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Abstract

k-Nearest-Neighbor Machine Translation
(kNN-MT) has been recently proposed as a
non-parametric solution for domain adaptation
in neural machine translation (NMT). It aims
to alleviate the performance degradation of
advanced MT systems in translating out-of-
domain sentences by coordinating with an
additional token-level feature-based retrieval
module constructed from in-domain data. Pre-
vious studies (Khandelwal et al., 2021; Zheng
et al., 2021a) have already demonstrated
that non-parametric NMT is even superior
to models fine-tuned on out-of-domain data.
In spite of this success, kNN retrieval is at
the expense of high latency, in particular
for large datastores. To make it practical,
in this paper, we explore a more efficient
kNN-MT and propose to use clustering to
improve the retrieval efficiency. Concretely,
we first propose a cluster-based Compact
Network for feature reduction in a contrastive
learning manner to compress context features
into 90+% lower dimensional vectors. We
then suggest a cluster-based pruning solution
to filter out 10%~40% redundant nodes in
large datastores while retaining translation
quality. Our proposed methods achieve better
or comparable performance while reducing up
to 57% inference latency against the advanced
non-parametric MT model on several ma-
chine translation benchmarks. Experimental
results indicate that the proposed methods
maintain the most useful information of
the original datastore and the Compact Net-
work shows good generalization on unseen
domains. Codes are available at https:
//github.com/tjunlp-lab/PCKMT.

1 Introduction

Recently, non-parametric approaches (Khandelwal
et al., 2021; Zheng et al., 2021a,b; Jiang et al.,
2021) have been successfully applied to neural

∗ Equal contribution.
† Corresponding author.

Model speed (token/s) BLEU
MT 913.48 37.50

AK-MT (k=4) 642.43 46.32

Table 1: The inference speed comparison on the same
IT-domain test set. AK-MT denotes the adaptive kNN-
MT.

machine translation (NMT) for domain adaptation
with retrieval pipelines. Given an advanced MT
model, they generally involve two steps:

• It builds a cached memory, usually called
datastore, in advance by extracting the con-
text representations of the penultimate layer of
the given NMT model corresponding to each
target token from in-domain data.

• At inference, it retrieves the k nearest neigh-
bors of the context representation for each
generated token from the constructed datas-
tore and then integrates external kNN transla-
tion probabilities derived from these retrievals
to adjust the translation.

The accessibility of any provided datastore dur-
ing translation makes them interpretable. Mean-
while, the reliability of these approaches gives the
credit to the datastore quality. In spite of signif-
icant translation improvements, analyses on the
datastore behavior have not been fully explored
yet. We empirically observe that the construction
of datastore is not optimal for retrieval from two
aspects: retrieval latency and semantic distribution.

Retrieval Latency. As shown in Table 1, we
compare both translation performance and speed
between a pre-trained NMT model (Ng et al., 2019)
with 270M parameters and the adaptive kNN-
MT (Zheng et al., 2021a) system originated from
the former on the same hardware (a P100-16GB
GPU with 18 cores Intel Xeon Gold 6240 CPU @
2.60GHz), where the later is the most advanced
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Figure 1: t-SNE visualization of IT domain features.
Darker nodes denote lower frequency tokens.

retrieval-based NMT model so far.1 It indicates
that the heavy computation of retrieval within a
datastore causes increased latency and makes it
less practical in real-time scenarios. To address
this problem, we propose an efficient pruning strat-
egy to decrease the datastore redundancy so as to
deal with the trade-off between the speed and the
quality.

Semantic Distribution. For robust token-to-
token retrieval, tokens with similar context are
expected to be distributed close to each other to
form separable and compact semantic clusters, oth-
erwise semantic noise may hurt the retrieval ef-
fectiveness. To explore the potential of k-nearest
retrieval, we visualize the feature distribution of
a datastore built on the IT-domain corpus (Koehn
and Knowles, 2017) in Figure 1. For the datastore
constructed in the traditional way, we have 2 im-
portant findings. One is that the majority tokens
are distributed in the overlapped area regardless of
frequency. The other is that even the overall distri-
bution shows a clustering effect, only a few small
clusters are correctly classified with respect to fre-
quency. Intuitively, these findings will directly and
negatively affect the distance-based retrieval.

Moreover, as (Zhang et al., 2021) suggest, the
dimension is highly related to retrieval speed. Pre-
liminary studies on kNN-LM (He et al., 2021) in-
dicate that traditional feature reduction algorithms
could only maintain the original performance un-
til the context feature dimension is reduced to a
minimum required size (e.g., for feature dimension
1024, PCA requires at least 512). For NMT model,
it is still challenging to reduce the feature dimen-

1The speed comparison is based on the implementation
released at https://github.com/zhengxxn/adaptive-knn-mt

sion to its 10% (e.g., from 1024 to <100). To tackle
this problem, we design a cluster-based training
strategy where an external light-weight feature re-
duction network is learnt in a contrastive training
manner to maximize the margin between context
semantic clusters. In our experiments, we can even
cut out 93.75% of the original feature size.

In summary, our main contributions are two-
fold:

• We propose a cluster-based Compact Network
to reduce the dimension of the semantic repre-
sentations and improve the translation perfor-
mance by making different tokens separable
to refine the retrieval results.

• We further propose a cluster-based pruning
strategy by filtering redundant representations
in the datastore so that our proposed methods
could significantly decrease the translation la-
tency during inference.

Experiments on multi-domain machine translation
benchmarks indicate that our proposed methods are
superior to existing retrieval-based machine trans-
lation systems in terms of both speed and quality.

2 Related Work and Background

In this section, we will briefly introduce the back-
ground of the adaptive kNN-MT (Zheng et al.,
2021a). Adaptive kNN-MT is derived from kNN-
MT (Khandelwal et al., 2021) by inserting a light-
weight Meta-k Network that fuses kNN retrievals
with various k to alleviate the possible noise in-
duced by a single k. Formally, it is formulated as
two steps: target-side datastore creation and Meta-
k Network predictions.

Target-side Datastore Creation. The datastore
constists of a set of key-value pairs. Given a bilin-
gual sentence pair (s, t) in a corpus (S, T ), a pre-
trained general domain NMT model autoregres-
sively extracts the context representation hi of the
i-th target token conditioned on both source and
target context (s, t<i), denoted as hi = f(s, t<i).
The datastore is finally constructed by taking hi as
keys and ti as values:

(K,V) =
⋃

(s,t)∈(S,T )

{(hi, ti),∀ ti ∈ t}.

Meta-k Network Prediction. Meta-k Network
(fβ) is a two-layer feed-forward network followed
by a non-linear activation function. Based on the
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Figure 2: The diagram of the proposed approach. C-*("#") denotes the *th cluster of token "#". First, the cluster-
based Compact Network is used to reduce the key’s dimensionality of the original datastore and a new datastore is
reconstructed. Then the cluster-based pruning is applied to reduce the datastore size.

constructed datastore, it considers a set of different
ks that are smaller than an upper bound K. The
standard setting for k is Q = {0} ∪ {kr ∈ N |
log2 kr ∈ N, kr ≤ K}. K nearest neighbors of the
current context query ĥi from the datastore are first
retrieved at the i-th decoding step. Then the square
of l2 distance from ĥi to each neighbor (hj , vj) is
denoted as dj = ‖hj , ĥi‖2. And the number of
distinct values in top j neighbors are denoted as
cj . The normalized weights of each available k are
computed as:

pβ(k) = softmax(fβ([d1, ..., dK ; c1, ..., cK ]))

where fβ denotes the Meta-k Network. For kr ∈ Q,
the word prediction probability over the vocabulary
w.r.t each neighbor is computed via the Gaussian
kernal function:

pkrNN(yi|x, ŷ<i) ∝∑
{(hj ,vj) | j≤kr,j∈N}

1yi=vj exp(
−‖hj , ĥi‖2

T
)

where T denotes the temperature hyper-parameter.
The ultimate prediction probability is a weighted
ensemble:

p(ti|s, t̂<i) =
∑
kr∈Q

pβ(kr) · pkrNN(ti|s, t̂<i)

Note that a validation set is usually required to
study the Meta-k Network before predicting on test
sets. During training, only the parameters of the
Meta-k Network need to update.

3 Our Approach

As shown in Figure 2, our proposed approach fo-
cuses on datastore reconstruction from the perspec-
tives of feature compression and size pruning by
utilizing cluster-based signals.

3.1 Cluster-Based Feature Compression

From Figure 1, we observe that spatially close con-
text representations may have noisy and different
semantics. During inference, it may lead to unreli-
able neighbors for retrieval-based NMT (see exam-
ples in Appendix D “Case Analysis”) due to the en-
tanglements from these noisy context space. We hy-
pothesize that the reasons may be three-fold. First,
the pre-trained NMT model on general domain
lacks target domain-specific knowledge. Second,
the high dimensional semantic space is too sparse
and may contain some noisy underlying compo-
nents. Third, the likelihood-maximization objec-
tive from the logits by dot-production enforces the
alignment of vector directions, which is inconsis-
tent with the spatially close expectation for the sake
of both direction and length.

To address these issues, we propose a one-plus-
one (fα+fθ) Compact Network on top of the pre-
trained NMT model. The first “one” module is
to transform the coarse-grained semantics of the
pre-trained NMT into the fine-grained semantic
clusters. The second “one” module is used to cal-
culate our designed loss function.

To obtain coarse-grained semantic clusters, we
first follow the method described in “Target-side
Datastore Creation” of Section 2 to create the
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Figure 3: The Compact Network illustration. fα is for
dimension reduction and fθ is for NCE training.

in-domain datastore. For context representations
(keys) with the same target token (value), we con-
duct target-side clustering for the representations,
shown as the left clusters in Figure 3. We denote
the resulted clusters from the same value as the
cluster family for the corresponding target token.
Due to the distance-based clustering, it is guaran-
teed that clusters within each cluster family are not
overlapped at all. However, different cluster fami-
lies will have large overlapped space according to
Figure 1. Therefore, our main purpose is to con-
struct a transform that can make the cluster families
separable as well.

The proposed light-weight Compact Network in
Figure 3 is desired to fulfill above purpose and com-
press the feature dimension. The first two-layer per-
ceptron is applied for representation compression:
fα(·) = FFN2(σ (FFN1(·))), where σ(·) denotes
the Sigmoid function. The last layer fθ is attached
for transferring the compressed representations into
classification logits where the output dimension de-
pends on the number of designed categories. Note
that the fθ layer is discarded at inference.

In order to obtain the separable cluster families
after fα, we are motivated to consider several can-
didate contrastive regularizations to train the Com-
pact Network.

Triplet Noise-Contrastive Estimation (NCE).
For each cluster in one particular cluster family,
two semantic representations are randomly sam-
pled, one as the pivot example v∗ and the other
as the positive example v+. From the cluster in a
different cluster family, another semantic represen-
tation is randomly selected as the negative example
v−. Then we conduct NCE (Gutmann and Hyväri-
nen, 2010) with binary classification on {pivot,
positive} and {pivot, negative} to predict which
pair belongs to the same cluster.

min
fθ,fα

− log(σ(fθ([fα(v+); fα(v∗)])))

− log(1− σ(fθ([fα(v−); fα(v∗)])))

where the output dimension of fθ is 1.
Triplet Distance Ranking. This is similar to

the Triplet NCE. The differences are that (1) we
remove the fθ layer and (2) the objective is modi-
fied as a ranking loss by minimizing the l2 distance
between the pivot and positive examples as well
as maximizing the distance between the pivot and
negative ones:

min
fθ,fα

‖fα(v+)− fα(v∗)‖2

+ 1/‖fα(v−)− fα(v∗)‖2

Word Prediction Loss. To compensate the loss
of linguistic information that NCE may ignore, the
traditional word prediction NMT loss is also used
to train the Compact Network. In this scenario, the
output dimension of fθ is the vocabulary size of
the corresponding target language.

In addition, we find that dynamic pivot selection
leads to unstable training as the compressed repre-
sentations are forced to update toward various di-
rections. For each cluster, we modify the dynamic
pivot as a static pivot, by fixing it as the centroid.
After the training converges, we can construct a
new feature-compressed datastore with the output
of fα, which is used for query retrieval during the
kNN-MT inference.

3.2 Cluster-Based Pruning
Apart from feature reduction, the number of key-
value pairs in the compressed datastore is crucial
for the translation latency as well, hence redun-
dant tokens are encouraged to be pruned. In liter-
ature, phrase-level pruning strategies have proved
efficient for statistical machine translation (SMT)
(Ling et al., 2012; Zens et al., 2012). Each record
in the phrase table reflects a similar semantic unit,
hence one could prune parts of the records that
share similar statistics, e.g., translation quality,
translation cost, etc.

Enlightened by SMT, we propose an efficient
pruning strategy based on n-gram metrics on the
original semantic representation space. Intuitively,
the entry of a key-value pair in the datastore is
redundant if there are other key-value pairs (with
the same value) holding for that the difference of
their perplexity (PPL) values is smaller than a given
threshold ε (an example is represented in Figure 4).

To make it concrete, we decrible the transla-
tion cost as follows. For a given n-gram phrase
(ti−n+1, ti−n+2, ..., ti) in the translation with the
corresponding token-level translation probability
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Figure 4: An example of redundant bigram "a man"
with similar translation costs. "X" denotes that the node
with similar PPL will be randomly deleted in pruning.

p(tj |s, t<j) ∀j ∈ {i, i− 1, ..., i− n+1}, we mea-
sure the translation cost of its last token (desired
value in datastore) as the perplexity (PPL) of the
n-gram phrase. However, when n is fixed, n-gram
phrases are not always meaningful because some
translations are independent of its previous target-
side context (Ling et al., 2012). Hence we do not
directly adopt the naive PPL as a stable translation
cost but truncate it in a heuristic way. We search
for the minimal PPL among all consecutive sub-
sequences ending with that last token. Formally,
given a bilingual sentence pair (s, t), we define the
translation cost for each target token ti:

cti = min
b∈{1,2,...,n}

PPL(p(ti−b+1|s, t<i−b+1), ...,

p(ti−1|s, t<i−1), p(ti|s, t<i))

Then we can add the translation cost into the
feature-compressed datastore.

((K,C),V) =⋃
(s,t)∈(S,T )

{((fα(hi), cti), ti), ∀ ti ∈ t}

For the augmented datastore described above,
we only apply propagation-based clustering (Ester
et al., 1996; Zhang et al., 1996) upon the translation
cost cti to get cost-similar groups, and partition the
semantic representations in accordance to these
groups. To get pruned datastore, we adopt uniform
sampling on each group and collect them into a
small key-value paired datastore. This algorithm is
summarized in Algorithm 1.

In brief, our efficient cluster-based k-nearest
neighbor machine translation can be concluded into
the following steps.

• We adopt the original datastore to train Com-
pact Network while the parameters of NMT

Algorithm 1 Cluster-Based Pruning
Input:

The expected pruning rate r.
The translation cost threshold ε.
A preprocessed datastore ((K, C), V).

Output:
A new pruned datastore (Knew,Vnew).

1. Greedy Clustering On Translation Costs.
G← ∅.
For each vi in set(V) do

get collection (Kvi , Cvi) paired with vi
splitCvi ← cluster(Cvi , ε)
Ksplit ← map(splitCvi ,Kvi)
G.extend( zip(Ksplit,Vvi) )

2. Uniform Pruning.
Dnew ← {}.
For each (k, v) in G do
k∗, v∗ = sample_by_rate((k, v), r)
Dnew.update(k∗, v∗)

return Dnew

are frozen.

• We adopt the validation set to train the Meta-k
Network while the parameters of NMT and
Compact Network are fixed.

• We reconstruct the feature-compressed datas-
tore and prune it into a small datastore using
our proposed n-gram pruning algorithm that
will be eventually used for testing.

4 Experiments

We carried out a series of experiments to evaluate
the proposed non-parametric NMT against the pre-
vious advanced counterpart on several translation
benchmarks.

4.1 Datasets
We followed (Zheng et al., 2021a) to conduct all
experiments on five widely used machine transla-
tion benchmarks of unique domains, including IT,
Koran, Medical, Law and Subtitles. The first four
domains were also used in (Zheng et al., 2021a)
while the last Subtitles dataset contains a large num-
ber of target tokens, which is hence suitable to ex-
plore our pruning strategy. The statistics of these
datasets are shown in Table 2. We tokenized sen-
tences using Moses2 and split words into subword

2https://github.com/moses-smt/ mosesdecoder
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Dataset Statistics of training sets Statistics of test sets
Domain Koran IT Medical Law Sub Koran IT Medical Law Sub
sentence 222K 248K 18K 467K 12.4M 2K 2K 2K 2K 2K

token 0.5M 3.6M 6.9M 19M 154M 58K 34K 57K 81K 25K

Table 2: The statistics of datasets in all experiments. “Sub" denotes Subtitles.

units (Sennrich et al., 2016) with the bpe-codes pro-
vided by (Ng et al., 2019). We applied the product
quantizer with the inverted file system based on
Faiss3 to quantize the datastores and conduct re-
trieval. The hyper-parameters of Faiss are provided
in Appendix B.

4.2 Clustering Algorithm Selection
The determination of clustering algorithms depends
on computation complexity and clustering effec-
tiveness.

• As semantic clusters in a large datastore are
vague and it is hard to determine the prior
quantity of clusters existing in a large datas-
tore, clustering algorithms that hold a static
cluster quantity in advance (e.g., k-Means
(Hartigan and Wong, 1979)) are not fit for
dataset partitioning.

• Besides, clustering complexity is not toler-
ant in practice when it increases up to O(N2)
(e.g., Affinity Propagation (Frey and Dueck,
2007)) since N is usually extremely large for
a high-quality datastore.

We eventually chose two classical clustering al-
gorithms from candidates for exploration in our
experiments: DBSCAN (Ester et al., 1996) and
Birch (Zhang et al., 1996). DBSCAN was ap-
plied for clustering datastore with 100M- nodes
while BIRCH was applied for clustering datastore
with 100M+ nodes for the sake of computation-and-
quality trade-off. In our experiments, We adopted
the scikit-learn clustering implements.4

4.3 Baselines
We adopted the following models as our baselines.

• Base NMT. This is the winner model
(Vaswani et al., 2017) of WMT’19 German-
English News translation task5 provided by
(Ng et al., 2019), which is also used in (Zheng

3https://github.com/facebookresearch/faiss/
4https://scikit-learn.org/stable/modules/clustering.html
5http://www.statmt.org/wmt19/

Model BLEU
NMT 38.35
adaptive kNN-MT 47.20

+feature-wise PCA 46.84
+weight-wise SVD 45.96

[DY] CKMT+DR 37.10
[DY] CKMT+WP 46.41
[DY] CKMT+NCE 46.58
[DY] CKMT+NCE+DR 37.33
[DY] CKMT+NCE+WP 46.42
[DY] CKMT+NCE+CL 47.48
[ST] CKMT+NCE+CL 47.94
[ST] CKMT+NCE+CL+DR 47.64
[ST] CKMT+NCE+CL+WP 46.88

Table 3: The BLEU performance comparison of the fea-
ture reduction methods on the IT domain. All retrieval
k is set to 4. DR, NCE and WP denote the distance
ranking, noise-contrastive estimation and word predic-
tion objectives, respectively. CL denotes that all the
tokens are clustered and then the triplets are selected
based on these clusters. [DY] denotes that the pivot
is dynamically selected while [ST] denotes static pivot
selection.

et al., 2021a). It is a Transformer model
(Vaswani et al., 2017) with hidden size 1024.

• Adaptive kNN-MT (Zheng et al., 2021a).
This is the benchmark model of our work.

In our modifications, as expected to reduce the
dimension to <10% of its original size, we did
greedy searching in [16, 32, 64, 128] to obtain
the optimal 64 as fα’s output dimension on the IT
domain validation set and then used this setting in
all experiments. The detailed dimension related
analysis can be found in Appendix A. Similarly
we used grid search and selected bigram in the
clustering-based pruning algorithm.

4.4 Evaluation

All experiments were conducted on a P100-16GB
GPU with 18 cores Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz except for the experiments in
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Model
Tested Domain

Avg.
IT Koran Law Medical

NMT 38.35 16.26 45.48 39.99 35.02
adapt kNN-MT 47.20 19.39 62.64 55.71 46.24

CKMT* 47.94 19.92 62.98 56.92 46.94
G-CKMT* 47.27 19.84 62.55 56.52 46.55

Table 4: The translation BLEU comparison in different
domains. G-CKMT* denotes that the Compact Net-
work of CKMT* was trained using the general Wiki-
matrix datastore.

Subsection 4.5.2 where we used 2 GPU cards to
load a larger datastore. All translation results were
evaluated in case-sensitive detokenized BLEU with
SacreBLEU (Post, 2018).

4.5 Results
For simplicity, we refer to the base NMT model
equipped with the proposed Compact Network as
CKMT and further equipped with the pruned data-
store as PCKMT in this section.

4.5.1 Performance of the Compact Network
On the IT domain, we first evaluated the compact
layer settings mentioned in Section 3, as well as
two traditional feature reduction algorithms: Prin-
cipal Component Analysis (PCA) used in (He et al.,
2021) and Singular Value Decomposition (SVD).
We applied the PCA solution to learn feature-wise
linear projection while the SVD solution to learn
matrix-wise projection that decomposes the weight
(W ) of the last layer of the base NMT model into
three matrices:

W1024∗vocab_size = S1024∗64U64∗64V64∗vocab_size

Then fα can be replaced by an FFN layer with the
weight S1024∗64U64∗64 but without bias.

As shown in Table 3, the best CKMT solution is
equipped with the Compact Network trained using
NCE+CL+DR. It outperforms the adaptive kNN-
MT by 0.74 BLEU. Being consistent with (He et al.,
2021), we find that it is difficult to use the 1024-to-
64 feature-wise PCA to maintain the translation per-
formance with such a low dimension. Basically, the
distance ranking loss causes serious performance
degradation. We assume that the distance mini-
mization restraint is too strict to optimize a small
datastore since both the direction and the length
of a semantic vector have already been optimized.
Though the word prediction (WP) can recover se-
mantic information, its fθ has too many parameters

Rate Datastore Size BLEU
100% 3.6M 47.94
80% 2.9M 47.67
60% 2.2M 47.57
40% 1.4M 47.29
20% 0.7M 46.98
1% 0.04M 46.21

Table 5: Performance of CKMT* using decreasing
rates of data to train the Compact Network at state I.

to be optimized on the limited IT domain datastet
compared with NCE alone. Besides, we attribute
the improvement obtained by the clustering (CL)
to the introduced semantic disambiguation. Finally,
the static pivot selection (ST) achieves an improve-
ment of 0.46 BLEU against the dynamic method.

We refer to the best setting [ST]
CKMT+NCE+CL as CKMT*, and report
the results against the adaptive kNN-MT on
various domains in Table 4. CKMT* gains
an average improvement of 0.70 BLEU over
the adaptive kNN-MT which indicates that our
proposed Compact Network refines the retrieval
for machine translation.

The Compact Network Training with Lim-
ited Data. It is unclear how much data are ade-
quate at training-stage I. Hence, we gradually re-
duce the number of key-value pairs in the datas-
tore to train the Compact Network as shown in
Table 5. As the number decreases, the performance
degrades slowly. When we use only 40% of the
datastore for training, CKMT still outperforms the
adaptive kNN-MT. It indicates that our proposed
Compact Network is efficient and requires a small
amount of key-value pairs to compress the semantic
representations with contrastive loss.

Cross Domain Generalization. Is there a gen-
eral Compact Network that is capable to generalize
to different domains? If so, we will save the cost to
train an unique Compact Network for various target
domains. To explore this, we trained the Compact
Network in a general domain with the large-scale
Wikimatrix Corpus (Schwenk et al., 2021) and eval-
uated its behavior on various target domains. As
the last row of Table 4 shows, it is interesting that
the general CKMT* drops only 0.39 BLEU com-
pared with 4 domain-specific datastores, and it still
outperforms the adaptive kNN-MT by 0.31 BLEU.
Overall speaking, the Compact Network general-
izes well across different domains.
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Model
Domain

Avg.
IT Koran Law Medical

CKMT* 47.94 19.92 62.98 56.92 46.94
CKMT*+SP 43.01 19.50 59.40 52.16 43.52
CKMT*+LTP 46.78 19.28 61.96 55.21 45.81
CKMT*+HTP 45.95 20.10 59.51 55.14 45.18
CKMT*+RP 46.38 19.99 61.96 55.45 45.85
CKMT*+Ours 47.06 20.01 61.72 55.33 46.03

Table 6: Translation BLEU Results on 4 different do-
mains with 10% pruning rate. k was set to 4. Note that
CKMT* in the first row used the full datastore.

4.5.2 Performance of Pruning Methods
We tested our language-wise PPL-based pruning
methods with several pruning strategies as follows.

• Spatially Pruning by Distance (SP). It is a
naive pruning strategy using distance-wise so-
lution by cutting off nodes with low probabil-
ity according to the distance from each node
to its cluster center.

• Low Translation Probability Pruning
(LTP). Tokens translated with low probabili-
ties tend to have poor translation quality, and
will be pruned for datastore stability.

• High Translation Probability Pruning
(HTP). As the kNN probabilities are benefi-
cial for hart-to-translate words that NMT can-
not handle, it would be more encouraged to
restore the tokens wrongly translated by the
base NMT. In this sense, tokens paired with
high confidence will be pruned.

• Random Pruning (RP). We also perform the
random pruning strategy alone for the target-
side clusters, as the step 2 introduced in Algo-
rithm 1.

The results on 4 different domains are shown in
Table 6. Since the datastore size remains the same
(10% pruned) for all pruning methods in Table 6,
there is no much retrieval speed difference among
these methods. Our cluster based pruning strat-
egy generally achieves the smallest degradation.
Though other strategies obtain impressive6 results
on a few domains (e.g., 10% pruned CKMT*+HTP
outperforms non-pruned CKMT* by 0.18 BLEU

6This is in comparison to previous studies (e.g., (He et al.,
2021)) that usually fail to maintain model performance when
datastores are pruned to a large extent.

Figure 5: The BLEU comparison of pruning experi-
ments on the Subtitles domain with increasing pruning
rates. AKMT denotes the non-pruned adaptive kNN-
MT.

on the Koran test set) since previous studies (i.e,
(He et al., 2021)) our cluster-based pruning strat-
egy performs the most stably on average. Note that
the random pruning strategy is simple yet effective,
which coincides with (He et al., 2021).

However, we find that the in-domain data of the
tested domains have limited redundancy since the
average frequency of bigrams is too low (e.g., more
than 0.4M unique bigrams were collected from
the 3.6M IT domain datastore, on average each
bigrams only has no more than 9 occurrences in
the datastore). Therefore, even 10% pruning rate
can lead to about 1 BLEU loss in Table 6. We leave
reducing the datastore with low n-gram redundancy
to our future work.

To further explore the potential of the pruning
methods on large datastore, we conducted prun-
ing experiments on Subtitles domain containing
154M keys. We tested the random pruning strategy
as well because it is the second competitive prun-
ing strategy. As Figure 5 illustrates, the proposed
PCKMT*+Ours with pruning rate 30% can even
outperform non-pruned CKMT*. As the pruning
rate increases, PCKMT*+Ours generally outper-
forms PCMKT*+RP for the same k. The perfor-
mance of PCKMT*+RP drops seriously (more than
1 BLEU point) when the pruning rate ≥ 50%, but
PCKMT*+Ours sees a clear drop until the pruning
rate ≥ 70%. When the pruning rate increases to
80+%, PCKMT*+RP even performs worse than the
base NMT, but PCKMT*+Ours still outperforms
it by a large margin. These results suggest that
the proposed cluster-based pruning algorithm is
effective for datastore reduction.
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Model Batch Size k
Speed Datastore Storage

sentences/s tokens/s original quantization

base NMT 8 - 49 572 - -64 166 1959

adaptive kNN-MT NMT

8 16 26 (-23) 292 (-280)

295.2GB 12.2GB

64 55 (-111) 618 (-1341)
8 8 26 (-23) 295 (-277)

64 59 (-107) 663 (-1296)
8 4 26 (-23) 296 (-276)

64 58 (-108) 660 (-1299)

PCKMT*-20% 8 16 34 (-15) 384 (-188) 15.9GB 9.1GB64 85 (-81) 963 (-996)

PCKMT*-70% 8 8 37 (-12) 419 (-153) 6.5GB 3.98GB64 100 (-66) 1132 (-827)

PCKMT*-40% 8 4 39 (-10) 444 (-128) 12.7GB 7.0GB64 98 (-68) 1108 (-851)

Table 7: The computation cost of PCKMT* with no BLEU degradation compared with the adaptive kNN-MT.
PCKMT*-#% denotes PCKMT* equipped with the #% pruned datastore for retrieval during inference. The value
in parentheses is the speed latency between the corresponding model and the base NMT.

Model BLEU Sentences/s Tokens/s Datastore size Pruning rate
adaptive kNN-MT 31.36 58 660 154M 0%

k=16 CKMT* 31.64 74 849 154M 0%
PCKMT* 31.58 85 963 123M 20%

k=8 CKMT* 31.43 78 890 154M 0%
PCKMT* 31.72 91 1024 108M 30%

k=4 CKMT* 31.28 79 899 154M 0%
PCKMT* 31.23 85 968 138M 10%

Table 8: The optimal performances of our approach on the Subtitles test set. The batch size was fixed as 64.

Figure 6: t-SNE visualization of the original (left) and
compressed (right) semantic representations of 10 sam-
pled tokens (one color for each token).

In Table 7, we further evaluated the computation
cost of CKMT* with the same BLEU performance
as the adaptive kNN-MT. With the same k and
the batch size, PCKMT* achieves 27%~57% less
speed latency compared with the adaptive kNN-
MT. In addition, we compared our optimally per-
formed model with baselines in Table 8. PCKMT
(k=8) equipped with pruning rate 30% has the opti-
mal performance, which obtains an improvement
of 0.36 BLEU and 1.56x translation speed over the
adaptive kNN-MT.

Cluster Visualization. We visualize the IT do-
main datastore in Figure 6 to verify our assumption
that our Compact Network maps the original se-

mantic representations to a separable distribution
with less overlaps. Tokens represented by purple
dots become more distinguishable with our method.

5 Conclusion

In this paper, we propose a cluster-based Compact
Network for feature reduction in a contrastive learn-
ing manner to reduce 90+% context feature dimen-
sion, and suggest a cluster-based pruning strategy
to prune 10%~40% redundant keys in datastore
while translation quality remains unchanged. Our
proposed methods achieve better or comparable
performance while reducing up to 57% inference
latency against the advanced non-parametric MT
model on several benchmarks. For future work, it
is promising to design effective feature reduction
algorithms and pruning strategies based on more
linguistic and cross-lingual information.
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A Compact Feature Dimension

Model Dimension Loss BLEU

CKMT*

128 1.82 44.42
64 1.84 44.49
32 1.88 42.41
16 2.03 39.49

adaptive kNN-MT - 1.82 44.20

Table 9: BLEU scores of different compact feature di-
mensions on the IT domain validation set.

The output dimension of the first FFN in fα was
empirically set as 4 times of the output dimension
of the whole fα. We then conducted greedy search
on the IT domain validation set to obtain the opti-
mal output dimension of fα in our Compact Net-
work. As shown in Table 9, 64d was the optimal
setting superior to the adaptive kNN-MT.

B Hyper-parameters of Faiss

We followed the default implementation setting of
(Zheng et al., 2021a). To be concrete, we adopted
the FP16 precision to store keys. The number of
partition-based quantization centroids was set to
1024 while the number of selected invested lists at
query time in the cell-probe method7 was set to 32.
The size of per quantized vector in bytes was set to
64 except for CKMT with 16d/32d compact feature
dimension in Table 9 because the output size of the
quantized vectors must be smaller than the size of
the input features for quantization.

C Analysis on the Number of Parameters

Model Parameter
MT 269.7M

Adaptive kNN-MT 269.7M
CKMT* 270.0M

Table 10: The number of parameters of different mod-
els.

We compared the number of overall parameters
of different systems in Table 10. It can be seen
that our optimal CKMT* only requires 0.1% more
parameters than the adaptive kNN-MT while it sig-
nificantly decreases the latency. Hence CKMT*
achieves an important speed-quality trade-off.

7https://github.com/facebookresearch/faiss/wiki/Faiss-
indexes

D Case Analysis

In this subsection, we analyze translations gener-
ated by different models on the test sets.

From the translations generated by different
models in Table 11, it can be seen that CMKT*
translates sentences more adequately especially
for those containing ambiguous tokens because
the Compact Network turns different tokens sep-
arable in the compressed semantic representation
space. In this way, CKMT* tends to predict ac-
curate words that are in line with the meaning of
the source sentence rather than tokens of high fre-
quency (e.g., “insert” objects rather “paste” ob-
jects). On the other hand, the adaptive kNN-MT
translates “VolumeControl” as “api.op” by mistake
while the base NMT model could correctly trans-
late it, which suggests that the adaptive kNN-MT
could surfer from noisy retrievals from the original
semantic space. It can also be seen that PCKMT*
makes predictions without performance degrada-
tion compared to CKMT*, although PCKMT* is
equipped with a smaller datastore.
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Source Einfügen; 3D-Objekte VolumeControl Spielzug des schwarzen Spielers
Reference inserting; 3-D objects VolumeControl Black’s move
Base NMT Insert; 3D objects Volume control Black Player’s Move

adaptive kNN-MT pasting; 3-D objects api.op. White’s move
CKMT* inserting; 3-D objects Volume Control Black’s move

PCKMT* inserting; 3-D objects VolumeControl Black’s move

Table 11: Translation examples generated by different models from the IT domain.
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