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Abstract

Conventional wisdom in pruning Transformer-
based language models is that pruning reduces
the model expressiveness and thus is more
likely to underfit rather than overfit. How-
ever, under the trending pretrain-and-finetune
paradigm, we postulate a counter-traditional hy-
pothesis, that is: pruning increases the risk of
overfitting when performed at the fine-tuning
phase. In this paper, we aim to address the
overfitting problem and improve pruning per-
formance via progressive knowledge distilla-
tion with error-bound properties. We show for
the first time that reducing the risk of overfit-
ting can help the effectiveness of pruning under
the pretrain-and-finetune paradigm. Ablation
studies and experiments on the GLUE bench-
mark show that our method outperforms the
leading competitors across different tasks.

1 Introduction

Recently, the emergence of Transformer-based
language models (using pretrain-and-finetune
paradigm) such as BERT (Devlin et al., 2019) and
GPT-3 (Brown et al., 2020) have revolutionized
and established state-of-the-art (SOTA) records (be-
yond human-level) on various natural language
(NLP) processing tasks. These models are first
pre-trained in a self-supervised fashion on a large
corpus and fine-tuned for specific downstream
tasks (Wang et al., 2018). While effective and
prevalent, they suffer from redundant computation
due to the heavy model size, which hinders their
popularity on resource-constrained devices, e.g.,
mobile phones, smart cameras, and autonomous
driving (Chen et al., 2021; Qi et al., 2021; Yin et al.,
2021a,b; Li et al., 2021; Choi and Baek, 2020).

Various weight pruning approaches (zeroing out
certain weights and then optimizing the rest) have
been proposed to reduce the footprint requirements
of Transformers (Zhu and Gupta, 2018; Blalock
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Figure 1: Pruning under non-pretrain-and-finetune vs.
pruning under pretrain-and-finetune. In the subfigures,
the cylinders on the left describe the pruning process,
and the circles on the right represent the knowledge
analysis of the sparse model.

et al., 2020; Gordon et al., 2020; Xu et al., 2021;
Huang et al., 2021; Peng et al., 2021). Conventional
wisdom in pruning states that pruning reduces the
overfitting risk since the compressed model struc-
tures are less complex, have fewer parameters and
are believed to be less prone to overfit (Ying, 2019;
Wang et al., 2021; Tian et al., 2020; Gerum et al.,
2020). However, under the pretrain-and-finetune
paradigm, most pruning methods understate the
overfitting problem.

In this paper, we postulate a counter-traditional
hypothesis, that is: model pruning increases the
risk of overfitting if pruning is performed at the
fine-tuning phase. As shown in Figure 1b, the
pretrain-and-finetune paradigm contains two types
of knowledge, the general-purpose language knowl-
edge learned during pre-training (L) and the task-
specific knowledge from the downstream task data
(D). Compared to conventional pruning that only
discards task-specific knowledge (Figure 1a), prun-
ing under pretrain-and-finetune (Figure 1b) dis-
cards extra knowledge (red area) learned in pre-
training phase. Thus, to recover both the ex-
tra discarded general-purpose knowledge and the
discarded task-specific knowledge, pruning under
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Figure 2: Visualization of the overfitting problem when pruning weight matrices of BERTBASE on MRPC at the
fine-tuning phase. The overfitting problem becomes more severe with the increasing of sparsity.

pretrain-and-finetune increases the amount of infor-
mation a model needs, which results in relative data
deficiency, leading to a higher risk of overfitting.
To empirically verify the overfitting problem, we
visualize the training and evaluation performance
on a real-world task data of MRPC (Devlin et al.,
2019) in Figure 2. From Figure 2 (b), it is ob-
served that the evaluation accuracy on the training
dataset remains improved while it keeps the same
for the validation set through the training process.
From Figure 2 (c), the difference in performance
becomes more significant when the pruning rate
becomes higher and the performance on the vali-
dation set even becomes worse after 2,000 training
steps. All these observations verify our hypothesis.

The main question this paper attempts to an-
swer is: how to reduce the risk of overfitting of
pre-trained language models caused by pruning?
However, answering this question is challenging.
First, under the pretrain-and-finetune paradigm,
both the general-purpose language knowledge and
the task-specific knowledge are learned. It is non-
trivial to keep the model parameters related to both
knowledge when pruning. Second, the amount of
data for downstream tasks can be small, such as
the data with privacy. Thus, the overfitting prob-
lem can easily arise, especially in the face of high
pruning rate requirements. A little recent progress
has been made on addressing overfitting associated
with model compression. However, their results
are not remarkable and most of them focus on the
vision domain (Bai et al., 2020; Shen et al., 2021).

To address these challenges, we propose SPD, a
sparse progressive distillation method, for pruning
pre-trained language models. We prune and opti-
mize the weight duplicates of the backbone of the
teacher model (a.k.a., student modules). Each stu-
dent module shares the same architecture (e.g., the
number of weights, the dimension of each weight)

as the duplicate. We replace the corresponding
layer(s) of the duplicated teacher model with the
pruned sparse student module(s) in a progressive
way and name the new model as a grafted model.
We validate our proposed method through the ab-
lation studies and the GLUE benchmark. Experi-
mental results show that our method outperforms
the existing approaches.

We summarize our contributions as follows:

• We postulate, analyze, and empirically verify
a counter-traditional hypothesis: pruning in-
creases the risk of overfitting under the pretrain-
and-finetune paradigm.

• We propose a sparse progressive pruning method
and show for the first time that reducing the
risk of overfitting can help the effectiveness of
pruning.

• Moreover, we theoretically analyze that our prun-
ing method can obtain a sub-network from the
student model that has similar accuracy as the
teacher.

• Last but not least, we study and minimize the
interference between different hyperparameter
strategies, including pruning rate, learning rate,
and grafting probability, to further improve per-
formance.

2 Related Work

To summarize, our contribution is determining the
overfitting problem of pruning under the pretrain-
and-finetune paradigm and proposing the sparse
progressive distillation method to address it. We
demonstrate the benefits of the proposed frame-
work through the ablation studies. We validate our
method on eight datasets from the GLUE bench-
mark. To test if our method is applicable across
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Figure 3: An overview of our sparse progressive distillation method. (a) Teacher model. (b) Pruning to target
sparsity. (c) Module grafting with increasing probability. (d) Fine-tuning. (e) Final grafted model.

tasks, we include the tasks of both single sentence
and sentence-pair classification. Experimental re-
sults show that our method outperforms the leading
competitors by a large margin.
Network Pruning. Common wisdom has shown
that weight parameters of deep learning models
can be reduced without sacrificing accuracy loss,
such as magnitude-based pruning and lottery ticket
hypothesis (Frankle and Carbin, 2019). (Zhu
and Gupta, 2018) compared small-dense models
and large-sparse models with the same parame-
ters and showed that the latter outperforms the for-
mer, showing the large-sparse models have better
expressive power than their small-dense counter-
parts. However, under the pretrain-and-finetune
paradigm, pruning leads to overfitting as discussed.
Knowledge Distillation (KD). As a common
method in reducing the number of parameters, the
main idea of KD is that the small student model
mimics the behaviour of the large teacher model
and achieves a comparable performance (Hinton
et al., 2015; Mirzadeh et al., 2020). (Sanh et al.,
2019; Jiao et al., 2020; Sun et al., 2020) utilized KD
to learn universal language representations from
large corpus. However, current SOTA knowledge
distillation methods are not able to achieve a high
model compression rate (less than 10% remaining
weights) while achieving an insignificant perfor-
mance decrease.
Progressive Learning. The key idea of progres-
sive learning is that student learns to update module
by module with the teacher. (Shen et al., 2021)
utilized a dual-stage distillation scheme where stu-
dent modules are progressively grafted onto the
teacher network, it targets the few-shot scenario
and uses only a few unlabeled samples to achieve

comparable results on CIFAR-10 and CIFAR-100.
(Xu et al., 2020) gradually increased the probability
of replacing each teacher module with their corre-
sponding student module and trained the student
to reproduce the behavior of the teacher. However,
the performance on Transformer-based models of
the aforementioned first method is unknown while
the second method has an obvious performance
drop with a low sparsity (50%).

3 Methodology

3.1 Problem Formulation
The teacher model and the grafted model (shown in
Figure 3) are denoted as fS and fG, respectively.
Both models have N + 1 layers (i.e., the first N
layers are encoder layers, and the (N + 1)-th layer
is the output layer). Denote fT

i (·), fG
i (·) as the

behaviour function induced from the i-th encoder
of the teacher model, and the grafted model, re-
spectively. As shown in Figure 4, we utilize layer-
wise knowledge distillation (KD), where we aim to
bridge the gap between fT

i (·) and fG
i (·).

The grafted model is trained to mimic the be-
havior of the teacher model. During training, we
minimize the summation loss L:

L =
∑
x∈X

N+1∑
i=1

λiLKD(f
T
i (x)f

G
i (x)), (1)

where X denotes the training dataset, λi is coef-
ficient of i-th layer loss, LD is the distillation loss
of the layer pair, xi is the input of the i-th layer.

During KD, each student module mimics the
behavior of the corresponding teacher layer. Sim-
ilar to (Jiao et al., 2020), we take the advantage
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Figure 4: An overview of the layer-wise KD in SPD. (a)
N sparse student modules have probabilities of p1, p2,
p3, ..., pN to substitute the corresponding teacher layers
separately. (b) Teacher model. (c) Grafted model. LKDi

denotes the distillation loss between the i-th layer of the
teacher and i-th layer of the grafted model.

of abundant knowledge in self-attention distribu-
tion, hidden states of each Transformer layer, and
the final output layer’s soft logits of teacher model
to help train the student model. Specifically, we
design the KD loss as follows

LKD =

{
Lhidn + Lattn 1 ≤ i ≤ N

Lpred i = N + 1
(2)

where Lhidn = MSE(HT
i , HS

i ) (1 ≤ i ≤ N ) in-
dicates the difference between hidden states, Lattn

= MSE(AT
i , AS

i ) indicates the difference between
attention matrices. MSE(·) is the mean square error
loss function and i is the index of Transformer layer.
Lpred = -softmax(zT ) · log _softmax(zS / temp)
indicates the difference of soft cross-entropy loss,
where zT and zS are the soft logits of teacher and
student model, respectively. T is the temperature
hyper-parameter.

We further reduce the number of non-zero pa-
rameters in the weight matrix while maintaining
accuracy. We denote {Wj}j=i

j=1 as the collection
of weights in the first i layers, θj as the sparsity
of the j-th layer. Then, the loss function of sparse
knowledge distillation becomes

L =
∑
x∈X

N+1∑
i=1

λiLKD(f
T
i (x, {Wj}j=i

j=1), f
G
i (x, {Wj}j=i

j=1))

s.t. sparsity(Wj) ≤ θj for j = 1, ..., N
(3)

After training, we find the sparse weight matrix
W ∗

j using

W∗
j = ΠSj (Wj) for j = 1, ..., N, (4)

where ΠSj (·) denotes the Euclidean projection onto
the set Sj = {Wj | sparsity(Wj) ≤ θj}.

3.2 Our Methods

3.2.1 Error-bound Analysis

Our pruning method is similar to finding match-
ing subnetworks using the lottery ticket hypothe-
sis (Frankle and Carbin, 2019; Pensia et al., 2020)
methodology. We analyze the self-attention (ex-
cluding activation). Some non-linear activation
functions has been analyzed in (Pensia et al., 2020).
Feed-forward layer. Consider a feed-forward net-
work f(x) = w · x , and g(x) = (

∑n
i=1wi)x.

Lueker et al. (Lueker, 1998) and Pensia et al. (Pen-
sia et al., 2020) show that existing a subset of wi,
such that the corresponding value of g(x) is very
close to f(x).
Corollary: When w∗

1, ..., w
∗
n belongs to i.i.d. uni-

form distribution over [-1,1], where n ≥ C log 2
δ ,

δ ≤ min{1, ϵ}. Then, with probability at least 1-δ,
we have

∃Gspd ⊂ {1, 2, ..., n},∀w ∈ [−0.5, 0.5],

s.t

∣∣∣∣∣∣w −
∑

i∈Gspd

w∗
i

∣∣∣∣∣∣ ≤ ϵ
(5)

Analysis on self-attention. The self-attention can
be presented as:

Z = attention(Q, K, V) = softmax(
Q · KT

√
dk

) · V.

(6)
Consider a model f(x) with only one self-
attention, when the token size of input x is 1,
softmax(Q·KT

√
dk

) = 1, we have Z = V, where

V = wVx.

Consider fG(x) =
(∑d

i=1w
G
i

)
x and a pruning

sparsity θ, base on Corollary, when d ≥ C log 4/ϵ,
there exists a pattern of wG

i , such that, with proba-
bility 1− ϵ,

∀w ∈ [−1, 1],∃θi ∈ {0, 1},

s.t.

∣∣∣∣∣∣w − (
∑

i∈[1,d]

wG
i I(θi))

∣∣∣∣∣∣ < ϵ
(7)

where I(θi) is the indicator to determine whether
wG
i will be remained.
In general, let the token x’s size be n. so x =

(x1, x2, ..., xn). Consider a teacher model fT (x)
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with a self-attention, then

fT (xi) = softmax(
Q · KT√

(dk)
) · Vi

= (

∑
j e

cij∑
i

∑
j(e

cij )
) · Vi

= (

∑
j e

cij∑
i

∑
j(e

cij )
)wVixi

= wci.xi

(8)

where cij is the (i, j)th element of the matrix
Q·KT√
(dk)

.

Base on Corollary, when d ≥ C log 4/ϵ, there
exists a pattern of wG

i , such that, with probability
1− ϵ,

∀wci. ∈ [−1, 1], ∃θk ∈ {0, 1},

s.t.

∣∣∣∣∣∣wci. − (
∑

k∈[1,d]

wG
k I(θk))

∣∣∣∣∣∣ < ϵ
(9)

In summary:

∀i ∈ {1, 2, ..., n},
∣∣fT (xi)− fG(xi)

∣∣ < ϵ (10)

3.2.2 Progressive Module Grafting
To avoid overfitting in the training process for the
sparse Transformer model, we further graft stu-
dent modules (scion) onto the teacher model dupli-
cates (rootstock). For the i-th student module, we
use an independent Bernoulli random variable I(θi)
to indicate whether it will be grafted on the root-
stock. To be more specific, I(θi) has a probability
of p (grafting probability) to be set as 1 (i.e., stu-
dent module substitutes the corresponding teacher
layer). Otherwise, the latter will keep weight ma-
trices unchanged. Once the target pruning rate is
achieved, we apply linear increasing probability
to graft student modules which enable the student
modules to orchestrate with each other.

Different from the model compression methods
that update all model parameters at once, such as
TinyBERT (Jiao et al., 2020) and DistilBERT (Sanh
et al., 2019), SPD only updates the student modules
on the grafted model. It reduces the complexity of
network optimization, which mitigates the overfit-
ting problem and enables the student modules to
learn deeper knowledge from the teacher model.
The overview is described in Algorithm 1. We will
further demonstrate the effectiveness of progressive
student module grafting in 4.2.

Algorithm 1 Sparse Progressive Distillation
Input: Teacher model fT (fine-tuned BERTBASE); grafted
model fG: duplicates of teacher model.
Set t1, t2, t3 as the final number of training steps of pruning,
progressive module grafting, and finetuning, respectively.
Set p as the grafting probability
Output: Student model
p← p0
for t = 0 to t3 do

if 0 ≤ t < t1 then
Prune student modules and generate mask M
Graft student modules with p0

end if
if t1 ≤ t < t2 then

Graft student modules with p← k(t− t1) + p0
end if
Calculate distillation loss L in Eqn. (3)
For fG, update sparse weights w′ ← w ·M
Duplicate sparse weight(s) on fG to corresponding stu-
dent module(s)

end for
return fG

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate SPD on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018) and report the metrics,
i.e., accuracy scores for SST-2, QNLI, RTE, and
WNLI, Matthews Correlation Coefficient (MCC)
for CoLA, F1 scores for QQP and MRPC, Spear-
man correlations for STS-B.
Baselines. We first use 50% sparsity (a widely
adopted sparsity ratio among SOTA), and com-
pare SPD against two types of baselines – non-
progressive and progressive. For the former,
we select BERT-PKD (Sun et al., 2019), Distil-
BERT (Sanh et al., 2019), MiniLM (Wang et al.,
2020), TinyBERT (Jiao et al., 2020), Sparse-
BERT (Xu et al., 2021) and E.T. (Chen et al., 2021),
while for the latter, we choose Theseus (Xu et al.,
2020). We further compare SPD against other
existing works under higher sparsity, e.g., Tiny-
BERT (Jiao et al., 2020), SparseBERT (Xu et al.,
2021) and RPP (Guo et al., 2019).
SPD Settings. We use official BERTBASE, uncased
model as the pre-train model and the fine-tuned
pre-train model as our teacher. Both BERTBASE

and teacher model have the same architecture
(i.e., 12 encoder layers (L = 12; embedding di-
mension dmodel = 768; self-attention heads H =
12)). We finetune BERTBASE using best perfor-
mance from {2e−5, 3e−5, 4e−5, 5e−5} as the learn-
ing rate. For SPD model training, the number of
pruning epochs, linear increasing module grafting
epochs, finetuning epochs vary from [10, 30], [5,
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20], [5, 10], respectively. For pruning, we use
AdamW (Loshchilov and Hutter, 2018) as the opti-
mizer and run the experiments with an initial graft-
ing probability from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}. The probability with the best perfor-
mance will be adopted. After pruning, we adjust
the slope of the grafting probability curve so that
the grafting probability equals 1 at the end of mod-
ule grafting. For module grafting and finetuning,
an AdamW optimizer is used with learning rate
chosen from {3e−5, 1e−4, 3.2e−4, 5e−4, 6.4e−4}.
The model training and evaluation are performed
with CUDA 11.1 on Quadro RTX6000 GPU and
Intel(R) Xeon(R) Gold 6244 @ 3.60GHz CPU.

4.2 Experimental Results

Accuracy vs. Sparsity. We do experiments
on eight GLUE benchmark tasks (Table 1). For
non-progressive baselines, SPD exceeds all of
them on QNLI, SST-2, CoLA, STS-B, and MRPC.
For RTE, TinyBERT6 has a 1.6% higher accu-
racy than SPD. However, TinyBERT6 used aug-
mented data while SPD does not use data augmen-
tation to generate the results in Table 1. On av-
erage, SPD has 6.3%, 5.6%, 1.2%, 1.7%, 3.7%
improvement in performance than BERT6-PKD,
DistilBERT, TinyBERT6, SparseBERT, E.T. respec-
tively. Furthermore, on CoLA, SPA achieves up
to 25.9% higher performance compared to all non-
progressive baselines. For the progressive baseline,
we compare SPD with BERT-of-Theseus. Exper-
imental results show that SPD exceeds the latter
on all tasks. SPD has a 3.9% increase on aver-
age. Among all the tasks, CoLA and RTE have
20.2% and 5.9% gain respectively. For the compar-
ison with sparse and non-progressive baseline, SPD
has an improvement of 16.8%, 5.5%, 3.2%, 2.7%,
2.0%, 1.9%, 1.6%, 1.6% on CoLA, RTE, MNLI,
QNLI, QQP, MRPC, STS-B, SST-2, respectively.

On all listed tasks, SPD even outperforms the
teacher model except for RTE. On RTE, SPD re-
tains exactly the full accuracy of the teacher model.
On average, the proposed SPD achieves a 1.1%
higher accuracy/score than the teacher model. We
conclude the reason for the outstanding perfor-
mance from three respects: 1) There is redundancy
in the original dense BERT model. Thus, prun-
ing the model with a low pruning rate (e.g., 50%)
will not lead to a significant performance drop. 2)
SPD decreases the overfitting risk which helps the
student model learn better. 3) The interference

between different hyperparameter strategies is miti-
gated, which enables SPD to obtain a better student
model.

We also compare SPD with other baselines (i.e.,
4-layer TinyBERT (Jiao et al., 2020), RPP (Guo
et al., 2019), and SparseBERT (Xu et al., 2021))
under higher pruning rates. Results are summa-
rized in Table 2. For the fairness of comparison,
we remove data augmentation from the above meth-
ods. We mainly compare the aforementioned base-
lines with very high sparsity (e.g., 90%, 95%) SPD.
For the comparison with TinyBERT4, both SPD
(90% sparsity) and SPD (95% sparsity) win. SPD
(90% sparsity) has 63.4% and 9% higher evalua-
tion score than TinyBERT4 on CoLA and MRPC,
respectively. For the setting of 95% sparsity, SPD
outperforms TinyBERT4 with 41.3% and 7.6%
higher performance, respectively. Compared to
RPP, both SPD (90% sparsity) and SPD (95% spar-
sity) show higher performance on MRPC, with
9.8% and 8.3% higher F1 score, respectively. For
SparseBERT, SPD exceeds it on all tasks in Table 2.
Especially on CoLA, SPD (90% sparsity) and SPD
(95% sparsity) have 2.69× and 2.33× higher Mcc
score on CoLA, respectively. SparseBERT has
competitive performance with SOTA when using
data augmentation. The reason for the performance
drop for SparseBERT may because its deficiency
of ability in mitigating overfitting problems.

Overfitting Mitigation. We explore the effective-
ness of SPD to mitigate the overfitting problem.
Depending on whether progressive, grafting, or
KD is used, we compare 4 strategies: (a) no pro-
gressive, no KD; (b) progressive, no KD; (c) no
progressive, KD; (d) progressive, KD (ours). We
evaluate these strategies on both training and valida-
tion sets of MRPC. The results are summarized in
Figure 5. From (a) to (d), the gap between the eval-
uation results of the training set and the dev set is
reduced, which strongly suggests that the strategy
adopted by SPD, i.e., progressive + KD, outper-
forms other strategies in mitigating the overfitting
problem. Figure 5 (a), (b), and (c) indicate that
compared to progressive only, KD has a bigger im-
pact on mitigating overfitting, as the performance
gap between the training set and the dev set de-
creases more from (a) to (c) than from (a) to (b).
From Figure 5 (a), (b) and (c), we also observe that
compared to no progressive, no KD, either using
progressive (Figure 5 (b)) or KD (Figure 5 (c)) is
very obvious to help mitigate the overfitting prob-
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Model #Param
MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

Avg.(393k) (364k) (105k) (67k) (8.5k) (5.7k) (3.7k) (2.5k)
Acc F1 Acc Acc Mcc Spea F1 Acc

BERTBASE (Devlin et al., 2019) 109M 84.6 91.2 90.5 93.5 52.1 85.8 88.9 66.4 81.6
BERTBASE (ours) 109M 83.9 91.4 91.1 92.7 53.4 85.8 89.8 66.4 81.8
Fine-tuned BERTBASE (teacher) 109M 84.0 91.4 91.6 92.9 57.9 89.1 90.2 72.2 83.7

non-progressive
BERT6-PKD (Sun et al., 2019) 67M 81.5 88.9 88.4 91.0 45.5 86.2 85.7 66.5 79.2
DistilBERT (Sanh et al., 2019) 67M 82.2 88.5 89.2 92.7 51.3 86.9 87.5 59.9 79.8
MiniLM6 (Wang et al., 2020) 67M 84.0 91.0 91.0 92.0 49.2 - 88.4 71.5 -
TinyBERT6 (Jiao et al., 2020) 67M 84.5 91.1 91.1 93.0 54.0 90.1 90.6 73.4 83.5
SparseBERT (Xu et al., 2021) 67M 84.2 91.1 91.5 92.1 57.1 89.4 89.5 70.0 83.1
E.T. (Chen et al., 2021) 67M 83.7 86.5 88.9 90.8 55.6 87.6 88.7 69.5 81.4

progressive
Theseus (Xu et al., 2020) 67M 82.3 89.6 89.5 91.5 51.1 88.7 89.0 68.2 81.2
SPD (ours) 67M 85.0 91.4 92.0 93.0 61.4 90.1 90.7 72.2 84.5

Table 1: Results on the dev set of the GLUE benchmark. The results of DistilBERT and TinyBERT6 are taken
from (Jiao et al., 2020). Mcc refers to Matthews correlation coefficient, and Spea refers to Spearman correlation
coefficient.
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Figure 5: Comparison of four strategies to deal with the overfitting problem on MRPC.

Model Sparsity CoLA STS-B MRPC RTE Avg.(Mcc) (Spea) (F1) (Acc)

Teacher 100% 57.9 89.1 90.2 72.2 77.4

TinyBERT4 82% 29.8 - 82.4 - -
RPP 88.4% - - 81.9 67.5 -
SparseBERT 95% 18.1 32.2 81.5 47.3 44.8

SPD (ours) 66.6% 50.7 88.9 90.4 69.7 74.9
SPD (ours) 75% 50.0 88.3 90.2 67.9 74.1
SPD (ours) 87.5% 49.9 87.8 89.9 67.9 73.9
SPD (ours) 90% 48.7 87.8 89.9 69.0 73.9
SPD (ours) 95% 42.1 86.9 88.7 56.7 68.2

Table 2: Results on the dev set of the GLUE benchmark
at higher pruning rates.

lem. Figures 5 (b), (c) and (d) indicate that the
combination of progressive and KD brings more
benefits than only using progressive or KD as Fig-
ure 5 (d) has the smallest performance gap between
the training set and the dev set. Combined with
Table 1 and Table 2, Figure 5 shows that SPD miti-
gates overfitting and leads to higher performance.

4.3 Ablation Studies

In this section, we justify the three schedulers used
in our method (i.e., grafting probability, pruning
rate, and learning rate), and study the sensitivity of
our method with respect to each of them.
Study on Components of SPD. The proposed SPD
consists of three components (i.e., sparse, knowl-
edge distillation, and progressive module grafting).
We conduct experiments to study the importance of
each component on GLUE benchmark tasks with
the sparsity of 50% and results are shown in Ta-
ble 3. Compared to both sparse + KD and sparse
+ progressive, SPD achieves gains on performance
among all tasks.
Effects of Grafting Probability Strategy. In our
method, we set the grafting probability greater than
0 during pruning, to allow student modules to learn
deeper knowledge from the teacher model. To ver-
ify the benefit of this design, we change the graft-
ing probability to zero and compare it with our
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Model #Param MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
Acc F1 Acc Acc Mcc Spea F1 Acc

Fine-tuned BERTBASE (teacher) 109M 84.0 91.4 91.6 92.9 57.9 89.1 90.2 72.2 83.7

Sparse + KD 67M 84.2 91.1 91.5 92.1 57.1 89.4 89.5 70.0 83.1
Sparse + Progressive 67M 83.9 91.2 91.5 92.3 57.4 89.6 89.6 71.4 83.4
SPD (ours) 67M 85.0 91.4 92.0 93.0 61.4 90.1 90.7 72.2 84.5

Table 3: The performance comparison of different strategies on the dev set of GLUE. Mcc refers to Matthews
correlation coefficient and Spea refers to Spearman correlation coefficient.

method. The result on RTE is shown in Figure 6.
Pruning with grafting (the red curve) shows better
performance than pruning without grafting, which
justifies the existence of grafting during pruning. In
addition, we study the sensitivity of our method to
grafting probability (Figure 7). It is observed that
p0 = 0.6 achieves the best performance, and the pro-
gressive design is better than the non-progressive.

0 1000 2000 3000 4000
Training steps

0.5

0.6

0.7

Ac
cu

ra
cy

Best choice

Pruning w/o. module grafting
Pruning w. module grafting
End of pruning
End of grafting

Figure 6: Pruning w/ module grafting vs. Pruning w/o.
module grafting on RTE (dev set).
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Figure 7: Sensitivity analysis of grafting probability on
RTE (dev set).
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Figure 8: Effects of different pruning ending strategies
on MRPC (dev set).

Effects of Pruning Rate Strategy. For the pruning

rate scheduler, we compare the strategies with dif-
ferent pruning ending steps. The results are shown
in Figure 8. It is observed that the pruning during
when grafting probability p = p0 has a higher F1
score than other strategies on MRPC.
Effects of Optimizer Strategy. We also compare
our strategy with the strategy that only has one
learning rate scheduler. The results (Figure 9) indi-
cate that our strategy (i.e., two independent optimiz-
ers) is better. We also evaluate different learning
rates with the pruning rate of 0.9 and the grafting
probability of 0.8.
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Figure 9: (a) The learning rate curve of one AdamW op-
timizer in training. (b) The learning rate of two AdamW
optimizers in training. (c) Performance comparison of
the above two settings.

5 Conclusion

In this paper, we postulate a counter-traditional
hypothesis that pruning increases the risk of over-
fitting under the pretrain-and-finetune paradigm.
We analyze and empirically verify this hypothesis,
and propose a sparse progressive pruning method
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to address the overfitting problem. We theoretically
analyze that our pruning method can obtain a sub-
network from the student model that has a similar
accuracy as the teacher. We study and minimize
the interference between different hyperparameter
strategies, including pruning rate, learning rate, and
grafting probability. A number of ablation studies
and experimental results on eight tasks from the
GLUE benchmark demonstrate the superiority of
our method over the leading competitors.
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Appendix

We provide the sensitivity analysis of learning rate
on RTE and STS-B (dev set) and the evaluation
curves of four tasks (CoLA, STS-B, MRPC, and
RTE) with the target pruning rate of 0.95.

Sensitivity Analysis of Learning Rate. The
analysis results on RTE and STS-B are shown in
Figure 10 and Figure 11, respectively. Results vary
with different learning rate settings. Among the
eight learning rates listed in the legend of Figure 10,
3.2× e−4 achieves the best performance. For STS-
B, 4.0× e−4 gives the best performance among the
learning rate choices in Figures 11.

Evaluation Curves of Four Tasks at Tar-
get Pruning rate of 0.95. We plot the evalu-
ation curves of CoLA (Figure 12), STS-B (Fig-
ure 13), MRPC (Figure 14), RTE (Figure 15) to
further demonstrate the advantages of our proposed
method SPD. In each figure, the x-axis is the train-
ing steps while the y-axis represents evaluation
metrics. To obtain the curves, we use the same
settings as Table 2.

Moreover, we describe the hyper-parameters set-
tings in detail. For CoLA, we set the max sequence
length as 128, the learning rate as 5.0e−4, the graft-
ing probability during pruning as 0.8, the number
of training epochs as 60, and the number of pruning
epochs as 30. For STS-B, we use the same setting
as CoLA. For MRPC, we set the max sequence
length as 128, the learning rate as 6.4 × e−4, the
grafting probability during pruning as 0.8, the num-
ber of training epochs as 60, and the number of
pruning epochs as 30. For RTE, we set the max se-
quence length as 128, the learning rate as 3.0×e−5,
the grafting probability during pruning as 0.6, the
number of training epochs as 60, and the number
of pruning epochs as 30.
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Figure 10: Sensitivity analysis of learning rate on RTE
(dev set).
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Figure 11: Sensitivity analysis of learning rate on STS-
B (dev set).
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Figure 12: Evaluation on CoLA (dev set). Target prun-
ing rate is 0.95.
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Figure 13: Evaluation on STS-B (dev set). Target prun-
ing rate is 0.95.
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Figure 14: Evaluation on MRPC (dev set). Target prun-
ing rate is 0.95.
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Figure 15: Evaluation on RTE (dev set). Target pruning
rate is 0.95.
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