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Abstract

Data augmentation is an effective solution to
data scarcity in low-resource scenarios. How-
ever, when applied to token-level tasks such
as NER, data augmentation methods often suf-
fer from token-label misalignment, which leads
to unsatsifactory performance. In this work,
we propose Masked Entity Language Modeling
(MELM) as a novel data augmentation frame-
work for low-resource NER. To alleviate the
token-label misalignment issue, we explicitly
inject NER labels into sentence context, and
thus the fine-tuned MELM is able to predict
masked entity tokens by explicitly condition-
ing on their labels. Thereby, MELM gener-
ates high-quality augmented data with novel
entities, which provides rich entity regular-
ity knowledge and boosts NER performance.
When training data from multiple languages are
available, we also integrate MELM with code-
mixing for further improvement. We demon-
strate the effectiveness of MELM on mono-
lingual, cross-lingual and multilingual NER
across various low-resource levels. Experimen-
tal results show that our MELM presents sub-
stantial improvement over the baseline meth-
ods.1

1 Introduction

Named entity recognition (NER) is a fundamen-
tal NLP task which aims to locate named entity
mentions and classify them into predefined cat-
egories. As a subtask of information extraction,
it serves as a key building block for information
retrieval (Banerjee et al., 2019), question answer-
ing (Fabbri et al., 2020) and text summarization sys-
tems (Nallapati et al., 2016) etc. However, except
a few high-resource languages / domains, the ma-
jority of languages / domains have limited amount
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of labeled data.
Since manually annotating sufficient labeled data

for each language / domain is expensive, low-
resource NER (Cotterell and Duh, 2017; Feng et al.,
2018; Zhou et al., 2019; Rijhwani et al., 2020) has
received increasing attention in the research com-
munity over the past years. As an effective solu-
tion to data scarcity in low-resource scenarios, data
augmentation enlarges the training set by apply-
ing label-preserving transformations. Typical data
augmentation methods for NLP include (1) word-
level modification (Wei and Zou, 2019; Kobayashi,
2018; Wu et al., 2019; Kumar et al., 2020) and
(2) back-translation (Sennrich et al., 2016; Fadaee
et al., 2017; Dong et al., 2017; Yu et al., 2018).

Despite the effectiveness on sentence-level tasks,
they suffer from the token-label misalignment issue
when applied to token-level tasks like NER. More
specifically, word-level modification might replace
an entity with alternatives that mismatch the origi-
nal label. Back-translation creates augmented texts
that largely preserve the original content. How-
ever, it hinges on external word alignment tools for
propagating the labels from the original input to
the augmented text, which has proved to be error-
prone.

To apply data augmentation on token-level
tasks, Dai and Adel (2020) proposed to randomly
substitute entity mentions with existing entities of
the same class. They avoided the token-label mis-
alignment issue but the entity diversity does not in-
crease. Besides, the substituted entity might not fit
into the original context. Li et al. (2020a) avoided
the token-label misalignment issue by only diver-
sifying the context, where they replaced context
(having ‘O’ label) tokens using MASS (Song et al.,
2019) and left the entities (i.e. aspect terms in their
task) completely unchanged. However, according
to the NER evaluations in Lin et al. (2020), aug-
mentation on context gave marginal improvement
on pretrained-LM-based NER models.
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Figure 1: Effectiveness comparison between diversify-
ing entities and diversifying context. Given N gold sam-
ples, Add Entity substitutes their entities with new enti-
ties from extra gold samples. In contrary, Add Context
reuses existing entities and inserts them into context of
extra gold samples. Both methods yield N augmented
samples.

Our preliminary results on low-resource NER
(see Figure 1) also demonstrate that diversifying en-
tities in the training data is more effective than intro-
ducing more context patterns. Inspired by the afore-
mentioned observations, we propose Masked Entity
Language Modeling (MELM) as a data augmenta-
tion framework for low-resource NER, which gen-
erates augmented data with diverse entities while
alleviating the challenge of token-label misalign-
ment. MELM is built upon pretrained Masked
Language Models (MLM), and it is further fine-
tuned on corrupted training sentences with only
entity tokens being randomly masked to facilitate
entity-oriented token replacement. Simply mask-
ing and replacing entity tokens using the finetuned
MLM is still insufficient because the predicted en-
tity might not align with the original label. Taking
the sentence shown in Figure 2b as an example,
after masking the named entity “European Union”
(Organization), the finetuned MLM could predict
it as “Washington has”. Such prediction fits the
context but it is not aligned with the original labels.
To alleviate the misalignment, our MELM addi-
tionally introduces a labeled sequence linearization
strategy, which respectively inserts one label token
before and after each entity token and regards the
inserted label tokens as the normal context tokens
during masked language modeling. Therefore, the
prediction of the masked token is conditioned on

not only the context but the entity’s label as well.
After injecting label information and finetun-

ing on the label-enhanced NER data, our MELM
can exploit rich knowledge from pre-training to
increase entity diversity while greatly reducing
token-label misalignment. Code-mixing (Singh
et al., 2019; Qin et al., 2020; Zhang et al., 2021)
achieved promising results by creating additional
code-mixed samples using the available multilin-
gual training sets, which is particularly beneficial
when the training data of each language is scarce.
Fortunately, in the scenarios of multilingual low-
resource NER, our MELM can also be applied on
the code-mixed examples for further performance
gains. We first apply code-mixing by replacing en-
tities in a source language sentence with the same
type entities of a foreign language. However, even
though token-label alignment is guaranteed by re-
placing with entities of the same type, the candidate
entity might not best fit into the original context
(for example, replacing a government department
with a football club). To solve this problem, we
propose an entity similarity search algorithm based
on bilingual embedding to retrieve the most seman-
tically similar entity from the training entities in
other languages. Finally, after adding language
markers to the code-mixed data, we use them to
fine-tune MELM for generating more code-mixed
augmented data.

To summarize, the main contributions of this
paper are as follows: (1) we present a novel frame-
work which jointly exploits sentence context and
entity labels for entity-based data augmentation.
It consistently achieves substantial improvement
when evaluated on monolingual, cross-lingual, and
multilingual low-resource NER; (2) the proposed
labeled sequence linearization strategy effectively
alleviates the problem of token-label misalignment
during augmentation; (3) an entity similarity search
algorithm is developed to better bridge entity-based
data augmentation and code-mixing in multilingual
scenarios.

2 Method

Fig. 2c presents the work flow of our proposed
data augmentation framework. We first perform
labeled sequence linearization to insert the entity
label tokens into the NER training sentences (Sec-
tion 2.1). Then, we fine-tune the proposed MELM
on linearized sequences (Section 2.2) and create
augmented data by generating diverse entities via
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(a) (b) (c)

Figure 2: Comparison of different data augmentation methods, color printing is preferred. (a) augmentation with
pretrained MLM (b) augmentation with MELM without linearization (c) augmentation with MELM

masked entity prediction (Section 2.3).
The augmented data undergoes post-processing

(Section 2.4) and is combined with the original
training set for training the NER model. Algo-
rithm 1 gives the pseudo-code for the overall frame-
work. Under multilingual scenarios, we propose
an entity similarity search algorithm as a refined
code-mixing strategy (Section 2.5) and apply our
MELM on the union set of gold training data and
code-mixed data for further performance improve-
ment.

2.1 Labeled Sequence Linearization
To minimize the amount of generated tokens in-
compatible with the original labels, we design a
labeled sequence linearization strategy to explicitly
take label information into consideration during
masked language modeling. Specifically, as shown
in Figure 2c, we add the label token before and after
each entity token and treat them as normal context
tokens. The yielded linearized sequence is utilized
to further finetune our MELM so that its prediction
is additionally conditioned on the inserted label
tokens. Note that, we initialize the embeddings
of label tokens with those of tokens semantically
related to the label names (e.g., “organization” for
⟨ B-ORG ⟩). By doing so, the linearized sequence
is semantically closer to a natural sentence and
the difficulty of finetuning on linearized sequence
could be reduced (Kumar et al., 2020).

2.2 Fine-tuning MELM
Unlike MLM, only entity tokens are masked during
MELM fine-tuning. At the beginning of each fine-
tuning epoch, we randomly mask entity tokens in

the linearized sentence X with masking ratio η.
Then, given the corrupted sentence X̃ as input,

our MELM is trained to maximize the probabilities
of the masked entity tokens and reconstruct the
linearized sequence X:

max
θ

log pθ(X|X̃) ≈
n∑

i=1

mi log pθ(xi|X̃) (1)

where θ represents the parameters of MELM, n
is the number of tokens in X̃ , xi is the original
token in X , mi = 1 if xi is masked and other-
wise mi = 0. Through the above fine-tuning pro-
cess, the proposed MELM learns to make use of
both contexts and label information to predict the
masked entity tokens. As we will demonstrate in
Section 4.1, the predictions generated by the fine-
tuned MELM are significantly more coherent with
the original entity label, compared to those from
other methods.

2.3 Data Generation
To generate augmented training data for NER, we
apply the fine-tuned MELM to replace entities in
the original training samples. Specifically, given
a corrupted sequence, MELM outputs the proba-
bility of each token in the vocabulary being the
masked entity token. However, as the MELM is
fine-tuned on the same training set, directly pick-
ing the most probable token as the replacement is
likely to return the masked entity token in the orig-
inal training sample, and might fail to produce a
novel augmented sentence. Therefore, we propose
to randomly sample the replacement from the top k
most probable components of the probability distri-
bution. Formally, given the probability distribution
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Algorithm 1 Masked Entity Language Modeling (MELM)
Given Dtrain,M ▷ Given gold traning set Dtrain and pretrained MLMM
Dmasked ← ∅,Daug ← ∅
for {X,Y } ∈ Dtrain do

X̃ ← LINEARIZE(X,Y ) ▷ Labeled sequence linearization
X̃ ← FINETUNEMASK(X̃, η) ▷ Randomly mask entities for fine-tuning
Dmasked ← Dmasked ∪ {X̃}

end for
Mfinetune ← FINETUNE(M,Dmasked) ▷ Fine-tune MELM on masked linearized sequences
for {X,Y } ∈ Dmasked do

repeat R times:
X̃ ← LINEARIZE(X,Y ) ▷ Labeled sequence linearization
X̃ ← GENMASK(X̃, µ) ▷ Randomly mask entities for generation
Xaug ← RANDCHOICE(Mfinetune(X̃),Top k = 5) ▷ Generate augmented data with fine-tuned MELM
Daug ← Daug ∪ {Xaug}

end for
Daug ← POSTPROCESS(Daug) ▷ Post-processing
return Dtrain ∪ Daug

P (xi|X̃) for a masked token, we first select a set
V k
i ⊆ V of the k most likely candidates. Then,

we fetch the replacement x̂i via random sampling
from V k

i . After obtaining the generated sequence,
we remove the label tokens and use the remain-
ing parts as the augmented training data. For each
sentence in the original training set, we repeat the
above generation procedure R rounds to produce
R augmented examples.

To increase the diversity of augmented data, we
adopt a different masking strategy from train time.
For each entity mention comprising of n tokens,
we randomly sample a dynamic masking rate ϵ
from Gaussian distribution N (µ, σ2), where the
Gaussian variance σ2 is set as 1/n2. Thus, the
same sentence will have different masking results
in each of the R augmentation rounds, resulting in
more varied augmented data.

2.4 Post-Processing

To remove noisy and less informative samples from
the augmented data, the generated augmented data
undergoes post-processing. Specifically, we train a
NER model with the available gold training sam-
ples and use it to automatically assign NER tags
to each augmented sentence. Only augmented
sentences whose predicted labels are consistent
with the their original labels are kept. The post-
processed augmented training set Daug is combined
with the gold training set Dtrain to train the final
NER tagger.

2.5 Extending to Multilingual Scenarios

When extending low-resource NER to multilingual
scenarios, it is straightforward to separately apply

the proposed MELM on language-specific data for
performance improvement. Nevertheless, it offers
higher potential to enable MELM on top of code-
mixing techniques, which proved to be effective
in enhancing multilingual learning (Singh et al.,
2019; Qin et al., 2020; Zhang et al., 2021). In this
paper, with the aim of bridging MELM augmenta-
tion and code-mixing, we propose an entity simi-
larity search algorithm to perform MELM-friendly
code-mixing.

Specifically, given the gold training sets
{Dℓ

train | ℓ ∈ L} over a set L of languages, we first
collect label-wise entity sets Eℓ,y, which consists
of the entities appearing in Dℓ

train and belonging to
class y. To apply code-mixing on a source language
sentence Xℓsrc , we aim to substitute a mentioned
entity e of label y with a target language entity
esub ∈ Eℓtgt,y, where the target language is sam-
pled as ℓtgt ∼ U(L \ {ℓsrc}). Instead of randomly
selecting esub from Eℓtgt,y, we choose to retrieve
the entity with the highest semantic similarity to e
as esub. Practically, we introduce MUSE bilingual
embeddings (Conneau et al., 2017) and calculate
the entity’s embedding Emb(e) by averaging the
embeddings of the entity tokens:

Emb(e) =
1

|e|

|e|∑
i=1

MUSEℓsrc,ℓtgt(ei) (2)

where MUSEℓsrc,ℓtgt denotes the ℓsrc − ℓtgt aligned
embeddings and ei is the i-th token of e. Next, we
obtain the target-language entity esub semantically
closest to e as follows:

esub = argmax
ẽ∈Eℓtgt,y

f(Emb(e),Emb(ẽ)) (3)
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f(·, ·) here is the cosine similarity function. The
output entity esub is then used to replace e to create
a code-mixed sentence more suitable for MELM
augmentation. To generate more augmented data
with diverse entities, we further apply MELM on
the gold and code-mixed data. Since the training
data now contains entities from multiple languages,
we also prepend a language marker to the entity
token to help MELM differentiate different lan-
guages, as shown in Figure 3.

Figure 3: Applying MELM on gold and code-mixed
data. Language markers (e.g., <Español>) are inserted
during linearization.

3 Experiments

To comprehensively evaluate the effectiveness of
the proposed MELM on low-resource NER, we
consider three evaluation scenarios: monolingual,
zero-shot cross-lingual and multilingual low-
resource NER.

3.1 Dataset

We conduct experiments on CoNLL NER
dataset (Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003) of four languages where
L = {English (En), German (De), Spanish (Es),
Dutch (Nl)}. For each language ℓ ∈ L, we first
sample N sentences from the full training set as
Dℓ,N

train, where N ∈ {100, 200, 400, 800} to simu-
late different low-resource levels. For a realistic
data split ratio, we also downscale the full develop-
ment set to N samples as Dℓ,N

dev . The full test set for
each language is adopted as Dℓ

test for evaluation.
For monolingual experiments on language ℓ

with low-resource level N ∈ {100, 200, 400, 800},
we use Dℓ,N

train as the gold training data, Dℓ,N
dev as the

development set and Dℓ
test as the test set. For zero-

shot cross-lingual experiments with low-resource
level N ∈ {100, 200, 400, 800}, we use DEn,N

train as
the source language gold training data, DEn,N

dev as
the development set and DDe

test, DEs
test and DNl

test as tar-
get language test sets. Under multilingual settings
where N training data from each language is avail-
able (N ∈ {100, 200, 400}), we use

⋃
ℓ∈LD

ℓ,N
train as

the gold training data,
⋃

ℓ∈LD
ℓ,N
dev as the develop-

ment set and evaluate on DEn
test, D

De,
test , DEs

test and DNl
test,

respectively.

3.2 Experimental Setting

MELM Fine-tuning We use XLM-RoBERTa-
base (Conneau et al., 2020) with a language-
modeling head to initialize MELM parameters.
MELM is fine-tuned for 20 epochs using Adam
optimizer (Kingma and Ba, 2015) with batch size
set to 30 and learning rate set to 1e− 5.

NER Model We use XLM-RoBERTa-
Large (Conneau et al., 2020) with CRF
head (Lample et al., 2016) as the NER model
for our experiments2. We adopt Adamw opti-
mizer (Loshchilov and Hutter, 2019) with learning
rate set to 2e − 5 and set batch size to 16. The
NER model is trained for 10 epochs and the best
model is selected according to dev set performance.
The trained model is evaluated on test sets and we
report the averaged Micro-F1 scores over 3 runs.

Hyperparameter Tuning The masking rate η
in MELM fine-tuning, the Gaussian mean µ for
MELM generation and the number of MELM aug-
mentation rounds R are set as 0.7, 0.5 and 3, re-
spectively. All of these hyperparameters are tuned
on the dev set with grid search. Details of the hy-
perparameter tuning can be found in Appendix A.1

3.3 Baseline Methods

To elaborate the effectiveness of the proposed
MELM, we compare it with the following methods:

Gold-Only The NER model is trained on only the
original gold training set.
Label-wise Substitution Dai and Adel (2020) ran-
domly substituted named entities with existing en-
tities of the same entity type from the original train-
ing set.
MLM-Entity We randomly mask entity tokens and
directly utilize a pretrained MLM for data augmen-
tation without fine-tuning and labeled sequence
linearization as used in MELM. The prediction of
a masked entity token does not consider label in-
formation but solely relies on the context words.
DAGA Ding et al. (2020) firstly linearized NER
labels into the input sentences and then use them
to train an autoregressive language model. The
language model was used to synthesize augmented

2https://github.com/allanj/pytorch_
neural_crf
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data from scratch, where both context and entities
are generated simultaneously.
MulDA Liu et al. (2021) fine-tuned mBART(Liu
et al., 2020) on linearized multilingual NER data
to generate augmented data with new context and
entities.

3.4 Experimental Results

3.4.1 Monolingual and Cross-lingual NER

As illustrated on the left side of Table 1, the pro-
posed MELM consistently achieves the best av-
eraged results across different low-resource lev-
els, demonstrating its effectiveness on monolingual
NER. Compared to the best-performing baselines,
our MELM obtains 6.3, 1.6, 1.3, 0.38 absolute
gains on 100, 200, 400 and 800 levels, respectively.
Cross-lingual NER results are shown on the right
side of Table 2. Again, on each of the designed low-
resource levels, our MELM is superior to baseline
methods in terms of the averaged F1 scores. We
also notice that, given 100 Nl training samples, the
Gold-Only method without data augmentation al-
most fails to converge while the monolingual F1 of
our MELM reaches 66.6, suggesting that data aug-
mentation is crucial for NER when the annotated
training data is extremely scarce.

To assess the efficacy of the proposed labeled
sequence linearization (Section 2.1), we directly
fine-tune MELM on masked sentences without lin-
earization (as shown in Figure 2b), denoted as
MELM w/o linearize in Table 1. We observe a con-
siderable performance drop compared with MELM,
which proves the label information injected via lin-
earization indeed helps MELM differentiate differ-
ent entity types, and generate entities compatible
with the original label.

Taking a closer look at the baseline methods, we
notice that the monolingual performance of Label-
wise is still unsatisfactory in most cases. One prob-
able reason is that only existing entities within the
training data are used for replacement and the entity
diversity after augmentation is not increased. More-
over, randomly sampling an entity of the same type
for replacement is likely to cause incompatibility
between the context and the entity, yielding a noisy
augmented sample for NER training. Although
MLM-Entity tries to mitigate these two issues by
employing a pretrained MLM to generate novel
tokens that fit into the context, the generated tokens
might not be consistent with the original labels.
Our MELM also promotes the entity diversity of

augmented data by exploiting pretrained model for
data augmentation.

In the meantime, equipped with the labeled se-
quence linearization strategy, MELM augmentation
is explicitly guided by the label information and the
token-label misalignment is largely alleviated, lead-
ing to superior results in comparison to Lable-wise
and MLM-Entity.

We also compare with DAGA (Ding et al., 2020),
which generates augmented data from scratch us-
ing an autoregressive language model trained on
gold NER data. Although DAGA is competitive on
low-resource levels of 400 and 800, it still under-
performs the proposed MELM by a large margin
when the training size reduces to 100 or 200. We at-
tribute this to the disfluent and ungrammatical sen-
tences generated from the undertrained language
model. Instead of generating augmented data from
scratch, MELM focuses on modifying entity tokens
and leave the context unchanged, which guarantees
the quality of augmented sentences even under ex-
tremely low-resource settings.

3.4.2 Multilingual NER
For multilingual low-resource NER, we firstly di-
rectly apply MELM on the concatenation of train-
ing sets from multiple languages. As shown in
Table 2, MELM-gold achieves substantial improve-
ment over the Gold-only baseline, which is consis-
tent with monolingual and cross-lingual results. We
compare with MulDA (Liu et al., 2021) as a base-
line data augmentation method. MulDA generates
augmented data autoregressively with an mBART
model, which is fine-tuned on NER data with in-
serted label tokens. At the low-resource levels in
our experimental settings, MulDA is less effective
and even leads to deteriorated performance. The
unsatisfactory performance mainly results from the
discrepancy between pretraining and fine-tuning
due to the inserted label tokens. Given very few
training samples, it is difficult to adapt mBART to
capture the distribution of the inserted label tokens,
and thus MulDA struggles to generate fluent and
grammatical sentences from scratch. In compari-
son, our proposed method preserves the original
context and introduce less syntactic noise in the
augmented data. To further leverage the benefits
of code-mixing in multilingual NER, we experi-
ment with two code-mixing methods: (1) Code-
Mix-random, which randomly substitutes entities
with existing entities of the same type from other
languages, and (2) Code-Mix-ess, which adopts
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#Gold Method Monolingual Cross-lingual
En De Es Nl Avg En→De En→Es En→Nl Avg

100

Gold-Only 50.57 39.47 42.93 21.63 38.65 39.54 37.40 39.27 38.74
Label-wise 61.34 55.00 59.54 27.85 50.93 45.85 43.74 50.51 46.70
MLM-Entity 61.22 50.96 61.29 46.59 55.02 47.96 45.42 49.34 47.57
DAGA 68.06 59.15 69.33 45.64 60.54 52.95 46.72 54.63 51.43
MELM w/o linearize 70.01 61.92 65.07 59.76 64.19 48.70 49.10 53.37 50.39
MELM (Ours) 75.21 64.12 75.85 66.57 70.44 56.56 53.83 60.62 57.00

200

Gold-Only 74.64 62.85 72.64 55.96 66.52 54.95 51.26 60.71 55.64
Label-wise 76.82 67.31 78.34 66.52 72.25 55.01 53.14 63.30 57.15
MLM-Entity 79.16 70.01 78.45 66.69 73.58 60.44 57.72 68.37 62.18
DAGA 79.11 69.82 78.95 68.53 74.10 59.58 57.68 65.74 61.00
MELM w/o linearize 81.77 71.41 80.43 72.92 76.63 62.57 63.49 70.18 65.41
MELM (Ours) 82.91 72.71 80.46 77.02 78.27 65.01 63.71 70.37 66.36

400

Gold-Only 81.85 70.77 80.02 74.60 76.81 65.76 61.57 71.04 66.12
Label-wise 84.62 74.33 81.01 77.87 79.46 66.18 67.43 71.93 68.51
MLM-Entity 83.82 74.66 81.08 77.90 79.37 67.41 70.28 74.31 70.67
DAGA 84.36 72.95 82.83 78.99 79.78 66.77 67.13 72.40 68.77
MELM w/o linearize 85.16 75.42 82.34 79.34 80.56 68.02 66.01 72.98 69.00
MELM (Ours) 85.73 77.50 83.31 80.92 81.87 68.08 70.37 75.78 71.74

800

Gold-Only 86.35 78.35 83.23 83.86 82.95 65.31 68.28 72.07 68.55
Label-wise 86.72 78.21 84.42 84.26 83.40 65.60 72.22 74.77 70.86
MLM-Entity 86.50 78.30 84.09 83.93 83.20 65.42 69.10 74.85 69.79
DAGA 86.61 77.66 84.64 84.90 83.45 68.76 70.97 75.02 71.58
MELM w/o linearize 87.35 78.58 84.59 84.94 83.99 67.37 71.53 75.20 71.37
MELM (Ours) 87.59 79.32 85.40 85.17 84.37 67.95 75.72 75.25 72.97

Table 1: Left side of table shows the results of monolingual low-resource NER. Right side of table shows the results
of cross-lingual low-resource NER with English as source language. Avgs on left side and right side are the averaged
result over all languages and all transfer pairs, respectively.

#Gold Method En De Es Nl Avg

100 ×4

Gold-Only 75.62 69.35 75.85 74.33 73.79
MulDA 73.67 70.47 75.53 72.40 73.02
MELM-gold (Ours) 78.71 74.79 81.25 78.85 78.40
Code-Mix-random 77.38 70.58 78.61 76.45 75.75
Code-Mix-ess (Ours) 79.55 71.56 79.58 76.49 76.80
MELM (Ours) 80.96 75.61 81.47 80.14 79.54

200 ×4

Gold-Only 83.06 76.39 82.71 79.19 80.34
MulDA 82.32 74.57 82.73 79.06 79.67
MELM-gold (Ours) 82.90 78.05 85.93 81.00 81.97
Code-Mix-random 82.86 75.70 83.13 79.08 80.19
Code-Mix-ess (Ours) 83.34 76.64 82.02 82.27 81.07
MELM (Ours) 83.56 78.24 84.98 82.79 82.39

400 ×4

Gold-Only 83.92 77.40 83.22 84.04 82.14
MulDA 84.37 78.41 84.54 83.09 82.60
MELM-gold (Ours) 86.04 79.09 85.76 84.83 83.93
Code-Mix-random 85.04 77.91 84.44 83.56 82.74
Code-Mix-ess (Ours) 85.74 80.03 85.18 85.36 84.08
MELM (Ours) 86.14 80.33 86.60 85.99 84.76

Table 2: Results of multilingual low-resource NER.
Gold training set contains the same number of train-
ing samples from each language. Avg is the averaged
result over all languages.

the proposed entity similarity search algorithm in
Section 2.5 as the code-mixing strategy.

Experimental results in Table 2 show that both
methods are able to achieve improved perfor-
mance over Gold-Only. This observation suggests
that code-mixing techniques, either random code-
mixing or code-mixing via our entity similarity
search, are indeed helpful for multilingual NER.
Comparing these two methods, the performance

gains brought by Code-Mix-ess are more signifi-
cant and consistent across different low-resource
levels, which demonstrates the effectiveness of our
proposed entity similarity search algorithm. Apply-
ing MELM on both gold data and code-mixed data
from Code-Mix-ess, the multilingual NER results
are further improved. In summary, our proposed
MELM is well-suited for multilingual NER, which
can be integrated with our code-mixing technique
to achieve further improvement.

4 Further Analysis

4.1 Case Study

Apart from the quantitative results, we further an-
alyze the augmented data to demonstrate the ef-
fectiveness of our MELM in maintaining the con-
sistency between the original label and the aug-
mented token. Table 3 presents examples of the
top-5 predictions from pretrained MLM, MELM
w/o linearize and MELM. As we can see, the pre-
trained MLM, which does not introduce any design
or contraint on data augmentation, tends to gener-
ate high-frequency words such as “the”, “he” and
“she”, and the majority of generated words do not
belong to the original entity class. Being finetuned
on NER data with entity-oriented masking, MELM
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Text EU rejects German call to boycott British Lamb
Label B-ORG O B-MISC O O O B-MISC O
MLM Britain, EU,UK, Trump, US US, a, UN, the, UK the, a, black, white, young

MELM
w/o linearize

EU, Australia, US, UN, Israel German, Indian, the, Washington, Union Chinese, British, raw, California, Australian

MELM EU, Greenpeace, Amnesty, UN, Reuters German, British, Dutch, French, EU African, British, Guinean, white, French
Text Clinton aide resigns , NBC says

Label B-PER O O O B-ORG O
MLM my, his, My, When, her he, she, it, and, who

MELM
w/o linearize

French, German, British, Swiss, Russian Reuters, Pompeo, Blair Hill, AFP

MELM French, White, Walker, Ferguson, David NBC, AFP, Greenpeace, BBC, Anonymous

Table 3: Examples of the top-5 predictions by MLM, MELM w/o linearize and MELM. Predictions that do not
belong to the original class are highlighed in red.

w/o linearize is able to generate more entity-related
tokens.

However, without the explicit guidance from en-
tity labels, it is still too difficult for MELM w/o
linearize to make valid predictions solely based on
the ambiguous context (e.g., both “Pompeo” (PER)
and “Reuters” (ORG) are compatible with the con-
text of Example #2), which leads to token-label
misalignment. Compared to the above methods,
our MELM take both label information and con-
text into consideration, and thus generates more
entities that fit into the context and align with the
original label as well. Moreover, it is notewor-
thy that MELM can leverage the knowledge from
pretrained model to generate real-world entities
that do not exist in the original NER dataset (e.g.,
“Greenpeace” and “Amnesty”), which essentially
increases the entity diversity in training data.

4.2 Number of Unique Entities

As demonstrated in Lin et al. (2020) and our pre-
liminary experiments in Figure 1, introducing un-
seen entities can effectively provide more entity
regularity knowledge, and helps to improve NER
performance. Therefore, we examine the amount
of unique entities introduced by different methods.
As there might be token-label misalignment in the
augmented data, we firstly train an ‘oracle’ NER
model on the full CoNLL dataset and then use it
to tag training data of MELM and different base-
line methods. For each method, we count the total
number of unique entities whose labels match the
labels assigned by the ‘oracle’ model. As shown
in Figure 4, while many augmented entities from
MLM-Entity, DAGA and MELM w/o linearize are
filtered out due to token-label misalignment, we
note that MELM introduces a significantly larger
number of unseen entities in the augmented data.
Therefore MELM is able to provide richer entity

Figure 4: Comparison between the number of unique
valid entities introduced by different methods

regularity knowledge, which explains its superior-
ity over the baseline methods.

5 Related Work

On sentence level tasks, one line of data augmen-
tation methods are built upon word-level mod-
ifications, which can be based on synonym re-
placement (Wei and Zou, 2019), LSTM language
model (Kobayashi, 2018), MLM (Wu et al., 2019;
Kumar et al., 2020), auto-regressive pretrained
LM (Kumar et al., 2020), or constituent-based
tagging schemes (Zhong et al., 2020). However,
these methods suffer from token-label misalign-
ment when applied to token-level tasks such as
NER, which requires sophisticated post-processing
to remove noisy samples in augmented data (Bari
et al., 2021; Zhong and Cambria, 2021).

Existing works avoid token-label misalignment
by replacing entities with existing entities of the
same class (Dai and Adel, 2020), or only modifying
context works and leaving entities / aspect terms
unchanged (Li et al., 2020a). Others attempt to
produce augmented data by training / fine-tuning
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a generative language model on linearized labeled
sequences (Ding et al., 2020; Liu et al., 2020).

Backtranslation (Sennrich et al., 2016; Fadaee
et al., 2017; Dong et al., 2017; Yu et al., 2018)
translates source language sentences into a target
language, and subsequently back to the source lan-
guage, which preserve the overall semantics of the
original sentences. On token-level tasks, however,
they hinge on external word alignment tools for la-
bel propagation, which are often error-prone (Tsai
et al., 2016; Li et al., 2020b).

6 Conclusion

We have proposed MELM as a data augmentation
framework for low-resource NER. Through labeled
sequence linearization, we enable MELM to explic-
itly condition on label information when predicting
masked entity tokens. Thus, our MELM effectively
alleviates the token-label misalignment issue and
generates augmented data with novel entities by ex-
ploiting pretrained knowledge. Under multilingual
settings, we integrate MELM with code-mixing for
further performance gains. Extensive experiments
show that the proposed framework demonstrates
encouraging performance gains on monolingual,
cross-lingual and multilingual NER across various
low-resource levels.
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A Appendix

A.1 Hyperparameter Tuning

Masking hyperparameters. To determine the opti-
mal setting for fine-tune mask rate η and generation
masking parameter µ, we conduct a grid search on
both hyperparameters in range [0.3, 0.5, 0.7]. We
finetune MELM and generate English augmented
data on CoNLL following our method in Section 2.
The augmented data is used to train a NER tagger
and its performance on English dev set is recorded.
As shown in Table 4, we achieve the best dev set
F1 when η = 0.7 and µ = 0.5, which is adopted
for the rest of this work.

η
0.3 0.5 0.7

0.3 76.90 75.64 78.08
µ 0.5 76.16 78.06 78.56

0.7 75.94 78.09 78.37

Table 4: Dev set F1 for masking hyperparameter tuning.

Number of augmentation rounds. Merging aug-
mented data from multiple rounds increase entity
diversity until it saturates at certain point. Con-
tinuing adding in more augmented data begins to
amplify the noise in augmented data and leads to
decreasing performance. To determine the opti-
mum number of augmentation rounds R, we merge
different amount of augmented data with English
gold data to train a NER tagger, with R ranging
from 1 to 6. As shown in Table 5, dev set F1 in-
creases with increasing amount of augmented data
until R=3, and starts to drop further beyond. There-
fore, we choose R = 3 for all of our experiments.

R 1 2 3 4 5 6
Dev F1 92.35 92.36 92.84 92.72 92.59 92.39

Table 5: Dev set F1 for number of augmentation rounds.

A.2 Statistics for Reproducibility

In this section, we present the validation F1 av-
eraged among 3 runs of MELM under different
languages and low-resource levels. We also sum-
marize the estimated time for fine-tuning MELM
and the number of parameters used. We separately
show the statistics of monolingual (Table 6), cross-
lingual (Table 7) and multilingual (Table 8) NER.

#Gold En De Es Nl time #Paramerter
100 82.38 71.11 71.77 71.01 ~ 7min 270M
200 85.93 77.96 83.25 79.53 ~ 10min 270M
400 89.01 82.95 85.10 81.40 ~ 15min 270M
800 92.01 84.82 86.65 85.61 ~ 20min 270M

Table 6: Validation F1 for MELM under monolingual
settings

#Gold dev F1 time #Paramerter
100 82.38 ~ 7min 270M
200 85.93 ~ 10min 270M
400 89.01 ~ 15min 270M
800 92.01 ~ 20min 270M

Table 7: Validation F1 for MELM under cross-lingual
settings

#Gold per language dev F1 time #Paramerter
100 83.21 ~ 20min 270M
200 84.83 ~ 30min 270M
400 87.07 ~ 45min 270M

Table 8: Validation F1 for MELM under multilingual
settings

A.3 Computing Infrastructure
Our experiments are conducted on NVIDIA V100
GPU.

2262


