
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 201 - 218

May 22-27, 2022 c©2022 Association for Computational Linguistics

CipherDAug: Ciphertext based Data Augmentation
for Neural Machine Translation

Nishant Kambhatla Logan Born Anoop Sarkar
School of Computing Science, Simon Fraser University

8888 University Drive, Burnaby BC, Canada
{nkambhat, loborn, anoop}@sfu.ca

Abstract

We propose a novel data-augmentation tech-
nique for neural machine translation based on
ROT-k ciphertexts. ROT-k is a simple letter
substitution cipher that replaces a letter in the
plaintext with the kth letter after it in the al-
phabet. We first generate multiple ROT-k ci-
phertexts using different values of k for the
plaintext which is the source side of the parallel
data. We then leverage this enciphered train-
ing data along with the original parallel data
via multi-source training to improve neural ma-
chine translation. Our method, CipherDAug,
uses a co-regularization-inspired training pro-
cedure, requires no external data sources other
than the original training data, and uses a stan-
dard Transformer to outperform strong data
augmentation techniques on several datasets by
a significant margin. This technique combines
easily with existing approaches to data augmen-
tation, and yields particularly strong results in
low-resource settings.1

1 Introduction
One naturally wonders if the problem of transla-
tion could conceivably be treated as a problem in
cryptography. [...] frequencies of letters, letter
combinations, [...] etc., [...] are to some signif-
icant degree independent of the language used
(Weaver, 1949)

Indeed, to a system which treats inputs as atomic
identifiers, the alphabet behind these identifiers
is irrelevant. Distributional properties are of sole
importance, and changes in the underlying encod-
ing should be transparent provided these properties
are preserved. In light of this, a bijective cipher
such as ROT-k (Figure 1) is in effect invisible to
modern NLP techniques: distributional features are
invariant under such a cipher, guaranteeing that the
meaning of an enciphered text is the same as the
un-enciphered text, given the key. This work ex-
ploits this fact to develop a novel approach to data

1Our code is available at https://github.com/
protonish/cipherdaug-nmt

PLAIN   abcdefghijklmnopqrstuvwxyz
ROT- 1  bcdefghijklmnopqrstuvwxyza
ROT- 2  cdefghijklmnopqrstuvwxyzab
ROT- 3  defghijklmnopqrstuvwxyzabc

SRC : es ist diese pyramide.
ROT-1(SRC): ft jtu ejftf qzsbnjef.
ROT-2(SRC): gu kuv fkgug rßtcokfg.

 
TGT : it's that pyramid.     

SRC
ROT-2(SRC)

ROT-1(SRC)

lexically diverse (non-overlapping) 
syntactically similar

semantically equivalent 

lexical overlap possible 
semantically similar 

lexical overlap unlikely 
semantically similar 

Figure 1: ROT-k encipherment. The plaintext SRC is
enciphered to generate the ciphertexts ROT-1(SRC) and
ROT-2(SRC), which share distributional features with
the plaintext but use a new encoding.

augmentation which is completely orthogonal to
previous approaches.

Data augmentation is a simple regularization-
inspired technique to improve generalization in
neural machine translation (NMT) models. These
models (Bahdanau et al., 2015; Vaswani et al.,
2017) learn powerful representational spaces (Ra-
ganato and Tiedemann, 2018; Voita et al., 2019;
Kudugunta et al., 2019) which scale to large num-
bers of languages and massive datasets (Aharoni
et al., 2019). However, in the absence of data aug-
mentation, their complexity makes them suscepti-
ble to memorization and poor generalization.

Data augmentation for NMT requires produc-
ing new, high-quality parallel training data. This
is not trivial as slight modifications to a sequence
can have drastic syntactic or semantic effects, and
changes to a source sentence generally require cor-
responding changes to its translation. Existing tech-
niques suffer various limitations: back-translation
(Sennrich et al., 2016b; Edunov et al., 2018; Xia
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et al., 2019a; Nguyen et al., 2019) can yield seman-
tically poor results due to its use of trained models
that are susceptible to errors (Edunov et al., 2018).
Word replacement approaches (Gao et al., 2019;
Liu et al., 2021; Takase and Kiyono, 2021; Be-
linkov and Bisk, 2018; Sennrich et al., 2016a; Guo
et al., 2020a; Wu et al., 2021a) may ignore context
cues or fracture alignments between sequences.

This paper overcomes these limitations by ex-
ploiting the invariance of distributional features
under ROT-k ciphers. We contribute a novel data
augmentation technique which creates enciphered
copies of the source side of a parallel dataset. We
then leverage this enciphered training data along
with the original parallel data via multi-source train-
ing to improve neural machine translation. We also
provide a co-regularization-inspired training pro-
cedure which exploits this enciphered data to out-
perform existing strong NMT data augmentation
techniques across a wide range of experiments and
analyses. Our technique can be flexibly combined
with existing augmentation techniques, and does
not rely on any external data.

2 Ciphertexts for Data Augmentation

A ROT-k cipher (Figure 1) produces a ciphertext by
replacing each letter of its input (plaintext) with the
kth letter after it in the alphabet. Past work (Dou
and Knight, 2012; Dou et al., 2014) has explicitly
used decipherment techniques (Kambhatla et al.,
2018) to improve machine translation. We empha-
size that decipherment itself is not the purpose of
the present work: rather, we use ciphers simply to
re-encode data while preserving its meaning. This
is possible because ROT-k is a 1:1 cipher where
each ciphertext symbol corresponds to a unique
plaintext symbol; this means it will preserve dis-
tributional features from the plaintext. This makes
ROT-k cryptographically weak, but suitable for use
in data augmentation.

Concretely, given a set of n training samples
D = {(xi, yi)}ni=1 and a set of keys K, we use
Algorithm 1 to generate |K|n new samples; giving
(|K|+ 1)n samples when added to the training set.

2.1 The Naive Approach

The ciphertexts produced by Algorithm 1 are
guaranteed to be lexically diverse, not only
from the plaintext but also from one another.
Given this fact, we can naively regard each Dk

as a different language and formulate a multi-

Algorithm 1 Cipher-Augment Training Data
Training data D = {xi, yi}ni=1

Set of cipher keys K = {k1, k2, .., km}
procedure ENCIPHER(D, K)

for k in K do
▷ encipher source sentences with ROT-k

Dk ← {ROT-k(xi), yi}ni=1

▷ target sentences remain unchanged
assert |D| = |Dk|

return {Dk∀k ∈ K}

lingual training setting (Johnson et al., 2017).
For a plaintext sample xi, ciphertext samples
{ROT−kj(xi), ...,ROT−k|K|(xi)}, and target
sequence yi, the multi-source model is trained by
minimizing the cross-entropy

Li
NLL = −log pΘ(yi|xi)−

|K|∑
j

log pΘ(yi|ROT-kj(xi))

(1)

where |K| is the number of distinct keys used to
generate ciphertexts.

While this yields a multilingual model, this for-
mulation does not allow explicit interaction be-
tween a plaintext sample and the corresponding
ciphertexts. To allow such interactions, we design
another model that relies on inherent pivoting be-
tween sources and enciphered sources. We achieve
this by adding ROT-k(source) → source as a trans-
lation direction; following Johnson et al. (2017) we
prepend the appropriate target token to all source
sentences and train to minimize the objective

Li
NLL = −log pΘ(yi|xi)

−
|K|∑
j

[ log pΘ(yi|ROT-kj(xi))

+log pΘ(xi|ROT-kj(xi)) ]

(2)

We refer to (2) as the naive model.

Discussion. In this setting the decoder must learn
the distributions of both the true target language
and the source language. This may lead to quicker
saturation of the decoder and sub-optimal use of its
capacity, which must now be shared between two
languages; this is a notorious property of many-to-
many multilingual NMT (Aharoni et al., 2019).

2.2 CipherDAug: A Better Approach
To better leverage the equivalence between plain-
and ciphertext data, we take inspiration from multi-
view learning (Xu et al., 2013). We rethink enci-
phered samples as different views of the authen-
tic source samples which can be exploited for co-
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training (Blum and Mitchell, 1998). This is moti-
vated by the observation that plain and enciphered
samples have identical sentence length, grammar,
and (most importantly) sentential semantics.

Given an enciphered source cipher(xi) we
model the loss for a plaintext sample (xi, yi) as

Li = α1 Li
NLL( pΘ( yi|xi) )︸ ︷︷ ︸

anchor source x-entropy

+ α2 Li
NLL( pΘ( yi| cipher(xi)) )︸ ︷︷ ︸

cipher source x-entropy

+ β Li
dist( pΘ( yi|xi), pΘ( yi|cipher(xi)) )︸ ︷︷ ︸

agreement loss, see (4)

(3)

where the original source language sentence xi is
called the anchor here since it is always paired with
each enciphered version. The first two terms are
conventional negative log-likelihoods, to encourage
the model to generate the appropriate target for
both xi and cipher(xi).

The third term is the agreement loss, measured
as the pairwise symmetric KL divergence2 between
the output distributions for xi and cipher(xi):

Li
dist( pΘ( yi|xi), pΘ( yi|cipher(xi)) )

=
1

2
[Di

KL( p
flat
Θ ( yi|xi) || pΘ(yi| cipher(xi)) )

+Di
KL( p

flat
Θ (yi| cipher(xi)) || pΘ(yi|xi)) ]

(4)

This term allows explicit interactions between
plain- and ciphertexts by way of co-regularization.
Co-regularization relies on the assumption “that
the target functions in each view agree on labels
of most examples” (Sindhwani et al., 2005) and
constrains the model to consider only solutions
which capture this agreement.

In cases where there are many output classes
and the model predictions strongly favour certain
of these classes, (4) may have an outsized influ-
ence on model behaviour. As a precautionary mea-
sure, we use a softmax temperature τ to flatten the
model predictions, based on a similar technique
in knowledge distillation (Hinton et al., 2015) and
multi-view regularization (Wang et al., 2021). The
flattened prediction for an (x, y) pair is given by

pflatΘ (x | y) = exp(zy)/τ∑
yj exp(zyj )/τ

(5)

where zy is the logit for the output label y. A higher
value of τ produces a softer, more even distribution
over output classes.

2Other metrics such as regular (asymmetric) KL diver-
gence or JS divergence can also be used in (4), but we find
that symmetrized KL divergence yields the best results.

The overall training procedure, which we dub
CipherDAug, is summarized in Algorithm 2.

Algorithm 2 CipherDAug Training Algorithm
Training data D = {xi, yi}ni=1

Set of cipher keys K = {k1, k2, .., km}
Randomly initialized NMT model Θ

procedure MULTISOURCE TRAIN (Θ, D, K)
Danchor = D ▷ plaintexts act as anchor dataset
while Θ not converged do

for each Dcipher ∈ ENCIPHER(D,K) do ▷ Algo. 1
(cipher(xi), yi) ∼ Dcipher

(xi, yi) ∼ Danchor ▷ same index i
▷ same target yi

Li
NLL←P(yi|xi)
Li

NLL←P(yi|cipher(xi))
Li

dist←P(yi|xi) || P(yi|cipher(xi))
▷ using eq (4)

update Θ by minimizing Li ▷ using eq (3)

3 Experiments and Results

3.1 Experimental Setup
Datasets We use the widely studied IWSLT14
De↔En and IWSLT17 Fr↔En language pairs as
our small-sized datasets.3 For high-resource ex-
periments, we evaluate on the standard WMT14
En→De set of 4.5M sentence pairs.4 We also ex-
tend our experiments to the extremely low-resource
pair Sk↔En from the multilingual TED dataset (Qi
et al., 2018) with 61k training samples, and dev and
test splits of size 2271 and 2245 respectively.

Ciphertext Generation and Vocabularies. We
use a variant of ROT-k which preserves whitespace,
numerals, special characters, and punctuation. As
a result, these characters appear the same in both
plain- and ciphertexts.

For our naive approach, we encipher the Ger-
man side of the IWSLT14 dataset with up to 20
keys {1,2,3,4,5, . . . ,20}. For our main ex-
periments, we encipher the source side of every
translation direction5 with key {1} for WMT ex-
periments and keys {1,2} for the rest.6

We use sentencepiece (Kudo and Richard-
son, 2018) to tokenize text into byte-pair encodings

3The De↔En data has a train/dev/test split of about
170k/7k/7k. The Fr↔En data has a 236k/890/1210 split using
dev2010 and tst2015.

4Following Vaswani et al. (2017), we validate on
newstest2013 and test on newstest2014

5In all generated ciphertexts, the source alphabet is pre-
served, only the distribution of characters is changed. The
target side is never altered.

6The dictionaries for enciphered data are produced using
only the training dataset, and then applied to the train/dev/test
splits, in the same manner that BPE is learned and applied.
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(BPE; Sennrich et al. 2016c) by jointly learning
subwords on the source, enciphered-source, and
target sides. We tune the number of BPE merges
as recommended by Ding et al. (2019); the result-
ing subword vocabulary sizes for each dataset are
tabulated in Table 1.

→ src tgt s∪t 1(src) 2(src) total

De→En 9k 6.7k 11.8k 6.7k 6.5k 20k
En→De 7.3k 9.7k 12.7k 6.6k 6.4k 20k

Fr→En 7k 6k 10.4k 5.2k 5.2k 16k
En→Fr 7.5k 6.5k 11k 5k 5k 16k

En→Sk 5.2k 7.1k 10k 4.6k 4.5k 16k

En→De 25k 24k 36k 16k 16k 60k

Table 1: Approximate subword vocabularies for the
IWSLT14 (top), IWSLT17, TED, and WMT (bottom)
datasets. 1(src) and 2(src) denote ROT-1 and ROT-2
encipherments, respectively.

In all experiments, we set the loss weight hyper-
parameters α1, α2 to 1, and β to 5. Section 4.1
shows an ablation over β to justify this setting. We
find that softmax temperature τ = 1 works well
for all experiments; τ = 2 results in more stable
training for larger datasets.
Evaluation We evaluate on BLEU scores7 (Pa-
pineni et al., 2002). Following previous work
(Vaswani et al., 2017; Nguyen et al., 2019; Xu
et al., 2021), we compute tokenized BLEU with
multi_bleu.perl8 for IWSLT14 and TED
datasets, additionally apply compound-splitting for
WMT14 En-De9 and SacreBLEU10 (Post, 2018)
for IWSLT17 datasets. For all experiments, we per-
form significance tests based on bootstrap resam-
pling (Clark et al., 2011) using the compare-mt
toolkit (Neubig et al., 2019).
Baselines Our main baselines are strong and
widely used data-augmentation techniques that do
not use external data. We compare CipherDAug
to back-translation-based data-diversification
(Nguyen et al., 2019), word replacement techniques
like SwitchOut (Wang et al., 2018), WordDrop
(Sennrich et al., 2016a), and RAML (Norouzi et al.,
2016), and the subword-regularization technique
BPE-Dropout (Provilkov et al., 2020).

See supplemental sections A.1 and A.2 for fur-
ther baseline and implementation details.

7Decoder beam size 4 and length penalty 0.6 for WMT,
and 5 and 1.0 for all other experiments.

8mosesdecoder/scripts/generic/multi-bleu.perl
9tensorflow/tensor2tensor/utils/get_ende_bleu.sh

10SacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.0.0

Model De→ En

Transformer 34.91

+ Word Dropout 34.83
+ SwitchOut 34.82
+ RAML 35.11
+ RAML + Switchout 35.17
+ RAML + WordDrop 35.47

Naive Multi-Source Equation (1) Equation (2)
2 keys 35.45 35.85
5 keys 35.65 35.98
10 keys 33.70 35.42
20 keys 32.95 34.75

5 keys + RAML + Switchout - 36.17
5 keys + RAML + WordDrop - 36.63

CipherDAug - 1 key 36.21
CipherDAug - 2 keys 37.60

Table 2: Results on the IWSLT14 De-En validation set
comparing the naive approach and CipherDAug.11

3.2 Results from the Naive Approach

Table 2 shows our results using the naive method
on the IWSLT14 De→En dev set. Simply us-
ing 2 enciphered sources gives a BLEU score of
35.45, which nearly matches the performance of
the best baseline, RAML+SwitchOut, at 35.47.
Adding the ROT-k(source) → source direction fur-
ther improves the score to 35.85. Adding the ROT-
k(source) → source direction consistently yields
better results than the vanilla multi-source model,
but increasing the number of keys has a less con-
sistent effect. We hypothesize that more keys are
generally beneficial, but that the model becomes
saturated when too many are used. Based on these
observations, we limit later experiments to 2 keys.

We observe further gains by combining the naive
method with the two best performing baselines.
This emphasizes that ciphertext-based augmenta-
tion is orthogonal to other data-augmentation meth-
ods and can be seamlessly combined with these to
yield greater improvements.

3.3 Main Results

We present our main results in Table 3. While us-
ing a single key improves significantly over the
Transformer model, augmenting with 2 keys out-
performs all baselines. Table 4 shows additional
comparisons against approaches that introduce ar-
chitectural improvements to the transformer (such
as MAT; Fan et al. 2020) or that require large pre-
trained models, like BiBERT (Xu et al., 2021).

On the IWSLT14 and IWSLT17 language pairs,
11Section A.3.3 details a supplemental experiment combin-

ing CipherDAug with Data Diversification.

204



src aug tgt aug |D| De→En En→De Fr→En En→Fr En→De

Transformer (Vaswani et al., 2017) - - 1x 34.64 28.57 38.18 39.37 27.3

WordDropout (Sennrich et al.) ✓ ✗ 1x 35.60 29.21 - - 27.5
SwitchOut (Wang et al., 2018) ✓ ✗ 1x 35.90 29.00 38.20 39.49 27.6
RAML (Norouzi et al., 2016) ✗ ✓ 1x 35.99 29.07 38.38 39.55 -
RAML+WordDropout ✓ ✓ 1x 36.13 28.78 - -
RAML+SwitchOut ✓ ✓ 1x 36.20 29.11 38.85 40.02 27.7
BPE-Dropout (Provilkov et al.) ✓ ✓ 1x 35.10 28.63 39.39 40.02 27.6
Mixed-Repr.12(Wu et al., 2020) ✓ ✓ 2x 36.31 29.71 - -
Data Diverse (Nguyen et al., 2019) ✓ ✓ 7x 37.00 30.47 39.58 40.67 27.9

CipherDAug - 1 key ✓ ✗ 2x 36.19∗ 29.14∗ 39.45∗ 40.39∗ 27.9∗∗

CipherDAug - 2 keys ✓ ✗ 3x 37.53† 30.65† 40.35† 41.44† 27.9

Table 3: IWSLT14 De↔En (left), IWSLT17 Fr↔En (center) and WMT14 En→De (right). All baselines were
reproduced except for Mixed-Repr. (Wu et al., 2020) which we report from literature. Our numbers are median
results over three runs. Statistical significance is indicated by * (p < 0.001) and ** (p < 0.05) vs. the baseline, and
† (p < 0.001) vs. 1 key. See A.1 for additional details.

our method yields stronger improvements over the
standard Transformer than any other data augmen-
tation technique (Table 3). This includes strong
methods such RAML+SwitchOut and data diversi-
fication, which report improvements as high as 1.8
and 1.9 BLEU points respectively. Data diversifica-
tion involves training a total of 7 different models
for forward and backward translation on the source
and target data. By contrast, CipherDAug trains
a single model, and improves the baseline trans-
former by 2.9 BLEU points on IWSLT14 De→En
and about 2.2 BLEU points on the smaller datasets.

Model |Θ| De→ En

Transformer 44M 34.71
Macaron Net (2020) 1x 35.40
BERT Fuse (Zhu et al., 2020) 1x(+BERT) 36.11
MAT (Fan et al., 2020) 0.9x 36.22
UniDrop (Wu et al., 2021b) 1x 36.88
R-DROP (Liang et al., 2021) 1x 37.25
BiBERT (Xu et al., 2021) 1x(+BERT) 37.50

CipherDAug-2 keys (Ours) 1.2x 37.53

Table 4: Results on IWSLT14 De-En test set with non-
data-augmentation methods that are fundamentally dif-
ferent. CipherDAug has 1.2x parameters because of
the slightly larger embedding layer size owing to the
combined cipher vocabulary. See A.3.1 for comparisons
against a Transformer with 1.2x parameters.

On WMT14 En→De, our method using 1 key
improves by 0.6 BLEU over the baseline trans-
former and significantly outperforms word replace-
ment methods like SwitchOut and WordDropout.

12Wu et al. 2020 introduce a new model architecture for mix-
ing subword representations that involves a two-stage training
process. CipherDAug, on the other hand, only uses a vanilla
Transformer that is trained end-to-end.

Low-resource setting The Sk↔En dataset is
uniquely challenging as it has only 61k pairs of
training samples. This dataset is generally paired
with a related high-resource language pair such as
Cs-En (Neubig and Hu, 2018), or trained in a mas-
sively multilingual setting (Aharoni et al., 2019)
with 58 other languages from the multilingual TED
dataset (Qi et al., 2018). Xia et al. (2019b) intro-
duced a generalized data augmentation technique
that works in this multilingual setting and leverages
over 2M monolingual sentences for each language
using back-translation. Applying CipherDAug to
this dataset (Table 5) yields significant improve-
ments over these methods, achieving 32.62 BLEU
on Sk→En and 24.61 on En→Sk.

Sk-En En-Sk

1-1(Neubig and Hu; Aharoni et al.) 24 5.80
Sk (61k) always paired with Cs (103k)
LRL+HRL 28.30 21.34
+ SDE (Wang et al.; Gao et al.) 28.77 22.40
+ Aug(incl. Mono 2M) (Xia et al.) 30.00 –
+ Aug+Pivot (Ibid.) 30.22 –
+ Aug+Pivot+WordSub (Ibid.) 32.07 –

Massively Multilingual - 59 langs
Many-to-One (Aharoni et al.) 26.78 –
One-to-Many (Ibid.) – 24.52
Many-to-Many (Ibid.) 29.54 21.83

CipherDAug - 1 key 31.19∗ 23.09∗

CipherDAug - 2 keys 32.62† 24.61†

Table 5: Results on the low-resource TED (Qi et al.,
2018) Sk-En pair. Our model is trained on Sk-En only
and does not require additional parallel data from a
related high resource language (HRL) pair.

Discussion On the relatively larger WMT14
dataset (4.5M), despite improving significantly
over the baseline Transformer, the Base model
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|src∪tgt| |vocab| Demb EmbΘ TrainΘ BLEU

Transformer-256 12k 12k 256 3M 37M 34.40
Transformer-512 12k 12k 512 6.1M 44M 34.64
Transformer-256 20k 20k 256 5.1M 42M 34.19
Transformer-512 20k 20k 512 10.1M 52M 34.39

CipherDAug-1key 11.8k 16k 256 4.1M 40M 36.25
CipherDAug-1key 11.8k 16k 512 8.2M 47M 36.19

CipherDAug-2keys 11.8k 20k 256 5M 42M 36.90
CipherDAug-2keys 11.8k 20k 512 10.1M 52M 37.53

Table 6: Results on IWSLT14 De→En with baseline Transformer and CipherDAug using different vocabulary sizes
and embedding dimensions. Except for the embedding layers, the rest of the network configuration is exactly the
same across all settings with 31M parameters. The column TrainΘ denotes total number of trainable parameters
(approx. 31M + 2.EmbΘ). Transformer-512 denotes the baseline transformer model used in our experiments.

(68M params) approaches saturation when ∼9M
enciphered sentences (2 keys) are added. Upgrad-
ing to Transformer Big (218M) may be viable, but
would be an unfair comparison with other mod-
els. The model capacity becomes a bottleneck
with larger datasets when the model is optimised to
translate each of the source sentences (4.5M plain
and 9M enciphered) individually (single-source)
as well as together (multi-source) through the co-
regularization loss. The results indicate that our
proposed approach works best in small and low
resource data settings.

4 Analysis

4.1 Ablations
Number of Keys Figure 2 (left) shows the effect
of adding different amounts of enciphered data. We
obtain the best performance using just 2 different
keys. Using more or fewer degrades performance,
though both cases still outperform the baseline. As
noted in Section 3.2, the model may become satu-
rated when too many keys are used.

Agreement Loss Figure 2 (right) shows an ab-
lation analysis on the agreement loss. We find
that CipherDAug is sensitive to the weight β given
to this term: increasing or decreasing it from our
default setting β = 5 incurs a performance drop
of nearly 2 BLEU. Despite the performance gains
attendant to this term, it is equally clear that agree-
ment loss cannot fully account for CipherDAug’s
improvements over the baseline: in the naive set-
ting where β = 0, CipherDAug still outperforms
the baseline by approximately 1 BLEU.

Learning BPE vocabularies jointly vs. sepa-
rately From Table 7, we see that there is no sig-
nificant impact on BLEU if we learn BPE vocabu-
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Figure 2: Ablation over number of distinct keys (left)
and weight β of agreement loss (right). Wall times
(run times) are measured to convergence/early stopping,
relative to β = 5 with 2 cipher keys which is our setting
of choice. The dashed line (right) shows baseline BLEU
score.

laries separately for each language or enciphered
language from IWSLT14 De→En. This is consis-
tent with results from Neubig and Hu (2018) in the
context of mutilingual NMT.

|s∪t| rot-1(s) rot-2(s) |V| BLEU

sep 12k 6.5k 6.5k 21.2k 37.65
joint 11.8k 6.7k 6.5k 20k 37.53

Table 7: Comparison of BPE vocabularies learnt jointly
vs. separately for CipherDAug-2 keys. The ‘separate’
setting uses the union of BPEs learnt separately on the
bitext and two ciphertexts. The difference in BLEU
scores is not statistically significant.

Note that it is preferable to learn the BPEs jointly
as this allows us to limit the total vocabulary size.
When learned separately, we cannot control the
combined vocabulary size which may result in a
larger or smaller vocabulary (and therefore, a dif-
ferent number of embedding parameters) than in-
tended.
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Disentangling the effects of increased parame-
ters in the embedding layer CipherDAug lever-
ages the combined vocabularies of the original par-
allel bitext and enciphered copies of the source text.
This necessarily increases in the number of param-
eters in the embedding layer even though the rest
of the network remains identical.

To understand the effect of these extra parame-
ters, we compare CipherDAug against the baseline
Transformer model with different vocabulary and
embedding sizes. Results from different settings
are shown in Table 6. 13

As we reduce the embedding dimension of our
best model (CipherDAug with 2 keys) from 512 to
256, we observe a small change of -0.6 BLEU in
the final scores. With 1 cipher key, however, our
model exhibits a slight (statistically insignificant)
improvement of +0.06 BLEU. These results show
that the few extra embedding parameters in Cipher-
DAug do not have an outsized impact on model
performance, but we emphasize that reducing the
dimensionality of the embedding layer diminishes
its expressivity and is therefore not a completely
fair comparison.

4.2 Hallucinations

The attention mechanism of a model might not
reflect a model’s true inner reasoning (Jain and
Wallace, 2019; Moradi et al., 2019, 2021). To better
analyze NMT models, Lee et al. (2018) introduce
the notion of hallucinations. A model hallucinates
when small perturbations in its input cause drastic
changes in the output, implying it is not actually
attentive to this input.

Using Algorithm 2 of Raunak et al. (2021), Ta-
ble 8 shows the number of hallucinations on the
IWSLT14 De-En test set for the baseline and Ci-
pherDAug models. We use the 50 most common
subwords as perturbations. CipherDAug sees a
40% reduction in hallucinations relative to the base-
line, suggesting it is more resilient against perturba-
tions and more attentive to the content of its input.

4.3 Effect on Rare Subwords

We argue that CipherDAug is effective in part
because it reduces the impact of rare words. On
average, the rarest subword in a ROT-k enciphered

13Note that in Table 6, the BPE vocabularies from the origi-
nal source and target remain approximately same across the
baseline (12k) and CipherDAug (11.8k) even though the final
vocabulary sizes of our models vary with the addition of the
enciphered source(s).

Model Hallucinations

Transformer 23

CipherDAug-2 keys (Ours) 14

Table 8: Number of distinct sentences which cause hal-
lucinations in the baseline and CipherDAug models.

sentence is significantly more frequent than the
rarest subword in a plaintext sentence. This is
apparent in an example like the following:

hier ist es nötig, das, was wir
unter politically correctness
verstehen, immer wieder anzubringen.

(6)

Figure 3 plots the frequency of each subword in
this sentence and its ROT-k enciphered variants. In
the plaintext, we observe a series of rare subwords
ically, _correct, and ness coming from the
English borrowing. After encipherment, however,
these are replaced by a variety of more common
subwords jd, bmm, _d, and so on. The result is
that the enciphered sentences have fewer rare sub-
words; this allows them to share more information
with other sentences, and allows the more common
enciphered tokens to inform the model’s encoding
of less common plaintext tokens.
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102
104

Fr
e
q
.

ROT-1(de)

Subword position in sentence
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.

Subwords sorted by frequency

ROT-2(de)

Figure 3: Frequencies of subwords in (6) and its ROT-k
enciphered variants. Encipherment replaces rare sub-
words with more common ones.

We reiterate that this trend holds across the
whole corpus, and highlights the value of an aug-
mentation scheme that allows a model to see many
different segmentations of each input.

This is not the only mechanism by which Cipher-
DAug improves performance: we find improve-
ments for tokens in every frequency bucket, not
simply those which are rare (Figure 4).

4.4 Multi-view Learning
In Section 2.2, we argue that the agreement loss
in (4) acts as a co-regularization term in a multi-
view learning setting. Multi-view learning works
best when the different views capture distinct infor-
mation. In CipherDAug, this is accomplished by

207



target word frequency

f-m
ea

su
re

0.2

0.3

0.4

0.5

0.6

0.7

<1 1 2 3 4
[5,

10
)

[10
,10

0)

[10
0,1

k)
>=

1k

Transformer Moving Avg CipherDAug
Moving Avg

sentence length

se
nt

en
ce

-B
LE

U

15

20

25

30

35

40

<1
0

[10
,20

)

[20
,30

)

[30
,40

)

[40
,50

)

[50
,60

)
>=

60

Transformer CipherDAug

Figure 4: CipherDAug yields improvements for tokens
of all frequencies and sentences of every length. (a)
F-measure between model outputs and reference tokens,
bucketed by frequency of the reference token. (b) Sen-
tence BLEU bucketed by target sentence length.

allowing enciphered inputs to receive different seg-
mentations than plaintext inputs. As evidence that
the different views capture distinct information, we
note that even after training with co-regularization
the model remains sensitive to the choice of input
encoding, as seen in cases such as Figure 6 where
the model may produce any of three distinct outputs
depending on whether it is given plain- or cipher-
text as input. If all of the input views captured
identical information we should expect no such
variation, especially after training with an explicit
co-regularization term.

4.5 Canonical Correlation Analysis
To further analyze CipherDAug, we turn to canoni-
cal correlation analysis (CCA; Hardoon et al. 2004;
Raghu et al. 2017), which finds a linear transform
to maximize correlation between values in two high
dimensional datasets. As detailed in Raghu et al.
2017, it is useful for measuring correlations be-
tween activations from different networks.

For each IWSLT14 De-En test sentence, we save
the activations from each layer of our baseline and
CipherDAug models. For the CipherDAug model,
we save activations on plaintext and enciphered
inputs. For every pair of layers, we compute the
projection weighted14 CCA (PWCCA) between ac-
tivations from those layers. If this value is high (rel-
ative to a random baseline), this means that there is
a linear transformation under which the activations
from those layers are linearly correlated, implying
that the layers capture similar information.

Figure 5 plots the PWCCA between encoder
states from the baseline and CipherDAug models,
and between CipherDAug encoder states with dif-

14See Raghu et al. 2017 for an explanation of CCA variants
including PWCCA. We choose PWCCA as it has been found
to be most robust against noise and because it does not require
explicitly tuning the number of dimensions to analyze.
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Figure 5: PWCCA between encoder states at differ-
ent layers. All correlations exceed the value expected
from a random baseline (0.27). (a) Impact of key on
CipherDAug encoder states. (b) Comparison between
CipherDAug and baseline, showing different distribu-
tions of information across models and input encodings.

ferent input encodings. It is immediately clear that
CipherDAug learns similar, but not identical, rep-
resentations for plain- and ciphertext inputs: the
state of a layer in the de→en setting is generally
predictive of the state of that same layer in the
ROT-1(de)→en and ROT-2(de)→en settings.

We emphasize, however, that representations
for plain- and ciphertexts are not identical, as can
be seen by comparing against the baseline model.
Here, some layers in one model show a moder-
ate correlation to every layer of the other model;
other layers show a strong correlation with a differ-
ent layer from the other model. This implies that,
while the two models extract some of the same
information, they do so at different depths in the
encoder. Moreover, CipherDAug states from enci-
phered inputs present an entirely different pattern
of correlations than plaintext inputs. This implies
that CipherDAug not only learns different informa-
tion than the baseline, but that these differences
are distinct for plaintexts and ciphertexts. These
results strengthen Section 4.4’s claim that plain-
and ciphertexts capture distinct information.

5 Related Work

Data-augmentation (Sennrich et al., 2016b) can
be broadly categorized into back-translation based
methods and those which perturb or change the in-
put (Wang et al., 2018). Back-translation (Sennrich
et al., 2016b) is arguably the de-facto data augmen-
tation method for NMT. Besides back-translating
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Model De → En
Transformer 34.71
CipherDAug-2 keys

de→en 37.53
ROT-1(de)→en 37.41
ROT-2(de)→en 37.35

Source: sein onkel floh mit ihrer heiligkeit in die diaspora, die leute nach nepal brachte.
Reference: his uncle flew with her sacredness to the diaspora that brought people to nepal.
de→en: his uncle flew with her sacredness . .to . . . .the . . . . . . . . .diaspora that brought people to nepal.
ROT-1(de)→en: his uncle flew . . . .into. . . .the. . . . . . . . . .diaspora with her holiness that brought people to nepal.
ROT-2(de)→en: his uncle flew with her sacredness . . . .into . . . .the . . . . . . . . .diaspora that brought people to nepal.

Figure 6: The choice of key impacts model output. Lexical choices (colored for emphasis) and word order
(underlined for emphasis) may differ between plaintext and enciphered inputs.

external monolingual data (Edunov et al., 2018), Li
et al. (2019) forward-translate the source (Zhang
and Zong, 2016) and/or backward-translate the tar-
get side (Sennrich et al., 2016a) of the original
(in-domain) parallel data. Our technique produces
lexically diverse samples using only the original
source data, rather than relying on model predic-
tions which may be of limited quality. Belinkov
and Bisk (2018) showed that NMT models can be
sensitive to orthographic variation, and that training
with noise improves their robustness (Khayrallah
and Koehn, 2018). Common noising techniques
include token dropping (Zhang et al., 2020), word
replacement (Xie et al., 2017; Wu et al., 2021a),
Word-Dropout (randomly zeroing out word embed-
dings; Sennrich et al. 2016a; Gal and Ghahramani
2016) and adding synthetic noise by swapping ran-
dom characters or replacing words with common
typos (Karpukhin et al., 2019). Adding enciphered
data is distinct from noising as the ciphertexts are
generated deterministically and follow the same dis-
tribution as the underlying natural language, simply
using shifted letters of the same alphabet.15

To extend the support of the empirical data dis-
tribution, Norouzi et al. (2016) introduced RAML
on the target side; Wang et al. (2018) proposed
SwitchOut as a more general method which they ap-
plied to the source side. Special cases of SwitchOut
include Word-Dropout and sequence-mixing (Guo
et al., 2020a), which exchanges words between sim-
ilar source sentences to encourage compositional
behaviour. Such methods generate several different
samples for each sentence because of the large vo-
cabulary to choose replacements from; they often
give poor coverage despite this. In contrast, Ci-
pherDAug guarantees lexically diverse examples
with semantic equivalence to the source sentences
without having to choose specific replacements.

Adversarial techniques (Gao et al., 2019)
perform soft perturbations of tokens or spans

15CipherDAug can also apply to non-alphabetic scripts (e.g.
Mandarin, Japanese) by incrementing Unicode codepoints
modulo the size of the block containing the script in question.

(Takase and Kiyono 2021, Karpukhin et al. 2019).
An advantage of soft replacements over hard ones
is that they take into account the context of the to-
kens being replaced (Liu et al., 2021; Mohiuddin
et al., 2021). These methods require architectural
changes to a model whereas CipherDAug does not.

Ciphertext-based augmentation is orthogonal to
most other data-augmentation methods and can be
seamlessly combined with these to jointly improve
neural machine translation.

6 Conclusion

We introduce CipherDAug, a novel technique for
augmenting translation data using ROT-k enci-
phered copies of the source corpus. This technique
requires no external data, and significantly outper-
forms a variety of strong existing data augmen-
tation techniques. We have shown that an agree-
ment loss term, which minimizes divergence be-
tween representations of plain- and ciphertext in-
puts, is crucial to the performance of this model,
and we have explained the function of this loss term
with reference to co-regularization techniques from
multi-view learning. We have also demonstrated
other means by which enciphered data can improve
model performance, such as by reducing the im-
pact of rare words. Overall, CipherDAug shows
promise as a simple, out-of-the-box approach to
data augmentation which improves on and com-
bines easily with existing techniques, and which
yields particularly strong results in low-resource
settings.
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A Appendix

A.1 Baselines

To compare model performance on the small and
mid-sized datasets, we re-implemented most base-
lines:

• we used the pseudocode in appendix A6 along
with proofs in appendices A1 and A2 of
the SwitchOut paper (Wang et al., 2018) to
implement SwitchOut, WordDrop (Sennrich
et al., 2016a), RAML (Norouzi et al., 2016),
RAML+SwitchOut and RAML+WordDrop
as special cases of SwitchOut. The hyperpa-
rameter τ was tuned on the dev set for each
language pair. The respective τ values are
0.9 and 0.95 for De-En and 0.85 and 0.95 for
Fr-En.

• we followed the instructions on the offi-
cial open-sourced repository to reproduce
BPE-Dropout (Provilkov et al., 2020) 16

with the recommended value of p=0.1 us-
ing the sentencepiece tokenizer. We
trained models on our Fairseq codebase
for IWSLT14 De↔En and WMT14 En→De.
We reported the SacreBLEU numbers for
IWSLT17 Fr↔En from literature.

• experiments on data-diversification (Nguyen
et al., 2019) were reproduced using the offi-
cial open-sourced implementation on top of
the Fairseq toolkit. For WMT14 En-De,
we use a Transformer Base ( 68M parameters)
for a fair comparison across methods, whereas
the original implementation employs a Trans-
former Big model ( 210M parameters). 17.
Note that this method requires training 7 in-
dividual models and has a total effective data
size 7 times the original size to produce best
results.

We reported the performance of Mixed-
Representation (Wu et al., 2020) baseline for
IWSLT14 De→En from the literature as we
could reproduce the experiemnts. However,
to the best of our knowledge, we employ set-
tings identical to Mixed-Repr. baseline for
IWSLT14 De→En in our model – the same tok-
enizer (SentencePiece), vocabulary size (12k),

16https://github.com/VProv/BPE-Dropout
17https://github.com/nxphi47/data_

diversification

model size (transformer_iwslt_de_en),
decoding hyper-parameters (beam 5, len-pen 1.0)
and evaluation script (multi-bleu.perl).

A.2 CipherDAug: Models and
Hyperparameters

The smaller datasets (IWSLT14
De↔En 18, IWSLT17 Fr↔En19 and
TED Sk↔En20) are trained with the
transformer_iwslt_de_en config with 6
layers of encoder and decoder with 4 attention
heads, embedding size of 512, feed-forward size of
1024, network dropout 0.3 and attention dropout
0.1. The peak learning rate is 6e − 4 with 8000
warmup steps.

For training the on WMT14 En→De dataset21,
we use Transformer Base config, dubbed
transformer_wmt_en_de in fairseq
toolkit, with 6 layers of encoder and decoder
with 8 attention heads, embedding size of 512,
feed-forward size of 2048, dropout 0.1. The peak
learning rate is 7e− 4 with 4000 warmup steps.

Following conventional training of Transform-
ers, we use Adam optimizer with betas (0.9, 0.98)
and ϵ = 10−9 and inverse_sqrt learning rate
scheduler. Label smoothing is set to 0.1.

We also set an agreement_loss_warmup
to 2000 steps. This signifies that until the specified
number of steps, the model will train with regular
cross-entropy loss without computing KL diver-
gence. This is done to let the model gain some con-
fidence before we start applying co-regularization.
This does not improve or worsen model perfor-
mance, but we find that this helps the model con-
verge slightly faster.

The transformer_iwslt_de_en models
(for IWSLT14, IWSLT17 and TED datasets)
were run on 2 Titan RTX GPUs while the
transformer_wmt_en_de model for
WMT14 En-De was run on 8 A6000 GPUs. All
models were run until convergence with an early
stopping patience of 15 validation steps. While
smaller models converged within 100k updates,

18https://github.com/pytorch/fairseq/
blob/main/examples/translation/
prepare-iwslt14.sh

19The official IWSLT17 evaluation campaign: https://
wit3.fbk.eu/2017-01-c

20https://github.com/neulab/
word-embeddings-for-nmt

21https://github.com/pytorch/fairseq/
blob/main/examples/translation/
prepare-wmt14en2de.sh
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Dinter EmbΘ BLEU ∆ TrainΘ

Transformer - 6.1M 34.64 - 44M
CipherDAug - 10.1M 37.53 +2.89 52M

Non-trainable O
Transformer + ALONE 4096 4.1M 34.17 - 31M
CipherDAug + ALONE 4096 4.1M 36.98 +2.81 31M

Trainable O
Transformer + ALONE 4096 4.1M 34.35 - 31M
CipherDAug + ALONE 4096 4.1M 37.10 +2.75 31M

Table 9: Results on IWSLT14 De→En with baseline Transformer and CipherDAug using ALONE embeddings
(Takase and Kobayashi, 2020). The column TrainΘ denotes the approx. total number of trainable parameters. The
filter vectors for ALONE embeddings are constructed using real valued vectors. Using the ALONE embeddings
disentangles the effect of increased vocabulary in CipherDAug by building embeddings largely independent of the
vocabulary sizes and ensures that it has the same number of net trainable parameters as the baseline Transformer.
See Table 10 for details.

the model on WMT14 dataset was force stopped at
400k updates while the model was still improving
(at a very slow rate).

For producing translations, the decoder beam
size is set to 4 and length penalty 0.6 for WMT,
and 5 and 1.0 for all other experiments. We
evaluate on BLEU scores (Papineni et al.,
2002). Following previous work (Vaswani
et al., 2017; Nguyen et al., 2019; Xu et al.,
2021), we compute tokenized BLEU with
multi_bleu.perl22 for IWSLT14 and TED
datasets, additionally apply compound-splitting
for WMT14 En-De23 and SacreBLEU (Post,
2018) (Signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version
:2.0.0 for IWSLT17 datasets.

Finally, all results are reported on translations
obtained after averaging the last 5 checkpoints.

A.3 Additional Experiments
A.3.1 Disentangling the effects of increased

parameters in the embedding layer
Additional experiment based on results from
Sec. 4.1 – Table 6. CipherDAug uses the com-
bined vocabularies of the original parallel bitext
and enciphered copies of the source text. This nec-
essarily increases in the number of parameters in
the embedding layer even though the rest of the
network remains identical.

Using embeddings largely independent of the
vocabulary size. To completely disambiguate the
effects of the different sizes of vocabularies in the
baseline and CipherDAug transformers, we replace

22mosesdecoder/scripts/generic/multi-bleu.perl
23tensorflow/tensor2tensor/utils/get_ende_bleu.sh

the embedding layer with ALONE embeddings
(Takase and Kobayashi, 2020).

While the conventional embedding layer re-
quires an embedding matrix E ∈ RDemb xV where
V is the vocabulary size, ALONE lets different
words in the vocabulary share a vector element
with each other. To concretely obtain a word rep-
resentation for w, ALONE computes an element-
wise product of the base embedding o ∈ R1 xDO

and a filter vector, and then applies a feed-forward
network of dimension Dinter to increase its expres-
siveness.

|Θ|

conventional Demb x V
ALONE DO + Dinter x (DO + Demb) + M x DO x c

Table 10: Number of parameters in conventional embed-
dings vs. ALONE embeddings. In our experiments,
base emb. dim DO = 512, emb. dim Demb = 512,
number of column vectors M = 8, and number of
source matrices c = 64. Refer to Takase and Kobayashi
(2020) for details.

See Takase and Kobayashi (2020) for more de-
tails on ALONE embeddings. We integrated the
officially released code24 with our implementation.
Table 10 compares parameter counts with and with-
out ALONE, and Table 9 details the result of using
ALONE embeddings with CipherDAug.

A.3.2 Effect of different dropout probabilities
To further study the efficacy of our method in
under-regularized scenarios, we compare the base-
line transformer model with CipherDAug for the

24https://github.com/takase/alone_
seq2seq
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dropout values of 0 (no regularization), 0.1, 0,2
and 0.3 in Table 11. Evidently, our method shows
consistent gains over the baseline. While a dropout
value of 0.3 is optimal for both models, Cipher-
DAug records a BLEU of +4.5 against the base
model with dropout set to 0 which removes regu-
larization as well any stochasticity from the model.
This suggests that the variation in input data intro-
duced by CipherDAug can yield improvements for
transformer models, with similar effects to adding
dropout (albeit to a lesser degree).

dropout→ 0 0.1 0.2 0.3

Transformer 22.79 31.12 33.70 34.64
CipherDAug 27.10 36.45 36.90 37.53

Table 11: Results on IWSLT14 De→En with baseline
Transformer and CipherDAug using different dropout
values.

A.3.3 Complimenting data-diversification
with CipherDAug

To further support our claim that our method
can be combined with existing data-augmentation
techniques, we extend CipherDAug into the data-
diversification (Nguyen et al., 2019) framework.

Data-Diversification: This is a simple technique
that employs the following steps to augment data
without changing the model architecture:

Algorithm 3 Data-diversification
1: Train 3 randomly initialized forward (s→t) models
2: Train 3 randomly initialized backward (t→s) models
3: Translate original bitext with the forward models →

D1, D2, D3

4: Translate original bitext with the backward models →
D4, D5, D6

5: Combine all data D = D0∪D1∪D2∪D3∪D4∪D5∪D6

where D0 = original bitext
6: Train final model on the augmented data D

We adapt Algo 3 to incorporate CipherDAug
by modifying steps 1 and 2 – we replace the for-
ward models with one CipherDAug model with 2
keys trained on IWSLT14 De→En and the back-
ward models with a CipherDAug model with 2 keys
trained on IWSLT14 En→De. We leverage the ob-
servation that CipherDAug often produces lexically
diverse translations for the source and enciphered-
source sentences (Figure 6; Figure 9 in Appendix
). Following Step 5 above, we finally combine the
3 forward translations and the 3 backward transla-
tions with the original parallel data, and train a final

model on the resulting augmented data. The results
in Table 12 demonstrate that the combination is
more effective than data diversification on its own.

model base bwd. fwd. bidir.

data-diverse 34.7 35.8 35.94 37.0
CipherDAug+ 34.64 36.20 36.66 37.95

Table 12: Results on IWSLT14 De→En with data-
diversification and CipherDAug-2keys in the data-
diversification framework. The best results in this set-
ting outperform both the baseline data-diverse model
and CipherDAug in isolation. Note that we did not tune
our model for this experiment. This further strengthens
our claim that our method is complimentary to most
existing techniques. (We borrowed the ablation results
from Nguyen et al. (2019).)

A.4 Comparison with other methods
We show a comparison of our method CipherDAug
with a variety of data-augmentation methods as
well as other methods that introduce architectural
changes for better neural machine translation in
Table 13.

Model De→ En

Transformer 34.71
Word Dropout 35.60
SwitchOut 35.90
MixSeq (Wu et al., 2021a) 35.70
SeqMix (Guo et al., 2020b) 36.20
MixedRep (Wu et al., 2020) 36.41
DataDiverse (Nguyen et al., 2020) 37.01

Macaron Net (Lu* et al., 2020) 35.40
BERT Fuse (Zhu et al., 2020) 36.11
MAT (Fan et al., 2020) 36.22
UniDrop (Wu et al., 2021b) 36.88
R-DROP (Liang et al., 2021) 37.25
BiBERT (Xu et al., 2021) 37.50

CipherDAug-2 keys (Ours) 37.53

Table 13: Results on IWSLT14 De-En pair. Top half
section shows other data-augmentation techniques while
the bottom half shows performance of other existing
methods on this dataset.

A.5 More Examples of Rare Subwords
The examples in this section further illustrate how
CipherDAug helps to eliminate rare subwords:
de: hey, warum nicht? (Rarest subword
_hey occurs 2 times.)
ROT-1(de): ifz, xbsvn ojdiu? (Rarest
subword _if occurs 26 times.)
ROT-2(de): jgß, yctwo pkejv? (Rarest
subword _jg occurs 15 times.)
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Figure 7: Frequencies of subwords in hey, warum
nicht? and its ROT-k enciphered variants.

de: wir alle lieben baseball,
oder? (Rarest subword _baseball occurs 7
times.)
ROT-1(de): xjs bmmf mjfcfo cbtfcbmm,
pefs? (Rarest subword cbmm occurs 14 times.)
ROT-2(de): ykt cnng nkgdgp dcugdcnn,
qfgt? (Rarest subword dcnn occurs 14 times.)

Figure 8: Frequencies of subwords in wir alle
lieben baseball, oder? and its ROT-k enci-
phered variants.
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