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Abstract

Spatial commonsense, the knowledge about
spatial position and relationship between ob-
jects (like the relative size of a lion and a
girl, and the position of a boy relative to a
bicycle when cycling), is an important part
of commonsense knowledge. Although pre-
trained language models (PLMs) succeed in
many NLP tasks, they are shown to be in-
effective in spatial commonsense reasoning.
Starting from the observation that images are
more likely to exhibit spatial commonsense
than texts, we explore whether models with
visual signals learn more spatial commonsense
than text-based PLMs. We propose a spatial
commonsense benchmark that focuses on the
relative scales of objects, and the positional
relationship between people and objects un-
der different actions. We probe PLMs and
models with visual signals, including vision-
language pretrained models and image synthe-
sis models, on this benchmark, and find that
image synthesis models are more capable of
learning accurate and consistent spatial knowl-
edge than other models. The spatial knowl-
edge from image synthesis models also helps
in natural language understanding tasks that
require spatial commonsense. Code and data
are available at https://github.com/
xxxiaol/spatial-commonsense.

1 Introduction

Spatial perception, the ability to detect the spa-
tial position and to infer the relationship between
visual stimuli (Donnon et al., 2005; Saj and Baris-
nikov, 2015), is basic but important for human
beings (Pellegrino et al., 1984). It is of everyday
use, from understanding the surrounding environ-
ment, like when seeing a woman sitting in a car
with her hands on the steering wheel, we know
she is probably driving, to processing spatial infor-
mation and performing reasoning, like navigating
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Lion Cycling

The lion (Panthera leo) is a large felid
of the genus Panthera native to Africa
and India. It has a muscular, deep-
chested body, short, rounded head,
round ears, and a hairy tuft at the end
ofits tail ...

Cycling, also called bicycling or biking,
is the use of bicycles for transport,
recreation, exercise or sport. People
engaged in cycling are referred to as
“cyclists”, "bicyclists", or "bikers" ..

Texts

Where is a boy relative to
a bike when cycling?

)

Images
NN

Figure 1: Texts and images related to lion and cycling.
Images exhibit more explicit spatial knowledge than
texts.

How big is a lion?

through a dense forest. We regard the knowledge
needed in spatial perception as spatial common-
sense. Humans start to develop spatial perception
and acquire spatial commonsense from infancy, and
apply the commonsense through lifetime (Kuipers
et al., 1990; Poole et al., 2006).

Although text-based Pretrained Language Mod-
els (PLMs) achieve great performance on vari-
ous commonsense reasoning tasks (Davison et al.,
2019; Zhou et al., 2020), they are shown to be
ineffective when dealing with spatial common-
sense. Zhang et al. (2020) and Aroca-Ouellette
et al. (2021) show that current PLMs lack the abil-
ity to reason about object scales. Bhagavatula et al.
(2020) find that BERT (Devlin et al., 2019) under-
performs on instances involving spatial locations.
The struggle of PLMs with spatial commonsense
is partly because spatial commonsense is rarely ex-
pressed explicitly in texts. We may write sentences
like lions are big animals, but we seldom explicitly
mention how big lions are; we also rarely write
about the spatial relationship between a boy and a
bicycle when he is cycling.

Spatial commonsense is exhibited in images
more commonly (Cui et al., 2020). As shown in
Figure 1, the two Wikipedia articles provide little
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spatial information, but a picture of a lion and a
girl provides a reference to the size of a lion; and
a painting of a boy riding a bicycle depicts that he
sits on the bicycle. Hence, a natural idea is to elicit
spatial knowledge from models with visual signals.

We first study whether models with visual sig-
nals learn more spatial knowledge than text-only
models. We select Vision-Language PreTrained
Models (VL-PTMs) and Image Synthesis Models
(ISMs) for investigation. VL-PTMs encode texts
and images together, fusing their features to deal
with downstream tasks. ISMs take texts as input,
and generate images based on the texts. To evaluate
the spatial commonsense in PLMs and models with
visual signals, we design a benchmark that involves
two subtasks: 1) comparing sizes and heights of
different objects (like a lion and a girl), and 2)
determining the positional relationship between a
person and an object when a certain action happens
(like a boy’s position when riding a bicycle). The
subtasks are designed to examine the model’s capa-
bility to master two kinds of spatial commonsense:
understanding spatial scales, and the relationship
between surrounding objects and ourselves.

As shown in Figure 2, we probe models with text
prompts on this benchmark. We feed text prompts
with masks to PLMs and VL-PTMs, and take the
possible word with the highest probability as their
prediction. We probe ISMs in a similar way: we
first feed the text prompts to ISMs and then evaluate
the generated images. We evaluate the images with
two methods: automatically comparing bounding
boxes of objects and conducting human evaluation.
Results show that models with visual signals learn
more accurate spatial commonsense than PLMs.

Besides the performance comparison, we are
also interested in how is the quality of spatial com-
monsense learned by different models? We inves-
tigate how consistent the spatial knowledge learnt
by a model is, like whether it can manifest a lion
is larger than a girl and a girl is smaller than a
lion simultaneously; and to what extent models can
generalize the knowledge when uncommon scenar-
ios like an enchantress lights the sparkler appear.
We observe that ISMs are capable of generating
consistent spatial knowledge and the performance
is robust in uncommon scenarios.

The following problem is how fo benefit natu-
ral language understanding tasks with the spatial
knowledge from ISMs? We investigate this in the
question answering scenario. Take a question like

A boy is riding a bicycle. Is he on the bicycle? We
generate an image about the question context a boy
who is riding a bicycle with a text prompt using
ISMs, and feed both the question and the generated
image into vision-language models to predict an an-
swer. This framework outperforms strong question
answering models pretrained on texts only. While
this is a simplified scenario of spatial commonsense
reasoning, it manifests a possible way to employ
the spatial knowledge learned by ISMs in natural
language understanding.

Motivated by the observation that images con-
tain more spatial commonsense than texts, we 1)
design a framework, including the data and probing
methods, to compare the spatial reasoning ability of
models with different modalities; 2) propose meth-
ods to evaluate the quality of learned spatial com-
monsense, and find that models with visual signals,
especially ISMs, learn more precise and robust
spatial knowledge than PLMs; and 3) demonstrate
the improvement in spatial commonsense question
answering with the help of visual models.

2 Related Works

2.1 Spatial Commonsense Reasoning

Object Scales. Bagherinezhad et al. (2016) build
a dataset for objects’ size comparison, and Elazar
et al. (2019) provide distributional information
about objects’ lengths. Forbes and Choi (2017) also
involve spatial comparison but are criticized for
ill-defined comparison (Elazar et al., 2019). Aroca-
Ouellette et al. (2021) design a physical reasoning
dataset that requires not only spatial commonsense
but also a complex reasoning process, which is
extremely challenging for existing models. We
choose the formulation of object comparison in
pairs as this kind of knowledge is easy to be probed
from different models.

Spatial Relationship. Collell et al. (2018) intro-
duce a dataset of spatial templates for objects under
different relations, but the spatial relations are rep-
resented as relative positions of bounding boxes,
which are hard to express in language. Yatskar
et al. (2016) extract statements of spatial relation-
ship from object co-occurrences in MS-COCO (Lin
et al., 2014). Mirzaee et al. (2021) design a textual
spatial reasoning benchmark, and Johnson et al.
(2017) and Hudson and Manning (2019) involve
spatial reasoning in images, but they focus on logi-
cal reasoning rather than commonsense. Contrast
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Figure 2: The probing process. We take the size comparison between sofa and mountain as an example.

to them, we build a dataset to describe the spatial
relationship between people and objects in certain
actions with preposition words.

2.2 Knowledge Probing

Early attempts in probing PLMs (Liu et al., 2019a;
Hewitt and Manning, 2019) mainly train a classifier
on the task of interest with the encoded representa-
tions. However, the probing performance is highly
influenced by the probe design (Pimentel et al.,
2020), thus is hard to reflect the ability of PLMs.

Recently, prompt-based methods (Petroni et al.,
2019; Zhou et al., 2020) become more prevalent
to study what knowledge PLMs already encode.
PLMs take a prompt as input, and generate the con-
tinuation (for generative PLMs) or predict masked
words (for discriminative PLMs). This does not
need additional training, and only a small devel-
opment set is used to choose optimal prompts and
answers (Jiang et al., 2020). In this work, we probe
PLMs and VL-PTMs with prompts. Prompt-based
methods are also used in model training (Schick
and Schiitze, 2021; Zhou et al., 2021), while we
focus on the knowledge already learned by models.

Basaj et al. (2021); Oleszkiewicz et al. (2021)
try to apply the probing methods into the computer
vision domain, but they focus on probing repre-
sentations of visual models. In contrast, we probe
ISMs by evaluating the generated images.

3 Benchmark Construction

3.1 Datasets

Size and Height. Inspired by the cognitive dis-
covery (Hersh and Caramazza, 1976) that people
tend to categorize objects scales into fuzzy sets, we
select 25 common objects in daily life, and cate-
gorize them into 5 groups as shown in Table 1a to
construct the dataset for size comparison. Typical

Size

ant, coin, nut, bullet, dice

bird, cup, shell, bottle, wallet

tyre, chair, microwave, dog, suitcase
human, sofa, bookshelf, tiger, bed
house, cinema, mountain, truck, plane

AW -

(a) Objects of different levels of sizes.
Height

ant, insect, water drop, bullet, dice

bird, cup, shoe, bottle, mobile phone

table, chair, trash can, sofa, suitcase

human, horse, bookshelf, camel, door
apartment, theatre, giraffe, truck, street lamp

DA W=

(b) Objects of different levels of heights.

Table 1: The dataset of object scales.

objects in the former group are smaller than those
in the latter group. We form 250 pairs of objects
from different groups, like (ant, bird), where the
first object is smaller than the second in common-
sense. Models are asked to compare the size of
objects in pairs. To avoid an imbalance of answer
distribution, we also consider the reversed pairs
like (bird, ant), so there are 500 instances in total.

The dataset for comparing objects’ heights is
constructed similarly, as shown in Table 1b. We
also form 500 instances with the objects. The com-
parison between objects is validated by 5 human
annotators for both datasets.

Positional Relationship. The positional relation-
ship dataset consists of human actions regarding
objects and the most likely positional relation be-
tween the person and the object. We consider four
types of positional relations: above, below, inside,
beside, as they do not overlap with each other.

We select common objects, and write actions
between people and the objects. The actions do not
contain prepositions, like sit on the chair. Each ob-
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the car.

A man <verb> the car. He is

Sl

A man drives the car. inside

A man washes the car. beside

Figure 3: Example of two positional relations between
man and car.

ject is accompanied by two actions with different
positional relations. Take Figure 3 as an exam-
ple. The man is beside the car when washing the
car, whereas he is inside the car when driving it.
Therefore, the relation cannot be easily inferred
from collocations between the person and the ob-
ject. The dataset contains 224 instances, validated
by 5 annotators.

3.2 Probing Tasks

We probe PLMs and VL-PTMs through masked
word prediction. Given a text prompt with masks
and a set of possible words, a model calculates the
probability of each possible word filling the masked
position. The word with the highest possibility is
regarded as the prediction.

We also probe ISMs through text prompts. The
input is a piece of descriptive text, and the output
is the image generated by an ISM. We assess the
image with two methods as described in 3.3.

PLMs are found to perform poorly in scenarios
involving complex reasoning over spatial knowl-
edge (Aroca-Ouellette et al., 2021), and we want
to investigate whether they even fail in early stages,
like whether they have learned spatial knowledge.
So we probe models with simple tasks. In the sub-
task of size and height, the prompt for PLMs and
VL-PTMs is in the form of O, is [MASK] than
Oy, where (O, Op) is an object pair. The possi-
ble answer set is {larger, smaller} for size and
{taller, shorter} for height. The prompt for [ISMs
is in the form of O, and Oy, and the objects in gen-
erated images are compared for size and height.

In the subtask of positional relationship, the
prompt for PLMs and VL-PTMs contains an event
scenario and a masked token for the positional
relationship, like A woman washes the car. She
is [MASK] the car. The possible answer set is
{above, below, inside, beside}. The prompt for
ISMs describes the scenario only, like A woman
washes the car.

3.3 ISM Evaluation

We assess the images generated by ISMs with two
methods. We first use the spatial information of
bounding boxes (referred to as ISM (Box)). For
each object mentioned in the prompt, we select
the classified bounding box with the highest con-
fidence. To mitigate the effect of viewpoint (an
object closer to the camera may appear larger in
the image), we compute the average depth of the
box as the object’s depth. We use the object de-
tector from Zhang et al. (2021), and the depth es-
timator from Godard et al. (2019). When probing
the relative size, we compare area x depth? of the
two objects’ boxes; and when probing the relative
height, we compare height x depth. When classi-
fying positional relations, we use the mapping rules
between spatial relations and image regions from
Visual Dependency Grammar (VDG) (Elliott and
Keller, 2013). We list the rules in Appendix A.1.

Some generated images are vague while object
detection models are trained to process clear pic-
tures, so a number of objects are not recognized.
To precisely assess the generated images, we con-
duct human evaluation on all images (referred to
as ISM (Human)). Annotators are asked to com-
pare the size/height of the objects in the images
(for the first subtask) and classify the positional
relationship between the person and the object (for
the second subtask). Each image is evaluated by
two annotators, and the average performance is re-
ported. Specifically, we report the accuracy and
macro F1 between models’ predictions and correct
answers. Besides the performance of ISMs on the
subset of recognized instances, we also report the
performance on the full dataset, giving the unrec-
ognized instances a random guess.

4 Probing Spatial Commonsense

4.1 Models

We take BERT (Devlin et al.,, 2019) and
RoBERTa (Liu et al., 2019b) as examples of
text-only PLMs. For VL-PTMs, we choose
VinVL (Zhang et al., 2021), which performs well in
various vision-language tasks. It uses a transformer-
based backbone and is pretrained on various vision-
language datasets including image caption datasets,
visual QA datasets, etc. As it preserves the masked
word prediction objective like PLMs, it can also be
probed with prompts. We choose VQGAN+CLIP!

'Originated by Ryan Murdoch, @advadnoun on Twitter.
Implementation details are in Appendix A.2.
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Model Acc (avg. /o) F1l(avg. /o)
BERT 49.8/2.66 47.7/2.48
RoBERTa 54.1/3.93 52.2/6.92
VinVL 61.8/2.47 54.4/3.06
Model Ace F1
Best PLM® 54.1 (52.2) 52.2 (46.7)
VinVL8 61.8 (61.6) 54.4 (53.8)
ISM (Box)® 54.8 (81.6) 54.8 (81.6)
Best PLM' 54.1 (52.9) 52.2(51.0)
VinVL' 61.8 (61.6) 54.4 (54.3)
ISM (Human)!  72.7 (76.5) 72.6 (76.4)

(a) Comparing sizes of objects. Both objects are recog-
nized by the object detection model in 15% images and

are recognized by humans in 86% images.

Model Acc (avg. /o) Fl(avg. /o)
BERT 50.8/2.29 50.3/0.25
RoBERTa 50.8/6.43 492 /7.45
VinVL 64.5/7.61 61.5/10.5
Model Acc F1
Best PLM? 50.8 (48.6) 50.3 (47.9)
VinVL? 64.5 (69.3) 61.5 (65.2)
ISM (Box)® 52.5(68.1) 52.5 (68.1)
Best PLM' 50.8 (48.5) 50.3 (47.5)
VinVL' 64.5 (63.9) 61.5 (60.6)
ISM (Human)!  78.9 (85.4) 78.8 (85.3)

(b) Comparing heights of objects. Both objects are recog-
nized by the object detection model in 14% images and
are recognized by humans in 82% images.

Table 2: Probing performance on object scales. The numbers are in percentages (%). The number before the slash (/)
is the average performance of different folds, and the number after the slash is the standard deviation. The number
out of parentheses is the performance on the whole dataset, and the number in parentheses indicates performance on
the subset of instances where the generated images can be recognized by object detection models (%), and on the

subset recognized by humans ().

as a representative of ISMs. It uses CLIP (Rad-
ford et al., 2021) to guide VQGAN (Esser et al.,
2021) to generate images that best match the given
text. To make a fair comparison regarding model
size, we select BERT-large, RoBERTa-large, and
VinVL-large. We use VQGAN with codebook size
Z = 16384 and downsampling factor f = 16,
and CLIP with ViT-B/32 (Dosovitskiy et al., 2020)
architecture. All four models are of similar sizes.

As language models are sensitive to the expres-
sions in probing (Liu et al., 2021) (like changing
an answer choice from larger to bigger, the pre-
dictions of BERT may differ a lot), we generate
new prompts and answers based on those originally
designed in the benchmark, and search for the op-
timal ones for PLMs and VL-PTMs. Similar to
Jiang et al. (2020), we use back-translation to gen-
erate 10 candidates for prompts and answers, and
filter out the repeated ones. To select prompts and
answers, we split the dataset into 5 folds, where
different folds do not share the same objects. For
each run, one fold is used as the development set to
choose the best candidate, and the model is probed
on other folds with the chosen prompt. We report
average performance of 5 runs.

4.2 Probing Results

Size and Height. Table 2 reports the probing
performance of comparing the scales of objects.
We also demonstrate probing results on Relative-
Size (Bagherinezhad et al., 2016) in Appendix B.
We observe that PLMs perform similarly. Even the

Abottle and a
bookshelf

Aplane and a

Ahouse and a bird bullet

Size

|
i

Box € Human (@

Box € Human €

An apartment and

|l
Box % Human %

Abird and a trash

Box @ Hu

Atrash canand a

Figure 4: Images generated by ISM in scale compari-
son. v'means objects are successfully recognized by the
object detection model or humans, and X means not.

best PLMs are slightly better than random guesses,
indicating they are ineffective in predicting object
scales. Although RoBERTa is trained on more texts
and assumed to encode more knowledge, its perfor-
mance is similar to BERT’s. It shows that PLMs
do not learn much spatial commonsense from texts
even if the pretrained corpus greatly increases.

With the help of visual features in pretraining,
VinVL greatly outperforms PLMs. ISM (Box),
which simply compares bounding boxes in images
generated by the ISM, also outperforms PLMs.
Since only a small portion of instances are rec-
ognized with bounding boxes, if we only consider
the predictions on these instances, the gap between
ISM (Box) and PLMs is more than 15%. These
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Model Acc (avg. /o) F1l(avg. /o)
BERT 26.1/4.15 19.0/5.20
RoBERTa 31.0/154 20.1/9.29
VinVL 56.1/7.09 41.8/6.69
Model Ace F1
Best PLM® 31.0 (32.5) 20.1 (17.6)
VinVL? 56.1 (56.0) 41.8 (36.0)
ISM (Box)® 33.0 (42.5) 26.5 (26.1)
Best PLM' 31.0 (30.5) 20.1 (20.1)
VinVL' 56.1 (56.4) 41.8 (42.9)
ISM (Human)!  73.4 (75.4) 65.1 (68.0)

Table 3: Probing performance on positional relationship
(%). The symbols are identical to those in Table 2. Both
the person and the object are recognized with bounding
boxes in 39% images and by humans in 93% images.

indicate that models with visual signals learn accu-
rate spatial commonsense knowledge from images.

ISM (Box) outperforms VinVL on those recog-
nizable instances (81.6 vs. 53.8), but the recogni-
tion ratio is admittedly low. We conduct human
evaluation on the generated images for more pre-
cise assessment. More than 80% of images are
recognized by humans and these images accurately
reflect the spatial commonsense compared to PLMs
and VinVL. ? The gap between VinVL and ISM
(Human) may be due to different ways of using
visual signals in pretraining. A training objective
of VinVL, and other VL-PTMs, is aligning text
with image regions. The discriminative features of
objects are amplified, while other features may not
receive as much attention. For instance, the shape
and color are the discriminative features of an ap-
ple, and its size is not that important in recognition.
In image synthesis, models need to learn compre-
hensive knowledge of objects for reconstruction,
and spatial knowledge may be learned implicitly in
this process.

Figure 4 demonstrates images generated by the
ISM given the prompts of object pairs. ISM grasps
the main characteristics of the objects, including
their scales. Some objects (like theatre at the bot-
tom of the middle column) can be identified by
humans but are difficult for the object detection
model because they are obstructed by objects in
the foreground. And some objects are generated
in multiple fragments (like plane and horse in the
right column), therefore cannot be recognized by
either the object detection model or humans.

The agreement between annotators is more than 90%.

Size Height
Model Sym. Trans. Sym. Trans.
Best PLM 375 719 259  73.1
VinVL 435 950 430 932
Best PLM' 36.6 722 261 723
VinVL' 444 953 322 978
ISM (Human)! 825 81.1 832 852

Table 4: The percentage (%) of predictions that meet
consistency. Sym and Trans indicate symmetry and
transitivity. T indicates performance on the subset of
images recognized by humans.

Positional Relationship. The probing perfor-
mance on positional relationship is shown in Ta-
ble 3. VinVL outperforms PLMs more than 20%,
and ISM (Human) outperforms PLMs more than
35%, suggesting that models with visual signals
learn more knowledge of the scenarios, especially
the positions of objects relative to people.

The gap between PLMs and ISM (Box) is
smaller compared to the gap in the subtask of size
and height. One reason is that the rules defined
in VDG cannot perfectly reflect the true positional
relationship in images. For example, the man is
beside the car in the left image of Figure 3, but he
will be regarded as inside the car by the rules, as
the region of car covers the region of man.

Text-based PLMs tend to lean towards certain
positional relations between a person and an ob-
ject, without referring to the action. In 64% cases,
RoBERTa chooses the same option for a (person,
object) pair with different actions, while the propor-
tion is 21% for VinVL, and 28% for ISM (Human).

5 Quality of Spatial Knowledge

5.1 Consistency

Models that master better spatial knowledge should
be able to infer the relative scale of two objects
from intermediate references. For example, if a
model knows a dog is larger than an ant and a
sofa is larger than a dog, it may learn a sofa is
larger than an ant, even if it has not seen sofa and
ant together. We inspect models on how consistent
their probing results are.

The consistency is measured in two aspects: sym-
metry and transitivity. Symmetry implies that if a
model predicts A > B, then it should also predict
B < A, and vice versa: A < B =— B > A.
Here > and < are in terms of size or height. We
enumerate the object pairs and count the percent-
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Figure 5: Predictions from RoBERTa and VinVL in the subtask of objects’ sizes. ¢ is the current object and A is the
set of all other comparable objects. #(c > a)/|A| indicates the ratio of predicting the current object larger than
others. As ¢ > a and a > c should not appear simultaneously, the sum of the two solid bars is expected to be 1.

age of predictions that meet the symmetry criterion.
Transitivity implies that if a model predicts A > B
and B > C, then it should predict A > C. It also
works for <, A< B N B<(C = A<C(C.
We enumerate the triples (A, B, C') where the pre-
dicted relation between (A, B) is identical to the
prediction between (B, C'), and count the percent-
age that the prediction between (A, C') meets the
transitivity criterion. Note that we only evaluate
whether the predictions are consistent with each
other, regardless of the gold answers.

We evaluate the consistency of predictions from
PLMs that perform the best in the probing tasks
(RoBERTa for size and BERT for height), VinVL,
and ISM (Human). The results are in Table 4.

VinVL outperforms the best PLM in both met-
rics, and the characteristics of them are similar:
the transitive consistency is high, while the sym-
metric consistency is low. To further analyze this
phenomenon, we exhibit each object’s size predic-
tions from RoBERTa and VinVL in Figure 5. The
models exhibit different behaviors in recognizing
object scales. As the objects (X-axis of Figure 5)
are roughly listed from smaller to larger groups,
the bottom blue bars are expected to follow a non-
descending order from left to right, and the solid
orange bars should be non-ascending. The pre-
dictions of VinVL are generally in line with this
trend, while ROBERTa’s predictions are disordered.
For example, ant is predicted to be larger than
other objects with high probability, and cinema is
larger than others is unlikely to happen. On the
other hand, if the model predictions are consistent,

Model Acc (avg. /o) Fl(avg. /o)
BERT 27.41/3.17 19.7/77.25
RoBERTa 29.5/16.0 20.1/9.90
VinVL 58.1/1.97 44.4/1.63
Model Acc F1
Best PLM' 29.5 (28.4) 20.1 (19.1)
VinVL| 58.1(52.3) 44.4 (41.0)
ISM (Human)T 66.5 (74.8) 59.4 (69.2)

Table 5: Probing models on the generalized dataset of
positional relationship. The symbols are identical to
those in Table 2. The human recognition ratio is 81%.

the two solid bars should sum to 1. However, the
sum is far above 1 for most objects in VinVL’s
predictions. This bias towards words indicating
the choice of large may come from the pretraining
corpus. For example, sofa occurs twice as many
times with words indicating large as with words
indicating small in COCO (Lin et al., 2014), one of
VinVL’s pretraining datasets.

ISM’s predictions comply with the symmetry cri-
terion, outperforming other models by 40%, while
also having good transitive consistency. The knowl-
edge probed from ISM is more consistent. Figure 6
exhibits the symmetric and transitive consistency
of images generated by ISM. The consistency of
scale knowledge makes the predictions more con-
vincing, and gives models a chance to learn new
comparisons between objects.

5.2 Generalizability

ISM may learn positional relations from training
images directly. For example, a boy riding a bi-
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chair < mountain mountain > chair

(a) Two groups of generated images. Sizes
of objects are consistent with each other.

bird < chair

chair < theatre bird < theatre

(b) Two groups of generated images. Heights of objects meet the
transitivity criterion.

Figure 6: Examples of the symmetric and transitive consistency of images generated by ISM.

cycle is a common scenario and may frequently
exist in ISM’s training set, so models can gener-
ate images more easily when being fed with the
text prompts like a boy rides a bicycle. To further
challenge ISM’s capability, we make a general-
ized version of our original positional relationship
dataset. It is designed to examine whether models
are able to robustly reflect the spatial commonsense
knowledge when facing uncommon scenarios.

A generalized scenario is built upon the original
one by replacing the person and object in the text
prompts. We select the new person and new object
from the subterms of the original ones (those with
IsA relation in ConceptNet (Speer et al., 2017), like
enchantress is a woman). To ensure these newly
constructed scenarios are not likely to appear in
the training data of models, we search them in
BookCorpus (Zhu et al., 2015) and remove the
scenarios that have appeared. The newly generated
scenarios are also validated by humans to ensure
that they are reasonable.

Results of probing PLMs, VinVL, and ISM? on
the generalized dataset are in Table 5. PLMs and
VinVL achieve similar performance on both the
generalized dataset and the original one, indicating
that they behave robustly when facing uncommon
scenarios. The performance gap between other
models and ISM (Human) slightly narrows down,
but ISM (Human) still outperforms VinVL more
than 8%. Figure 7 exhibits images generated by
ISM with the generalized prompts. Although it is

3We do not consider ISM (Box) because many new objects
we used are unfamiliar to object detection models. Only 17%
of the objects are in the object detection classes.

Ahousefather is
feeding the foal.

A schoolgirl climbs
the cherry tree.

An enchantress lights
the sparkler.

» T

Figure 7: Images generated by ISM with the generalized
prompts.

difficult for ISM to generate unfamiliar objects, it
is still capable of capturing the positional relations.

6 Solving Natural Language Questions

We investigate how to acquire spatial knowledge
from ISMs and whether the knowledge is effective
in natural language understanding scenarios. To
our best knowledge, there is no appropriate task
that focuses on spatial commonsense, so we create
a toy task by transforming our probing benchmark
into the form of question answering (QA).

Dataset. We construct a QA dataset of yes/no
questions. Questions of objects’ sizes are in the
form of Is O, larger/smaller than Oy? And ques-
tions of objects’ heights are like Is O, taller/shorter
than Oy?, where O, and Oy, are two objects. Ques-
tions about positional relationship are accompanied
with the action: for instance, A man washes the car.
Is the man inside the car? To avoid bias in answer
distribution, the numbers of yes and no are equal
in gold answers. There are 500 questions for size,
500 for height, and 448 for positional relationship.
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Size Height PosRel
Model Acc F1  Acc Fl Acc Fl
UnifiedQA 513 385 584 528 567 48.1
ISMw/VinVL.  52.4 438 594 543 59.8 58.7

Table 6: Performance of answering commonsense ques-
tions. Accuracy (%) and macro F1 (%) are reported.
PosRel refers to positional relationship.

Models. We use VinVL-base together with our
image synthesis model VQGAN+CLIP to answer
spatial commonsense questions. The VinVL here
is finetuned on the VQA (Goyal et al., 2017) task.
It takes images generated from ISM with textual
prompts from questions, and predicts the answer
based on the question and image together. Note
that the VQA training corpus does not contain com-
monsense reasoning questions.

We choose UnifiedQA (Khashabi et al., 2020) as
a text-based QA model for comparison. Based on
the pretrained TS model (Raffel et al., 2019), Uni-
fiedQA is continually trained on various QA tasks,
including three yes/no datasets. We use UnifiedQA-
large, which is comparable with our synthesis and
reasoning model (ISM w/ VinVL) in size.

Results. As shown in Table 6, ISM w/ VinVL out-
performs UnifiedQA on all subtasks, showing that
spatial knowledge from ISMs can be directly used
by vision-language models without additional train-
ing. Although some images cannot be precisely
recognized by object detection models, vision-
language models may find regions that are related
to the objects mentioned in questions, and make de-
cisions based on the features of these regions. The
results on the simple natural language task show
that it is beneficial to tackle natural language tasks
with vision-language methods, and ISMs can be a
bridge between the two modalities. With the devel-
opment of ISMs and object detection techniques,
we believe the generated images will help more.

7 Conclusion

We propose a new spatial commonsense probing
framework to investigate object scales and posi-
tional relationship knowledge in text-based pre-
trained models and models with visual signals. Ex-
perimental results show that models with visual sig-
nals, especially ISMs, learn more accurate and con-
sistent spatial commonsense than text-only mod-
els. Integrating ISMs with visual reasoning models
outperforms PLMs in answering spatial questions.

This manifests the potential of using spatial knowl-
edge from ISMs in natural language understanding
tasks.
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A Implementation Details

Relation Definition

X inside Y  The entirety of region X overlaps with Y.

X beside Y  The angle between the centroid of X and
the centroid of Y lies between 315° and
45° or 135° and 225°.

X above Y  The angle between X and Y lies between
225° and 315°.

X belowY  The angle between X and Y lies between

45° and 135°.

Table 7: Spatial relations between image regions in
Visual Dependency Grammar (VDG).

A.1 Spatial Relations in Visual Dependency
Grammar

We use the rules defined in Visual Dependency
Grammar (Elliott and Keller, 2013) to determine
the positional relationship between bounding boxes.
The rules used are listed in Table 7. If two bound-
ing boxes meet the inside standard, they will be
predicted as inside. Otherwise, the angle between
the centers of the boxes is calculated to determine
whether the prediction is above, below, or beside.

A.2 Image Synthesis

We generate images of 512 x 512 pixels with
text prompts. We use 1) VQGAN (Esser et al.,
2021), which takes in a vector, and outputs a high-
resolution image; and 2) CLIP (Radford et al.,
2021), which can encode both text and images, and
map them into a multi-modal embedding space. Im-
age synthesis is the process of finding the optimal
vector v inputted to VQGAN. In each iteration, the
vector is fed into VQGAN to generate an image
img = VQGAN(v). CLIP encodes the image into
¢ = CLIP(img), and encodes the text prompt into
t = CLIP(text), respectively.

The optimization goal is to bring ¢ and ¢, the
representation of the image and text encoded by
CLIP closer. The vector v is randomly initialized
and optimized for 600 iterations. We use Adam
optimizer with a learning rate of 0.5. This process
looks like a normal model “training”, but here both
VQGAN and CLIP are pretrained and their parame-
ters are frozen; only the vector v is optimized from
randomness for every prompt.

A.3 Prompt Candidates Generation

When probing PLMs, we follow Jiang et al. (2020)
to generate prompt and answer candidates with

Model Acc (avg. /o) F1(avg. /o)
BERT 49.0/4.11 43.7/8.25
RoBERTa 48.9/1.71 43.4/5.42
VinVL 60.6/1.47 51.2/2.22
Model Acc F1
Best PLM 49.0 (47.5) 43.7 (40.5)
VinVL 60.6 (60.8) 51.2 (49.8)
ISM (Box) 58.5 (71.5) 58.5 (71.4)
Best PLM 49.0 (48.5) 43.7 (43.5)
VinVL 60.6 (65.5) 51.2 (55.7)
ISM (Human) 72.5 (76.5) 71.8 (75.7)

Table 8: Probing performance on RelatizeSize. Accu-
racy and macro F1 are reported. The numbers are in
percentages (%). In the last six lines, the first number is
the performance on the whole dataset, and the number
in parentheses indicates performance on the subset of
instances where the generated images can be recognized
by object detection models and humans, respectively.
The standard deviation on different folds is represented
with 0. Both objects are recognized with bounding
boxes in 40% images and are recognized by humans in
85% images.

back-translation. Manually designed prompts and
answers are translated from English to German and
then backward. It is used to construct candidates
with similar meanings. We leverage the translation
model designed in Ng et al. (2019).

A4 Computing Infrastructure

Experiments are conducted on NVIDIA GeForce
RTX 3090 GPU. It takes 8 hours to generate 500
images on one GPU, and all other experiments can
be executed in a few minutes.

B Probing Results on RelativeSize

RelativeSize (Bagherinezhad et al., 2016) is an-
other dataset for comparing objects’ sizes. Table 8
demonstrates the probing results on it. The results
are consistent with those on our datasets: ISM
probing, both evaluated with bounding boxes and
evaluated by humans, outperforms PLM probing.

The methods used in Bagherinezhad et al. (2016)
are all retrieval-based. They execute search en-
gine queries and download images from Flickr to
make the comparisons. So we do not compare with
their results directly. However, it is worth noticing
that our ISM probing is comparable to the image
retrieval-based baseline (its accuracy is 72.4%). It
exhibits that ISM learns sufficient knowledge from
images.
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