex.

softmax), Wo ∈ RHd×D is the output projection
matrix. It’s worth noting that the key, and value in
attention mechanism are revised.

Qh = XWh
Q, Kh = CWh

K , Vh = CWh
V

(6)
where Wh

Q,W
h
K ,Wh

V ∈ RD×d are the learnable
projection matrices.

4 Predictable Sparse Attention

Due to the sparsity of attention matrix, most el-
ements of the attention matrix are close to zero,
for the sake of simplicity, we call those elements,
which are much greater than zero, dominant ele-
ments. Base on the pooled hidden state cross, we
propose predictable sparse attention, which pre-
dicts dominant elements of attention matrix, to
avoid computing the full attention matrix.

4.1 Sparse Attention

In this section, we describe the predictable sparse
attention by a weighted directed sparse graph, in
which the vertexes are the L query/key vectors of
the input sequence, its directed edges represent that
the head vertex attends to the tail vertex in the at-
tention mechanism, and two weights (i.e. attention
score and confidence) are assigned to each edge.
Figure 2 illustrates a sub-graph with a single key
vertex and its in-neighbors. The attention matrix is
the adjacency matrix of the graph. For the multi-
head attention, each head has a graph computed
independently. The i-th output vector of the pro-
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posed predictable sparse attention is defined as

A(X,C)i = (
H∏

h=1

(Ψ(
q⃗ h
i K

hT

Nh
i√

d
)⊙s⃗h

i→Nh
i
)Vh

Nh
i
)Wo

(7)
where row vector q⃗ h, and matrices Kh,Vh ∈
RL×d are respectively the query, key, and value
projected from X or C following Formula 6, Nh

i

represents the out-neighbors set of the i-th vertex
in the h-th head’s directed graph, when Nh

i is writ-
ten at subscript, it means only extracting the ma-
trix’s rows corresponding to the vertexes in Nh

i ,
and s⃗h

i→Nh
i

represents the confidence vector con-
sisting of the confidence scores of the edges point-
ing from i-th vertex to the vertexes in Nh

i in the
h-th head’s directed graph.

4.2 Sparse Attention Matrix Estimation

The challenge of the predictable sparse attention is
to find out which elements in the attention matrix
are dominant under the condition of not computing
the full attention matrix. We utilize pooled hidden
state cross, because semantic combination vectors
contain the information of the relevance of token
pairs.

4.2.1 Attention Confidence
We introduce attention confidence to help the
model learning the sparse structure of an attention
matrix. Specifically, we define the confidence of
the i-th query vector q⃗i attending to the j-th key
vector k⃗j as

si→j = ρ(i | Īj , σ2) (8)

in which, ρ denotes the probability density func-
tion of Gaussian distribution, Īj is the index of
the dominant query vector, which attends to the
key vector k⃗j with a dominant attention score (i.e.
edge Īj → j corresponds to a dominant element
in the attention matrix), σ2 is a hyper-parameter
representing the variance. We have this definition
because of the observation that the query vectors
far away from the dominant query vector have de-
creasing probabilities of attending to the key vector.

4.2.2 Reparameterization
The key to make a sparse attention matrix pre-
dictable is how to back-propagate gradients through
the predicted discrete indices. In this paper, dis-
crete indices are reparameterized. A dominant in-
dex matrix Ī ∈ RL×M is predicted based on the

pooled hidden state cross C:

Ī = σ(CWI + b⃗I) · Lmax (9)

where WI ∈ RD×M and b⃗I ∈ RM are the learn-
able weight and bias respectively, σ(·) is the sig-
moid function, Lmax is the maximum sequence
length that the model supports. Since there may be
multiple dominant query vectors for a key vector,
the hyper-parameter M presumes the maximum
number of dominant query vectors for a single key
vector.

Given the sparse graph described by an index
matrix I ∈ NL×M , whose value in the j-th row
m-th column Ijm indicates that there is a directed
edge pointing from the Ijm-th query vector to the
j-th key vector, the confidence score of each edge
can be calculated as follows.

sIjm→j = ρ(Ijm|Ījm, σ2) (10)

where Ījm is the m-th predicted dominant index of
the j-th key vector predicted by Formula 9. There-
fore, applying the chain rule, the gradient of confi-
dence scores from a loss function can continue to
be propagated through Formula 9 and Formula 10
to matrix C.

4.2.3 Learning Index
The index matrix I ∈ NL×M decides which edges
are considered and which edges are ignored in the
sparse graph. In this paper, two types of index ma-
trix are adopted, a predicted index matrix Ip = ⌊̄I⌋
and a random index matrix Ir ∼ U[0,N−1]. The
process for learning sparse attention matrix can be
viewed as a process for searching right indices, it
is a process of exploring new knowledge and ex-
ploiting existing knowledge. Therefore, in training,
the sparse graph is decided by the union of Ip (ex-
ploitation) and Ir (exploration), and, in inference,
only Ip is used.

4.2.4 Gradient Truncation
When back-propagation, the gradient of attention
confidence is truncated into the range (−∞, 0 ]
for stable convergence. Because, for gradient de-
scent algorithm, positive gradients will decrease
the confidence values on edges, it means that the
gradients prevent the model from considering these
edges in sparse attention mechanism, and tune
the model’s parameters to change its predicted
dominant-indices. But due to the discreteness of
indices, changing the predicted dominant-indices
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Models ListOps Text Retrieval Image Pathfinder Avg. Avg. (w/o Text)
Transformer 37.45 64.96 78.38 43.19 74.61 59.72 58.41
Local Attention 15.82 52.98 70.65 41.46 66.63 49.51 48.64
Sparse Trans. 17.07 63.58 72.53 44.24 71.71 53.83 51.39
Longformer 35.63 62.85 68.32 42.22 69.71 55.75 53.97
Linformer 35.70 53.94 77.83 38.56 76.34 56.47 57.11
Reformer 37.27 56.10 73.03 38.07 68.50 54.59 54.22
Sinkhorn Trans. 33.67 61.20 65.88 41.23 67.45 53.89 52.06
Synthesizer 36.99 61.68 80.04 41.61 69.45 57.95 57.02
BigBird 36.05 64.02 76.41 40.83 74.87 58.44 57.04
Linear Trans. 16.13 65.90 72.09 42.34 75.30 54.35 51.47
Performer 18.01 65.40 75.43 42.77 77.05 55.73 53.32
Fnet 35.33 65.11 59.61 38.67 77.80 55.30 52.85
Nyström 37.15 65.52 79.56 41.58 70.94 58.95 57.31
Luna-256 37.25 64.57 79.29 47.38 77.72 61.24 60.41
FSAT (ours) 46.85 65.95 / 80.24 81.11 49.97 77.32 64.24 / 67.10 63.81

Table 1: Experimental results on the Long Range Arena benchmark. Except for Retrieval task, results of models
from Local Attention to Performer are cited from Tay et al. (2020b). Fnet, Nyström, and Luna-256 are more recent
works, results are from their papers. Average accuracy without the Text task is reported separately. For the Text task,
the results of FSAT using different feature mapping (fully-connect structure or depth-wise separable convolution
layer) are reported, see the discussion in the body text.

slightly larger or smaller does not ensure moving
closer to the correct dominant indices. On the con-
trary, negative gradients indicate hitting the correct
dominant-indices, and the model should be tuned
using these gradients.

4.3 Complexity Analysis

In terms of computational complexity, the proposed
predictable sparse attention has lower computa-
tional cost in time and memory usage. Specifically,
the computational complexity for pooled hidden
state cross includes the feature mapping O(LD2),
and fast Fourier transform O(LD logL). The com-
putational complexity involved in Formula 7 in-
cludes computing attention probability O(LMD),
computing attention confidence O(LDM), and
matrix multiplications about the value matrix and
projection matrices O(LMD+LD2). The overall
computational complexity is O(LD2+LD logL+
LMD). Since M is always small (e.g. M = 4),
for long sequences, this complexity is much smaller
than O(L2D + LD2) which is the complexity of
standard multi-head attention. In memory usage,
sparse attention has no need to store the full atten-
tion matrix, thus the memory complexity is reduced
from O(L2H + LD) to O(LMH + LD).

5 Experiments

We conduct experiments to study the performance
of the proposed approach on long sequence model-
ing tasks.

5.1 Long-context Sequence Modeling
As the primary goal, we evaluate the proposed
Fourier Sparse Attention for Transformer (FSAT)
on multiple tasks requiring long-context percep-
tion. We test our models on the Long Range Arena
(LRA) benchmark (Tay et al., 2020b), since it
is specifically designed for evaluating the perfor-
mance of efficient Transformers on various long
sequence tasks, and there are quite a number of
baseline models evaluated on this benchmark.

5.2 Datasets and Baselines
The LRA benchmark includes five tasks of different
kinds and modalities (natural language, vision, and
math) in order to simulate meaningful real-world
tasks under the long-context scenario.

• ListOps This task requires models to com-
pute the output value of mathematical expres-
sion with a hierarchical structure and opera-
tors. The sequence lengths are up to 2K.

• Text A byte-level text classification task to
probe the model’s reasoning ability with com-
positional, unsegmented characters. Character
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Steps per second ↑ Peak Memory Usage ↓
Model 1K 2K 3K 4K 1K 2K 3K 4K
Transformer 1.0 1.0 1.0 1.0 1.00 1.00 1.00 1.00
Local Attention 1.1 1.7 3.2 5.3 0.49 0.29 0.19 0.14
Linformer 1.2 1.9 3.7 5.5 0.44 0.21 0.18 0.1
Reformer 0.5 0.4 0.7 0.8 0.56 0.37 0.28 0.24
Sinkhorn Trans. 1.1 1.6 2.9 3.8 0.55 0.31 0.21 0.16
Synthesizer 1.1 1.2 2.9 1.4 0.76 0.75 0.74 0.74
BigBird 0.9 0.8 1.2 1.1 0.91 0.56 0.4 0.3
Linear Trans. 1.1 1.9 3.7 5.6 0.44 0.22 0.15 0.11
Performer 1.2 1.9 3.8 5.7 0.44 0.22 0.15 0.11
FSAT (ours) 1.1 1.5 2 2.5 0.53 0.27 0.21 0.16

Table 2: The time cost and memory consumption on the Long Range Arena benchmark on byte-level text classifica-
tion with various input lengths (1K, 2K, 3K and 4K). The speed and memory consumption are shown through the
rate with respect to the vanilla Transformer.

sequences are truncated or padded to a fixed
maximum length of 4K in this task.

• Retrieval A byte-level document retrieval
task tests model’s ability to compress long
sequences into representations suitable for
similarity-based matching.

• Image An image classification task evaluates
a model’s performance of perceiving 2D spa-
tial relations between input pixels. Images are
flattened to sequences of length 1K pixels.

• Pathfinder A binary image classification task
tests if a model can capture long-range spa-
tial dependencies by judging if two points are
connected by a path consisting of dashes in an
image with distractor paths. 32× 32 images
are flattened to sequences of length 1K pixels.

We compare our model with a number
of promising models, including vanilla Trans-
former(Vaswani et al., 2017), a local attention
baseline, Sparse Transformer(Child et al., 2019),
Longformer(Beltagy et al., 2020), Linformer(Wang
et al., 2020), Reformer(Kitaev et al., 2020),
Sinkhorn Transformer(Tay et al., 2020a), Synthe-
sizer(Tay et al., 2021), Big Bird(Zaheer et al.,
2020), Linear Transformer(Katharopoulos et al.,
2020), Performer(Choromanski et al., 2020a,b),
and more recent models, such as FNet(Lee-Thorp
et al., 2021), Nsytrömformer(Xiong et al., 2021),
and Luan(Ma et al., 2021).

5.3 Implementation details
We run our experiments on the LRA benchmark
with the configurations based on Tay et al. (2020b)

open source codebase. Specifically, we follow the
original data preprocessing, data split, and keep
roughly equivalent model parameters for a fair com-
parison with the baselines reported in Tay et al.
(2020b). An exception is that we reproduce the ex-
periments of the Retrieval task for a longer training
of 30K steps because models are not fully con-
verged in 5K training steps. Ma et al. (2021); Lee-
Thorp et al. (2021); Xiong et al. (2021) also pointed
the same issue. We also re-run the vanilla Trans-
former using our Pytorch implementation.

For the proposed FSAT, the default value of the
hyper-parameter M is 4, and the variance σ2 is
empirically set to Lmax which is the maximum
sequence length of each task. To ensure roughly
equivalent model parameters, we reduce the dimen-
sion of FFN layer from 4 times of the hidden size to
2 times for FSAT to offset the increased parameters
of non-linear feature mapping functions (Formula
1). In our code, sparse matrix multiplications in-
volved in FSAT model are implemented via scatter
operations at batch-level for better efficiency. Me-
dian results of 5 runs are reported in the tables.

5.4 Results

Table 1 summarizes the performance of a num-
ber of models on the LRA benchmark. As we
can see, the proposed model clearly outperforms
all previously published approaches, and achieves
new state-of-the-art performance on four of the five
datasets, and a 5.8% absolute improvement over
average performance, which validates the effective-
ness of the proposed FSAT model. It is notewor-
thy that we separately report the average accuracy
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Figure 3: An illustration of the trend of time and mem-
ory cost, as the input sequence length increases. The
average memory consumption (MB) and training time
(ms) for a single sequence is counted.

without the Text task, this is because we find that
convolution layers have a significant impact on this
task. In the experiment, we adopt a depth-wise
separable convolution layer with a kernel size of 5
as the feature mapping function when computing
hidden crosses, the accuracy significantly increases
from 65.95% to 80.24%. Therefore, considering
the particularity of the Text task, we report its result
separately. We suspect that the small data size may
be the reason of its particularity.

5.5 Efficiency

The time and memory efficiency of our model and
competing approaches are summarized in Table 2.
Compared with the vanilla Transformer, our FSAT
significantly reduces the computational complex-
ity with faster training speed and lower memory
usage, which demonstrates that directly predict-
ing the sparse structure of attention matrix is an
effective way for building efficient Transformer ar-
chitecture. The limitation of FSAT is that extra
operations (e.g. gathering, slicing) of linear com-
plexity are involved, so that FSAT can not bring
parallel superiority into full play. Even so, among
all compared Transformer variants, FSAT achieves
promising results in time and memory efficiency.
The trend of computation complexity increasing is
shown in Figure 3. This is in line with expectations,
FSAT has a linear rate of increase, its advantage is
especially obvious for sequences longer than 4K
tokens. This demonstrates the potential of the pro-
posed predictable sparse attention for the tasks with
much longer sequences, e.g. 3D feature volume.

5.6 Ablation Study

An ablation study is conducted to verify the neces-
sity of our proposed model components. In Table 3,
we report FSAT models with the different number
of predicted dominant indices. The results show

ListOps Retrieval Image Avg.
Transformer 37.45 78.38 43.19 53.01
FSAT-2 39.1 76.76 49.64 55.17
FSAT-4 46.85 81.11 49.97 59.31
- No Trunc. 42.65 74.88 47.74 55.09
- Only Ir 37.54 73.84 40.24 50.54
- Only Ip 17.8 56.81 21.58 32.06
+ DConv-5 45.95 81.45 32.23 53.21
FSAT-8 47.95 81.29 49.85 59.70
FAT 46.8 82.46 50.14 59.77

Table 3: Ablation study on three tasks of the LRA bench-
mark. “”/“+” denotes removing/adding a model compo-
nent. The best model is in boldface.

that for each key vector in the attention mecha-
nism about 4 predicted dominant query vectors are
enough for the model to produce high accuracy.
We also remove the sparse attention module, and
test the architecture of only integrating the pooled
hidden state cross into the attention mechanism,
corresponding to Formula 5. We call this archi-
tecture Fourier Attention for Transformer (FAT).
It can be seen from the results of FAT, better re-
sults can be obtained with the pooled hidden state
cross in some tasks, which supports our hypothesis
that the 2-order token feature may generate more
expressive feature representations. It is notewor-
thy that without the gradient truncation, or only
using random indices Ir or Ip, the performance
significantly drops. Besides, the depth-wise convo-
lution based feature mapping performs worse than
a fully-connected structure base feature mapping.

6 Conclusion

In this paper, we proposed a new efficient Trans-
former architecture, FSAT, which directly predicts
the sparse structure of attention matrix to avoid
computing the quadratic-cost full self-attention.
The proposed approach has the advantages in long-
range sequence modeling tasks meanwhile reach-
ing a balance between time, memory, and accu-
racy. We showed the effectiveness of the proposed
method in modeling long sequence context using
the Long Range Arena benchmark. Experimental
results showed that state-of-the-art performance is
achieved by our proposed method.
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