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Abstract

We study a new problem setting of informa-
tion extraction (IE), referred to as text-to-table.
In text-to-table, given a text, one creates a ta-
ble or several tables expressing the main con-
tent of the text, while the model is learned
from text-table pair data. The problem set-
ting differs from those of the existing meth-
ods for IE. First, the extraction can be carried
out from long texts to large tables with com-
plex structures. Second, the extraction is en-
tirely data-driven, and there is no need to ex-
plicitly define the schemas. As far as we know,
there has been no previous work that studies
the problem. In this work, we formalize text-
to-table as a sequence-to-sequence (seq2seq)
problem. We first employ a seq2seq model fine-
tuned from a pre-trained language model to per-
form the task. We also develop a new method
within the seq2seq approach, exploiting two
additional techniques in table generation: ta-
ble constraint and table relation embeddings.
We consider text-to-table as an inverse prob-
lem of the well-studied table-to-text, and make
use of four existing table-to-text datasets in
our experiments on text-to-table. Experimen-
tal results show that the vanilla seq2seq model
can outperform the baseline methods of using
relation extraction and named entity extrac-
tion. The results also show that our method can
further boost the performances of the vanilla
seq2seq model. We further discuss the main
challenges of the proposed task. The code
and data are available at https://github.
com/shirley-wu/text_to_table. 1

1 Introduction

Information extraction (IE) is a task that aims to
extract information of interest from text data and
represent the extracted information in a structured
form. Traditional IE tasks include named entity
recognition which recognizes entities and their

1The work was done when Xueqing Wu was an intern at
ByteDance AI Lab.

Figure 1: An example of text-to-table from the Rotowire
dataset. The text is a report of a basketball game, and
the tables are the scores of the teams and players.

types (Huang et al., 2015; Ma and Hovy, 2016;
Lample et al., 2016; Devlin et al., 2019), relation ex-
traction which identifies the relationships between
entities (Zheng et al., 2017; Zeng et al., 2018; Luan
et al., 2019; Zhong and Chen, 2021), etc. Since the
results of IE are structured, they can be easily used
by computer systems in different applications such
as text mining.

In this work, we study IE in a new setting, re-
ferred to as text-to-table. First, the system receives
a training dataset containing text-table pairs. Each
text-table pair contains a text and a table (or ta-
bles) representing information needed for the tar-
get application extracted from the text. The system
learns a model for information extraction. Next,
the system employs the learned model to conduct
information extraction from a new text and outputs
the result in a table (or tables). Figure 1 gives an
example of text-to-table, where the input (above)
is a report of a basketball game, and the output
(below) is two tables summarizing the scores of the
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teams and players from the input.

Text-to-table is unique compared to the tradi-
tional IE approaches. First, text-to-data can be
performed at both sentence-level and document-
level. While the distinction between sentence and
document level is vague, document-level extrac-
tion can produce a more complex output. As in the
example in Figure 1, extraction of information is
performed from the entire document. The extracted
information contains multiple types of scores of
teams and players in a basketball game structured
in table format. Second, the schemas for extraction
are implicitly included in the training data such as
header names. There is no need to explicitly define
the schemas, which reduces the need for manual
efforts for schema design and annotations.

Our work is inspired by research on the so-called
table-to-text (or data-to-text) problem, which is the
task of generating a description for a given table.
Table-to-text is useful in applications where the
content of a table needs to be described in natu-
ral language. Thus, text-to-table can be regarded
as an inverse problem of table-to-text. However,
there are also differences. Most notably, their ap-
plications are different. Text-to-table systems can
automatically produce tables for text summariza-
tion and text mining. For example, the score tables
of sports games and infoboxes of Wikipedia arti-
cles can serve as summaries of original documents.
The score tables can be utilized to evaluate the ath-
letes’ performances, and the infoboxes can be used
to construct a knowledge graph.

In this work, we formalize text-to-table as a
sequence-to-sequence (seq2seq) task. More specif-
ically, we translate the text into a sequence repre-
sentation of a table (or tables), where the schema
of the table is implicitly contained in the represen-
tation. We build the seq2seq model on top of a
pre-trained language model, which is the state-of-
the-art approach for seq2seq tasks (Lewis et al.,
2020; Raffel et al., 2020). Although the approach
is a natural application of existing technologies, as
far as we know, there has been no previous study
to investigate to what extent the approach works.
We also develop a new method for text-to-table
within the seq2seq approach with two additional
techniques, table constraint, and table relation em-
beddings. Table constraint controls the creation
of rows in a table and table relation embeddings
affect the alignments between cells and their row
headers and column headers. Both are to make the

generated table well-formulated.
The approach to IE based on seq2seq has already

been proposed. Methods for conducting individ-
ual tasks of relation extraction (Zeng et al., 2018;
Nayak and Ng, 2020; Huang et al., 2021), named
entity recognition (Chen and Moschitti, 2018; Yan
et al., 2021), event extraction (Li et al., 2021; Lu
et al., 2021) and role-filler entity extraction (Du
et al., 2021; Huang et al., 2021) have been de-
veloped. Methods for jointly performing multi-
ple tasks of named entity recognition, relation ex-
traction, and event extraction have also been de-
vised (Paolini et al., 2021). Most of the methods
exploit suitable pre-trained models such as BERT.
However, all the existing methods rely on pre-
defined schemas for extraction. Moreover, their
models are designed to extract information from
short texts, rather than long texts, and extract infor-
mation with simple structures (such as an entity and
its type), rather than information with complicated
structures (such as a table).

We conduct extensive experiments on the four
datasets. Results show that the vanilla seq2seq
model fine-tuned from BART (Lewis et al., 2020)
can outperform the state-of-the-art IE models fine-
tuned from BERT (Devlin et al., 2019; Zhong and
Chen, 2021). Furthermore, results show that our
proposed approach to text-to-table with the two
techniques can further improve the extraction accu-
racies. We also summarize the challenging issues
with the seq2seq approach to text-to-table for future
research.

Our contributions are summarized as follows:
1. We propose the new task of text-to-table for

IE. We derive four new datasets for the task
from existing datasets.

2. We formalize the task as a seq2seq problem
and propose a new method within the seq2seq
approach using the techniques of table con-
straint and table relation embeddings.

3. We conduct extensive experiments to verify
the effectiveness of the proposed approach.

2 Related Work

Information Extraction (IE) is the task of extract-
ing information (structured data) from a text (un-
structured data). For example, named entity recog-
nition (NER) recognizes entities appearing in a text.
Relation extraction (RE) identifies the relationships
between entities. Event extraction (EE) discovers
events occurring in a text. Role-filler entity extrac-
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tion (REE) fills entities into event templates and is
similar to EE.

Traditionally, researchers formalize the task as
a language understanding problem. The state-of-
the-art methods for NER perform the task on the
basis of the pre-trained language model BERT (De-
vlin et al., 2019). The pipeline approach to RE
divides the problem into NER and relation classi-
fication, and conducts the two sub-tasks in a se-
quential manner (Zhong and Chen, 2021), while
the end-to-end approach jointly carries out the two
sub-tasks (Zheng et al., 2017; Zeng et al., 2018;
Luan et al., 2019). The state-of-the-art methods for
EE also employ BERT and usually jointly train the
models with other tasks such as NER and RE (Wad-
den et al., 2019; Zhang et al., 2019; Lin et al., 2020).
All the methods assume the use of pre-defined
schemas (e.g., entity types for NER, entity and
relation types for RE, and event templates for EE).
Besides, most methods are designed for extraction
from short texts. Therefore, existing methods for
IE cannot be directly applied to text-to-table.

Another series of related work is open informa-
tion extraction (OpenIE), which aims to extract in-
formation from texts without relying on explicitly
defined schemas (Banko et al., 2007; Wu and Weld,
2010; Mausam et al., 2012; Stanovsky et al., 2018;
Zhan and Zhao, 2020). However, OpenIE aims to
extract information with simple structures (i.e., re-
lation tuples) from short texts, and the methods in
OpenIE cannot be directly applied to text-to-table.

IE is also conducted at document level, re-
ferred to as doc-level IE. For example, some NER
methods directly perform NER on a long docu-
ment (Strubell et al., 2017; Luo et al., 2018), and
others encode each sentence in a document, use
attention to fuse document-level information, and
perform NER on each sentence (Hu et al., 2020;
Xu et al., 2018). There are also RE methods that
predict the relationships between entities in a docu-
ment (Yao et al., 2019; Nan et al., 2020). However,
existing doc-level IE approaches usually do not con-
sider the extraction of complex relations between
many items.

Sequence-to-sequence (seq2seq) is the general
problem of transforming one text into another
text (Sutskever et al., 2014; Bahdanau et al., 2015),
which includes machine translation, text summa-
rization, etc. The use of the pre-trained language
models of BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020) can significantly boost the perfor-

mances of seq2seq, such as machine translation
(Lewis et al., 2020; Raffel et al., 2020; Liu et al.,
2020) and text summarization (Lewis et al., 2020;
Raffel et al., 2020; Huang et al., 2020).

Recently, some researchers also formalize the
IE problems as seq2seq, that is, transforming the
input text into an internal representation. One ad-
vantage is that one can employ a single model to
extract multiple types of information. Results show
that this approach works better than or equally
well as the traditional approach of language un-
derstanding, in RE (Zeng et al., 2018; Nayak and
Ng, 2020), NER (Chen and Moschitti, 2018; Yan
et al., 2021), EE (Li et al., 2021; Lu et al., 2021) and
REE (Du et al., 2021; Huang et al., 2021). Methods
that jointly perform multiple tasks including NER,
RE, and EE have also been devised (Paolini et al.,
2021).

Data-to-text aims to generate natural language
descriptions from the input structured data such
as sports commentaries (Wiseman et al., 2017).
The structured data is usually represented as ta-
bles (Wiseman et al., 2017; Thomson et al., 2020;
Chen et al., 2020), sets of table cells (Parikh
et al., 2020; Bao et al., 2018), semantic represen-
tations (Novikova et al., 2017), or sets of relation
triples (Gardent et al., 2017; Nan et al., 2021). The
task requires the model to select the salient informa-
tion from the data, organize it in a logical order, and
generate an accurate and fluent natural language
description (Wiseman et al., 2017). Data-to-text
models usually adopt the encoder-decoder archi-
tecture. The encoders are specifically designed to
model the input data, such as multi-layer percep-
tron (Puduppully et al., 2019a,b), recurrent neural
network (Juraska et al., 2018; Liu et al., 2018; Shen
et al., 2020), graph neural network (Marcheggiani
and Perez-Beltrachini, 2018; Koncel-Kedziorski
et al., 2019), or Transformer (Gong et al., 2019).

3 Problem Formulation

As shown in Figure 1, text-to-table takes a text
as input and produces a table or several tables to
summarize the content of the text.

Formally, the input is a text denoted as x =
x1, · · · , x|x|. The output is one table or multiple
tables. For simplicity suppose that there is only one
table denoted as T . Further, suppose that T has nr

rows and nc columns. Thus, T contains nr × nc

cells, where the cell of row i and column j is a
sequence of words ti,j = ti,j,1, ..., ti,j,|ti,j |.
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There are three types of table: one that has both
column headers and row headers, one that only has
column headers, and one that only has row headers.
For example, the player table in Figure 1 has both
column headers (“Assists”, “Points”, etc) and row
headers (“Al Horford”, “Isaiah Thomas”, etc). We
let t1,j , j = 2, · · · , nc denote the column headers,
let ti,1, i = 2, · · · , nr denote the row headers, and
let ti,j , i = 2, · · · , nr, j = 2, · · · , nc denote the
non-header cells of the table. For example, in the
player table in Figure 1, t1,2 = Assists, t2,1 =
Al Horford, and t2,2 = 5.

The information extracted via text-to-table can
be leveraged in many different applications such
as document summarization and text mining. For
example, in Figure 1, one can quickly obtain the
key information of the text by simply looking at
the tables summarized from the text.

There are differences between text-to-table and
traditional IE settings. As can be seen from the
example in Figure 1, extraction of information is
performed from the entire document. The extracted
information (structured data) is in a complex form,
specifically multiple types of scores of teams and
players in a basketball game. Furthermore, the
data-driven approach is taken, and the schemas of
the tables do not need to be explicitly defined.

The task of text-to-table also has challenges.
First, parallel data containing texts and tables is
difficult to obtain. Manual construction of such
data is usually expensive. Second, structured in-
formation may not be easily represented as tables.
For example, a knowledge graph may not be easily
converted into tables. Third, evaluation of table ex-
traction may not be easy, which includes multiple
factors, such as header, content, and structure.

4 Our Method

We develop a method for text-to-table using the
seq2seq approach and the two techniques of table
constraint and table relation embeddings.

4.1 Vanilla Seq2Seq

We formalize text-to-table as a sequence-to-
sequence (seq2seq) problem (Sutskever et al., 2014;
Bahdanau et al., 2015). Specifically, given an in-
put text, we generate a sequence representing the
output table (or tables). We introduce two special
tokens, a separation token denoted as “⟨s⟩” and
a new-line token denoted as “⟨n⟩”. For a table t,
we represent each row ti with a sequence of cells

Figure 2: The sequence representation of the player
table in Figure 1. The blue items are separation tokens
⟨s⟩ and the yellow items are new-line tokens ⟨n⟩.

delimited by separation tokens:

ti = ⟨s⟩, ti,1, ⟨s⟩, · · · , ⟨s⟩, ti,nc , ⟨s⟩. (1)

We represent the entire table with a sequence of
rows delimited by new-line tokens:

t = ⟨s⟩, t1,1, ⟨s⟩, · · · , ⟨s⟩, t1,nc , ⟨s⟩, ⟨n⟩, (2)

⟨s⟩, t2,1, ⟨s⟩, · · · , ⟨s⟩, t2,nc , ⟨s⟩, ⟨n⟩,
· · · · · ·

⟨s⟩, tnr,1, ⟨s⟩, · · · , ⟨s⟩, tnr,nc , ⟨s⟩

Figure 2 shows the sequence of the player table
in Figure 1. When there are multiple tables, we
create a sequence of tables using the captions of
the tables as delimiters.

Let x = x1, · · · , x|x| and y = y1, · · · , y|y| de-
note the input and output sequences respectively.
In inference, the model generates the output se-
quence based on the input sequence. The model
conducts generation in an auto-regressive way,
which generates one token at each step based on
the tokens it has generated so far. In training,
we learn the model based on the text-table pairs
{(x1,y1), (x2,y2), · · · , (xn,yn)}. The objective
of learning is to minimize the cross-entropy loss.

We refer to the method described above as
“vanilla seq2seq”. There is no guarantee, however,
that the output sequence of vanilla seq2seq rep-
resents a well-formulated table. We add a post-
processing step to ensure that the output sequence
is a table. The post-processing method takes the
first row generated as well-defined, deletes extra
cells at the end of the other rows, and inserts empty
cells at the end of the other rows.

4.2 Techniques
We develop two techniques to improve table gen-
eration, called table constraint and table relation
embeddings. We use “our method” to denote the
seq2seq approach with these two techniques.2

2Our methods is able to generate the output containing
multiple tables. This is discussed in Appendix C.
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Table Constraint
Our method exploits a constraint in the decoding
process to ensure that the output sequence repre-
sents a well-formulated table. Specifically, our
method calculates the number of cells in the first
row it generates, and then forces the following rows
to contain the same number of cells.

Table Relation Embeddings
Our method also incorporates table relation em-
beddings including row relation embeddings and
column relation embeddings into the self-attention
of the Transformer decoder. Given a token in a non-
header cell, the row relation embeddings τKr and
τVr indicate which row header the token is aligned
to, and the column relation embeddings τKc and τVc
indicate which column header the token is aligned
to.

Let us consider the self-attention function in one
block of Transformer decoder: at each position,
self-attention only attends to the previous positions.
For simplicity, let us only consider one head in
the self-attention. At the t-th position, the input
of self-attention is the sequence of representations
z = (z1, · · · , zt) and the output is the sequence of
representations h = (h1, · · · , ht), where zi ∈ Rd

and hi ∈ Rd are the representations at the i-th
position (i = 1, · · · , t).

In a conventional Transformer decoder, self-
attention is defined as follows,

hi =

 i∑
j=1

αij(zjW
V )

WO, (3)

αij =
eeij∑i
j=1 e

eij
, eij =

(ziW
Q)(zjW

K)T
√
dk

, (4)

i = 1, · · · , t, j = 1, · · · , i

where WQ,WK ,W V ∈ Rd×dk are the query, key,
and value weight matrices respectively, and WO ∈
Rdk×d is the output weight matrix.

In our method, self-attention is defined as:

hi =

 i∑
j=1

αij(zjW
V + rVij )

WO, (5)

αij =
eeij∑i
j=1 e

eij
, eij =

(ziW
Q)(zjW

K + rKij )
T

√
dk

,

(6)

i = 1, · · · , t, j = 1, · · · , i

where rKij and rVij are relation vectors representing

Figure 3: Construction of relation vectors. Red and
yellow arrows represent alignments with column head-
ers and row headers respectively. The relation vectors
regarding tokens “11” and one ⟨s⟩ are illustrated.

the relationship between the i-th position and the
j-th position.

The relation vectors rKij and rVij are defined as
follows. For the token at the i-th position, if the
token at the j-th position is a part of its row header,
then rKij and rVij are set to the row relation embed-
dings τKr and τVr . Similarly, for the token at the
i-th position, if the token at the j-th position is
a part of its column header, then rKij and rVij are
set to the column relation embeddings τKc and τVc .
Otherwise, rKij and rVij are set to 0. In inference,
to identify the row header or the column header
of a token, we parse the sequence generated so far
to create a partial table using the new-line tokens
and separation tokens in the sequence. Figure 3
illustrates how relation vectors are constructed.

5 Experiments

5.1 Datasets

We make use of four existing datasets which are tra-
ditionally utilized for data-to-text: Rotowire (Wise-
man et al., 2017), E2E (Novikova et al., 2017),
WikiTableText (Bao et al., 2018), and WikiBio (Le-
bret et al., 2016). In each dataset, we filter out the
content in the tables that does not appear in the
texts. We plan to make the processed datasets pub-
licly available for future research. Table 2 gives the
statistics of the Rotowire dataset and Table 1 gives
the statistics of the other three datasets.

Rotowire is from the sports domain. Each in-
stance is composed of a text and two tables, where
the text is a report of a basketball game and the two
tables represent the scores of teams and players
respectively (cf., Figure 1). Each table has column
headers describing the types of scores, and row
headers describing the names of teams or players.
The texts are long and may contain irrelevant infor-
mation such as the performance of players in other
games. Therefore, this is a challenging dataset.

E2E is from the restaurant domain. Each in-
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Dataset Train Valid Test # of tokens # of rows # of columns
E2E 42.1k 4.7k 4.7k 24.90 4.58 2.00
WikiTableText 10.0k 1.3k 2.0k 19.59 4.26 2.00
WikiBio 582.7k 72.8k 72.7k 122.30 4.20 2.00

Table 1: Statistics of E2E, WikiTableText, and WikiBio datasets, including the number of instances in training,
validation, and test sets, number of BPE tokens per instance, and number of rows per instance.

Train Valid Test # of tokens
3.4k 727 728 351.05
# of rows # of columns # of cells

Team 2.71 4.84 6.56 (85.40%)
Player 7.26 8.75 22.63 (43.93%)

Table 2: Statistics of Rotowire dataset. The first table
shows sizes of training, validation, and test sets, and the
number of BPE tokens per instance. The second table
shows the number of rows, the number of columns, and
the number and ratio of non-empty cells.

stance is a pair of short text and an automatically
constructed table, where the text is a description of
a restaurant, and the table has two columns with
row headers summarizing the characteristics of
the restaurant. The tables are automatically con-
structed, where the texts in the tables are from a
limited set and thus lack diversity.

WikiTableText is an open-domain dataset. Each
instance includes a text and a table, where the
text is a description and the table has a row and
two columns with row headers collected from
Wikipedia. The texts are short and contain infor-
mation similar to that in the tables.

WikiBio is extracted from the Wikipedia bi-
ography pages. Each instance consists of a text
and a table, where the text is the introduction of
Wikipedia page3 and the table is from the infobox
of a Wikipedia page and has two columns with
row headers. The input texts are usually long and
contain more information than the tables.

5.2 Procedure

Methods: We conduct experiments with vanilla
seq2seq and our method, as well as baselines.

We know of no existing method that can be di-
rectly employed in text-to-table. For each dataset,
we first define the schemas based on the training
data, then use an existing method of relation ex-
traction (RE) or named entity extraction (NER) to
extract information, and finally create tables based
on the schemas and extracted information. We take

3The original dataset only uses the first sentence of the
introduction. We use the entire introduction.

it as the baseline for the dataset. No baseline can be
applied to all four datasets. For RE, we use PURE,
a state-of-the-art method (Zhong and Chen, 2021).
For NER, we use BERT (Devlin et al., 2019).

Training: For vanilla seq2seq and our method,
we adopt Transformer (Vaswani et al., 2017) as
the model and fine-tune the models from BART-
base. We also experiment with BART-large. For
RE and NER, we fine-tune the models from BERT-
base-uncased. All models are trained with Adam
optimizer until convergence. Hyper-parameters are
shown in Appendix A. For the small datasets of
Rotowire and WikiTableText, we run experiments
five times with different random seeds and take the
average of results to reduce variance.

Evaluation: We evaluate the performance of
a method based on (1) the number of correct
headers and (2) the number of correct non-header
cells. We adopt the F1 score as the evaluation
measure. For each table, we compare the set of
predicted results y against the set of ground-truth
y∗. Precision is defined as the percentage of the
correctly predicted results among the predicted
results, i.e., P = 1

|y|
∑

y∈y maxy∗∈y∗ O(y, y∗).
Recall is defined as the percentage of the cor-
rectly predicted results among the ground-truth,
i.e., R = 1

|y∗|
∑

y∗∈y∗ maxy∈y O(y, y∗). Finally,
F1 = 2/(1/P + 1/R). Here, O(·) denotes a way
of similarity calculation. We consider three ways:
exact match, chrf (Popovic, 2015) and rescaled
BERTScore (Zhang et al., 2020). Exact match con-
ducts an exact match between two texts. Chrf cal-
culates character-level n-gram similarity between
two texts. BERTScore calculates the similarity of
BERT embeddings between two texts. For non-
header cells, we use not only the content but also
the header(s) to ensure that the cell is on the right
row (and column), and calculate the similarity O(·)
as the product of header similarity and cell con-
tent similarity.4 We evaluate the measures of a

4As shown in Figure 1, the tables in the dataset contain
empty cells. The empty cells do not contain information.
Therefore, we ignore the empty cells and only use the non-
empty cells in the evaluation.
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Exact Chrf BERT Exact Chrf BERT Exact Chrf BERT
Sent-level RE 85.28 87.12 93.65 85.54 87.99 87.53 77.17 79.10 87.48 0.00
Doc-level RE 84.90 86.73 93.44 85.46 88.09 87.99 75.66 77.89 87.82 0.00
Vanilla seq2seq 94.71 94.93 97.35 86.07 89.18 88.90 82.97 84.43 90.62 0.49
Our method 94.97 95.20 97.51 86.02 89.24 89.05 83.36 84.76 90.80 0.00
Sent-level RE 89.05 93.00 90.98 86.36 89.38 93.07 79.59 83.42 85.35 0.00
Doc-level RE 89.26 93.28 91.19 87.35 90.22 97.30 80.76 84.64 86.50 0.00
Vanilla seq2seq 92.16 93.89 93.60 87.82 91.28 94.44 81.96 84.19 88.66 7.40
Our method 92.31 94.00 93.71 87.78 91.26 94.41 82.53 84.74 88.97 0.00

Model Row header F1 Column header F1 Non-header cell F1 Err.
rate

Team

Player

Table 3: Results of our method, vanilla seq2seq, and the baselines of doc-level RE and sent-level RE, on Rotowire.
We show the F1 score based on exact match (Exact), chrf score (Chrf), and BERTScore (BERT) respectively.

Exact Chrf BERT Exact Chrf BERT
NER 91.23 92.40 95.34 90.80 90.97 92.20 0.00
Vanilla seq2seq 99.62 99.69 99.88 97.87 97.99 98.56 0.00
Our method 99.63 99.69 99.88 97.88 98.00 98.57 0.00
NER 59.72 70.98 94.36 52.23 59.62 73.40 0.00
Vanilla seq2seq 78.15 84.00 95.60 59.26 69.12 80.69 0.41
Our method 78.16 83.96 95.68 59.14 68.95 80.74 0.00
NER 63.99 71.19 81.03 56.51 62.52 61.95 0.00
Vanilla seq2seq 80.53 84.98 92.61 68.98 77.16 76.54 0.00
Our method 80.52 84.96 92.60 69.02 77.16 76.56 0.00

Dataset Model
Row header F1 Non-header cell F1 Err.

rate

E2E

WikiTableText

WikiBio

Table 4: Results of our method, vanilla seq2seq, and the baseline of NER, on E2E, WikiTableText, and WikiBio.
We show the F1 score based on exact match (Exact), chrf score (Chrf), and BERTScore (BERT) respectively.

generated table and then take the average on all
tables. This evaluation assumes that the order of
rows and columns is not important. We find that
this assumption is applicable to the four datasets
and many real-world scenarios. We also evaluate
the percentage of output sequences that cannot rep-
resent well-formulated tables, referred to as error
rate.

5.3 Results on Rotowire
Table 3 shows the results on the Rotowire dataset.
One can see that our method performs the best fol-
lowed by vanilla seq2seq in terms of most of the
measures, especially the F1 score on non-header
cells. Both outperform the baselines of doc-level
RE and sent-level RE. The RE baselines perform
quite well, but they heavily rely on rules and can-
not beat the seq2seq approach. Among them, the
doc-level RE performs better than sent-level RE,
because some information in Rotowire can only
be extracted when the cross-sentence context is
provided.

We implement two baselines of RE, namely doc-
level RE and sent-level RE. We take team names,
player names, and numbers of scores as entities

and take types of scores as relations. Sent-level
RE predicts the relations between entities within
each sentence. Doc-level RE predicts the relations
between entities within a window (the window size
is 12 entities) and uses the approximation model
proposed by Zhong and Chen (2021) to speed up
inference.

5.4 Results on E2E, WikiTableText and
WikiBio

Table 4 shows the results of our method, vanilla
seq2seq, and the baseline of NER on E2E, Wik-
iTableText, and WikiBio. Again, the seq2seq ap-
proach outperforms the baseline. Our method and
vanilla seq2seq are comparable, because the ta-
ble structures in the three datasets are very simple
(there are only two columns in the tables), and the
use of the two techniques does not further improve
the performances. The NER baseline has high pre-
cision but low recall, mainly because NER can only
make the right decision when it is clear.

We implement the baseline of NER in the follow-
ing way. We view the non-head cells in the tables
as entities and their row headers as entity types. In
training, we match the non-head cells into the texts
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Pre TC TRE Rotowire/Team Rotowire/Player E2E WikiTableText WikiBio
✗ ✗ ✗ 28.05 7.75 94.45 46.37 67.51
✗ ✓ ✓ 30.61 10.67 95.53 47.13 67.43
✓ ✗ ✗ 82.97 81.96 97.87 59.26 68.98
✓ ✓ ✗ 83.09‡ 82.24‡ 97.88 59.29† 68.98
✓ ✗ ✓ 83.30† 82.50‡ 97.87 59.12 69.02
✓ ✓ ✓ 83.36† 82.53‡ 97.88 59.14 69.02

Table 5: Results of ablation study on our method by excluding pre-trained language model (Pre), table constraint
(TC) and table relation embeddings (TRE). We report F1 for non-header cells based on exact match. We conduct
a significance test to check whether the performance is significantly better than vanilla seq2seq with pre-trained
language models (i.e., with Pre but without TC or TRE). † and ‡ represent p < 0.05 and p < 0.01 respectively.

Method Rotowire/Team Rotowire/Player E2E WikiTableText WikiBio
Vanilla seq2seq (BART base) 82.97 81.96 97.87 59.26 68.98
Our method (BART base) 83.36 82.53 97.88 59.14 69.02
Vanilla seq2seq (BART large) 86.31 86.59 97.94 62.71 69.66
Our method (BART large) 86.31 86.83 97.90 62.41 69.71

Table 6: Results of our method and vanilla seq2seq with base and large BART models on all four datasets.

Figure 4: A bad case generated by vanilla seq2seq. The assists, points and total rebounds of Rajon Rondo should be
18, 7 and 8 respectively. The model generates one less column between “Assists” and “Personal fouls”.

and take them as “entities” in the texts. Only a pro-
portion of the non-header cells can be matched into
the texts (85% for E2E, 74% for WikiTableText,
and 69% for WikiBio).

5.5 Additional Study

We carry out an ablation study on our method.
Specifically, we exclude pre-trained language
model, table constraint (TC), and table relation
embeddings (TRE) from our method. Note that
our method without TC and TRE is equivalent to
vanilla seq2seq. Table 5 gives the results on the
four datasets.

It can be seen that the use of both TC and TRE
can significantly improve the performance on Ro-
towire, which indicates that our method is par-
ticularly effective when the tables are large with
many rows and columns. There are no significant
improvements on E2E, WikiTableText, and Wik-
iTableText, apparently because the formulation of
tables is easy for the three datasets. Therefore, we
conclude that the two techniques of TC and TRE
are helpful when the task is difficult.

The use of pre-trained language model can boost
the performance on all datasets, especially on Ro-

towire and WikiTableText. This indicates that pre-
trained language model is particularly helpful when
the task is difficult and the size of training data is
small.

We observe that vanilla seq2seq makes more
formatting errors than our method, especially on
player tables in Rotowire that have a large number
of columns. It indicates that for vanilla seq2seq, it
is difficult to keep track of the columns in each row
and make alignments with the column headers. In
contrast, the two techniques of our method can help
effectively cope with the problem. Figure 4 shows
a bad case of vanilla seq2seq, where the model
correctly infers the column of “assists” but fails
to infer the columns of “personal fouls”, “points”,
and “total rebounds” for the row of “Rajon Rondo”.
In contrast, our method can successfully handle
the case, because TC can eliminate the incorrectly
formatted output, and TRE can make correct align-
ments with the column headers.

We also investigate the effect of the scale of pre-
trained language model BART. We use both BART-
base and BART-large and conduct fine-tuning on
top of them for vanilla seq2seq and our method.
Table 6 gives the results on the four datasets. The
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results show that the use of BART-large can further
boost the performances on all four datasets, indicat-
ing that it is better to use larger pre-trained models
when computation cost is not an issue.

5.6 Discussions

We analyze the experimental results on the four
datasets and identify five challenging issues.

(1) Text Diversity: Extraction of the same con-
tent from different expressions is one challenge.
For example, the use of synonyms is very com-
mon in Rotowire. The team of “Knicks” is often
referred to as “New York”, its home city. Identifica-
tion of the same entities from different expressions
is needed in the task.

(2) Text Redundancy: There are cases such as
those in WikiBio, in which the texts contain much
redundant information. This poses a challenge to
the text-to-table model to have a strong ability in
summarization. It seems that the seq2seq approach
works well to some extent but further improvement
is undoubtedly necessary.

(3) Large Table: The tables in Rotowire have
large numbers of columns, and the extraction from
them is challenging even for our method of using
TC and TRE.

(4) Background Knowledge: WikiTableText and
WikiBio are from open domain. Thus, perform-
ing text-to-table on such kind of datasets require
the use of much background knowledge. A pos-
sible way to address this challenge is to use more
powerful pre-trained language models or external
knowledge bases.

(5) Reasoning: Sometimes the information is
not explicitly presented in the text, and reasoning
is required to conduct correct extraction. For exam-
ple, an article in Rotowire reports a game between
the two teams “Nets” and “Wizards”. From the
sentence: “The Nets seized control of this game
from the very start, opening up a 31 - 14 lead after
the first quarter”, humans can infer that the point of
“Wizards” is 14, which is still difficult for machines.

6 Conclusion

We propose employing text-to-table as a new way
of information extraction (IE), which extracts in-
formation of interest from the input text and sum-
marizes the extracted information in tables. The
advantage of the approach is that one can easily
conduct information extraction from either short
texts or long texts to create simple tables or com-

plex tables without explicitly defining the schemas.
Text-to-table can be viewed as an inverse prob-
lem of table-to-text. We formalize text-to-table as
a sequence-to-sequence problem on top of a pre-
trained model. We further propose an improved
method using a seq2seq model and table constraint
and table relation embeddings techniques. We con-
duct experiments on four datasets derived from
existing table-to-text datasets. The results demon-
strate that our proposed approach outperforms ex-
isting methods using conventional IE techniques.
We further analyze the challenges of text-to-table
for future study. The issues include diversity of
text, redundancy of text, large table, background
knowledge, and reasoning.
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A Hyper-parameters

We list the hyper-parameters of the pre-trained
models in Table 7. The training hyper-parameters
for BART-base model in vanilla seq2seq and our
method are listed in Table 8.

B Table Constraint Algorithm

The pseudo-codes for table constraint are in Algo-
rithm 1.

C Our Method with Multiple Tables

Our method is able to generate the output con-
taining multiple tables. For example, in Rotowire
dataset, the output data contains two tables repre-
senting the scores of teams and players respectively.
In this section, we illustrate how our method works
for Rotowire dataset as a special case.

To represent the tables with a sequence, we use
captions as delimiters. For Rotowire, as shown in
Figure 1, the first table is the team table, and its
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Pre-trained model Methods layers hidden dim. heads parameters
BART-base Vanilla seq2seq and ours 12 768 16 139M
BART-large Vanilla seq2seq and ours 24 1024 16 406M
BERT-base-uncased NER and RE 12 768 12 110M

Table 7: The hyper-parameters of the pre-trained models in our experiments. We list the number of layers, hidden
dimensions (hidden dim.), heads, and parameters. BART-base and BART-large are used for vanilla seq2seq and our
method, while BERT-base-uncased is used for the baselines of RE and NER.

warmup total upd. lr bsz
Rotowire 400 8000 3e-05 4096
E2E 400 8000 1e-05 4096
WikiTableText 2000 8000 1e-04 4096
WikiBio 4000 40000 1e-04 4096

Table 8: The training hyper-parameters for BART-base
model on all four datasets. We list the warmup updates
(warmup), total updates (total upd.), learning rate (lr),
and batch size (bsz, in terms of how many tokens per
batch).

caption is “Team:”. The second table is the player
table, and its caption is “Player:”. Let tteam and
tplayer denote the table and player tables respec-
tively. Therefore, the sequence representation is
“Team: ⟨n⟩ tteam ⟨n⟩ Player: ⟨n⟩ tplayer”. Although
this example contains only two tables, the seq2seq
model can generate any number of tables during
the generation process until it reaches ⟨eos⟩ and
stops decoding. Therefore, there is no need to pre-
determine the number of output tables.

For table constraint (TC), we only use TC when
the seq2seq model is generating a table. When gen-
erating a caption, we do not pose any constraints
to the decoding process. Since the captions do not
start with the separation token ⟨s⟩, if the current
line starts with the separation token ⟨s⟩, then the
model is generating a table. Otherwise, it is gener-
ating a caption.

For table relation embeddings (TRE), we calcu-
late the relation vectors separately for each table.
However, the parameters including the row rela-
tion embeddings (i.e., τKr and τVr ) and the column
relation embeddings (i.e., τKc and τVc ) are shared
among the tables.

D Information Extraction Baselines

D.1 Relation Extraction
To use relation extraction (RE) as our baseline
for Rotowire dataset, we take team names, player
names, and numbers of scores as entities and take
types of scores as relations. An example relation
is shown in Figure 6, which can be represented

Algorithm 1: Decoding using table con-
straint. ⟨eos⟩, ⟨s⟩, and ⟨n⟩ denote the end
of sentence, separation token, and new-line
token respectively. Seq2seq denotes the
seq2seq model. Decode denotes the de-
coding algorithm such as beam search and
greedy search.

Input: x = [x1, x2, · · · , x|x|]
Output: y = [y1, y2, · · · , y|y|]

1 y← []
2

3 repeat
/* generates the first row: only allows generation

of ⟨n⟩ or ⟨eos⟩ after ⟨s⟩ */

4 p(·)← seq2seq(x, y)
5 if y|y| ̸= ⟨s⟩ then
6 p (⟨n⟩)← 0, p (⟨eos⟩)← 0
7 y.append(decode (p))
8 until y|y| = ⟨n⟩ or y|y| = ⟨eos⟩
9 if y|y| = ⟨eos⟩ then

10 return y
11 nc ← number of cells of the first row
12

13 repeat
/* generates the next rows: each row contains

exactly nc cells */

14 repeat
/* generates a row */

15 p(·)← seq2seq(x, y)
16 if current row has nc columns then
17 p(t)← 0, ∀t ̸= ⟨eos⟩ and t ̸=

⟨n⟩
18 else
19 p (⟨n⟩)← 0, p (⟨eos⟩)← 0
20 y.append(decode (p))
21 until y|y| = ⟨n⟩ or y|y| = ⟨eos⟩
22 if y|y| = ⟨eos⟩ then
23 return y

as a relation tuple (Al Horford, Points, 15). “Al
Horford” is the subject entity, “15” is the object en-
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Figure 5: An example of NER data on WikiBio dataset. Each row header is an entity type, and each non-header cell
is an entity.

Figure 6: An example of RE data from Rotowire dataset.
“Al Horford” and “15” are entities, and “Points” is the
relation type.

Figure 7: Illustration of the use of synonyms for the
example in Figure 1. The red color denotes the team of
“Knicks”, which is often referred to as “New York”, its
home city. The blue color denotes the team of “Celtics”,
which is often referred to as “Boston”, its home city.

tity, and “Points” is one of the pre-defined relation
types. There are 38 relations in total.

To create synthetic training data, we match the
player names, team names and score numbres to
the texts. We adapt the rules provided by Wiseman
et al. (2017) which is able to conduct fuzzy match.

D.2 Named Entity Recognition

We use named entity recognition (NER) as our base-
line for E2E, WikiTableText, and WikiBio datasets.
Specifically, since each table is a two-column table
with a header column, we consider the row header
as entity type and the non-header cells as entity
mentions. An example is shown in Figure 5. For

the row with a header “name” and a non-header
cell “majda vrhnovnik”, we take “majda vrhnovnik”
as an entity with the type “name”. Here, “name”
is one of the pre-defined entity types. We collect
all headers in the training set to collect the entity
types. We have 7 entity types for E2E, 2262 entity
types for WikiTableText, and 2272 entity types for
WikiBio.

To create synthetic training data, we match the
contents of non-header cells to the texts. However,
the data is usually paraphrased or even abstracted
from the text, so not all non-header cells can be
matched to the text. We match 85% non-header
cells for E2E, 74% for WikiTable, and 69% for
WikiBio.

E Detailed Cases for Challenges

In this section, we provide cases for the challenges
discussed in Section 5.6.

(1) Text Diversity: Extraction of the same con-
tent from different expressions is one challenge.
For example, the use of synonyms is very common
in Rotowire. Figure 7 illustrates the use of syn-
onyms for the example in Figure 1. The team of
“Knicks” is often referred to as “New York”, its
home city. Similarly, “Celtics” is often referred to
as “Boston”, its home city. Identification of the
same entities from different expressions is needed
in the task.

(2) Text Redundancy: There are cases such as
those in WikiBio, in which the texts contain much
redundant information. An example is shown in
Figure 8, where only the highlighted information
is captured in the output table. Other information
such as the experience of Philippe Adnot is redun-
dant. This poses a challenge to the text-to-table
model to have a strong ability in summarization.
It seems that the seq2seq approach works well to

2531



Figure 8: An example from WikiBio dataset to illustrate the challenges of text redundancy and background
knowledge. Only the highlighted information is captured in the output table. Other information such as the
experience of Philippe Adnot is redundant. Moreover, the system should have background knowledge about the
French political system to extract information about the constituency of Philippe Adnot.

Figure 9: The team table has 3 rows and 4 columns, and the player table has 8 rows and 8 columns.

some extent but further improvement is undoubt-
edly necessary.

(3) Large Table: The tables in Rotowire have
large numbers of columns, so extraction from them
is challenging even for our method of using TC
and TRE. As presented in Table 2, team tables have
2.71 rows and 4.84 columns on average, and player
tables have 7.26 rows and 8.75 columns on average.
An example is shown in Figure 9, where the team
table has 3 rows and 4 columns, and the player
table has 8 rows and 8 columns.

(4) Background Knowledge: WikiTableText and
WikiBio are from open domain. Thus, perform-
ing text-to-table on such kind of datasets require

the use of much background knowledge. Also in
Figure 8, the extraction system should have back-
ground knowledge about the French political sys-
tem in order to extract information about the con-
stituency of Philippe Adnot. A possible way to
address this challenge is to use more powerful pre-
trained language models or external knowledge
bases.

(5) Reasoning: Sometimes the information is
not explicitly presented in the text, and reasoning
is required to conduct correct extraction. For exam-
ple, as shown in Figure 10, an article in Rotowire
reports a game between the two teams “Nets” and
“Wizards”. From the sentence: “The Nets seized
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Figure 10: An example from Rotowire which requires
reasoning to perform information extraction. The arti-
cle in Rotowire reports a game between the two teams
“Nets” and “Wizards”. From the sentence: “The Nets
seized control of this game from the very start, opening
up a 31 - 14 lead after the first quarter”, humans can
infer that the point of “Wizards” is 14, which is still
difficult for machines.

control of this game from the very start, opening
up a 31 - 14 lead after the first quarter”, humans
can infer that the point of “Wizards” is 14, which
is still difficult for machines.
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