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Abstract
Human languages are full of metaphorical ex-
pressions. Metaphors help people understand
the world by connecting new concepts and
domains to more familiar ones. Large pre-
trained language models (PLMs) are therefore
assumed to encode metaphorical knowledge
useful for NLP systems. In this paper, we in-
vestigate this hypothesis for PLMs, by probing
metaphoricity information in their encodings,
and by measuring the cross-lingual and cross-
dataset generalization of this information. We
present studies in multiple metaphor detection
datasets and in four languages (i.e., English,
Spanish, Russian, and Farsi). Our extensive ex-
periments suggest that contextual representa-
tions in PLMs do encode metaphorical knowl-
edge, and mostly in their middle layers. The
knowledge is transferable between languages
and datasets, especially when the annotation is
consistent across training and testing sets. Our
findings give helpful insights for both cogni-
tive and NLP scientists.

1 Introduction

Pre-trained language models (PLMs) (Peters et al.,
2018; Devlin et al., 2019), are now used in almost
all NLP applications, e.g., machine translation (Li
et al., 2021), question answering (Zhang et al.,
2020), dialogue systems (Ni et al., 2021), and sen-
timent analysis (Minaee et al., 2020). They have
sometimes been referred to as “foundation models”
(Bommasani et al., 2021) due to their significant
impact on research and industry.

Metaphors are important aspects of human lan-
guages. In conceptual metaphor theory (CMT)
(Lakoff and Johnson, 2008), metaphor is defined as
a cognitive phenomenon associating two different
concepts or domains. This phenomenon is built in
cognition and expressed in language. The creativ-
ity and problem solving (i.e., generalization to new

? Equal contribution.

Figure 1: An illustration of our probing and gener-
alization scenarios for metaphorical knowledge.

problems) depend on the analogies and metaphors
a cognitive system, like our brain, relies on. Mod-
eling metaphors is therefore essential in building
human-like computational systems that can relate
emerging concepts to the more familiar ones.

So far, there has been no comprehensive analysis
of whether and how PLMs represent metaphori-
cal information. We intuitively assume that PLMs
must encode some information about metaphors
due to their great performance in metaphor detec-
tion and other language processing tasks. Con-
firming that experimentally is a question that we
address here. Specifically, we aim to know whether
generalizable metaphorical knowledge is encoded
in PLM representations or not. The outline of our
work is presented in Figure 1.

We first do probing experiments to answer ques-
tions such as: (i) with which accuracies and ex-
tractablities do different PLMs encode metaphor-
ical knowledge? (ii) how deep is the metaphori-
cal knowledge encoded in PLM multi-layer repre-
sentations? We take two probing methods, edge
probing (Tenney et al., 2019b) and minimum de-
scription length (Voita and Titov, 2020), and apply
them to four metaphor detection datasets, namely
LCC (Mohler et al., 2016), TroFi (Birke and Sarkar,
2006), VUA pos, and VUA Verbs (Steen, 2010).
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To better estimate the generalization of
metaphorical knowledge in PLMs, we design two
setups in which testing comes from a different
distribution than training data: cross-lingual and
cross-dataset metaphor detection. Each setup can
reveal important information on whether or not the
metaphorical knowledge is encoded consistently
in PLMs. Four languages (English, Farsi, Russian
and Spanish) and four datasets (LCC, TroFi, VUA
pos, and VUA Verbs) are considered in these gen-
eralization experiments.

In summary, this paper makes the following con-
tributions:

• For the first time, and through careful probing
analysis, we confirm that PLMs do encode
metaphorical knowledge.

• We show that metaphorical knowledge is en-
coded better in the middle layers of PLMs.

• We evaluate the generalization of metaphori-
cal knowledge in PLMs across four languages
and four dataset sources, and find out that
there is considerable transferability for the
pairs with consistent data annotation even if
they are in different languages. 1

2 Related Work

Metaphor detection using PLMs. The
metaphor detection task (Mason, 2004; Birke
and Sarkar, 2007; Shutova et al., 2013) is a good
fit for analyzing the metaphorical knowledge.
Using PLMs for metaphor detection has been
common in recent years, setting new state-of-
the-art results, indicating implicitly that PLMs
represent metaphorical information. Choi et al.
(2021) introduce a new architecture that integrates
metaphor detection theories with BERT. They
use the definitions as well as example usages of
words jointly with PLM representations. Similarly,
Song et al. (2021) presents a new perspective on
metaphor detection task by framing it as relation
classification, focusing on the verbs. These
approaches beat the earlier work of using PLMs
(Su et al., 2020; Chen et al., 2020; Gong et al.,
2020), RNN-based (Wu et al., 2018; Mao et al.,
2019) and feature-based approaches (Turney et al.,
2011; Shutova et al., 2016). Note that our goal is
not to compete with these models, but to probe and
analyze the relevant knowledge in PLMs.

1Our implementation is available at https://github.
com/EhsanAghazadeh/Metaphors_in_PLMs

Tsvetkov et al. (2014) present cross-lingual
metaphor detection models using linguistic fea-
tures and word embeddings. Bilingual dictionaries
map different languages. Their datasets are quite
small (1̃000 training and 2̃00 testing examples),
making them unsuitable for a robust evaluation.
However, this paper still remains as the only cross-
lingual evaluation of metaphor detection, to the
best of our knowledge. Here, using multilingual
PLMs, we perform zero-shot cross-lingual trans-
fer for metaphor detection. Our goal is to test if
PLMs represent metaphorical knowledge transfer-
able across languages.

Probing methods in NLP. Probing is an analyti-
cal tool used for assessing linguistic knowledge in
language representations. In probing, the informa-
tion richness of the representations is inspected by
the quality of a supervised model in predicting lin-
guistic properties based only on the representations
(Köhn, 2015; Gupta et al., 2015; Yaghoobzadeh and
Schütze, 2016; Conneau et al., 2018; Tenney et al.,
2019b,a; Yaghoobzadeh et al., 2019; Hewitt and
Manning, 2019; Zhao et al., 2020; Belinkov, 2022).
Here, we apply probing to perform our study on
whether metaphorical knowledge is present in PLM
representations, and whether that is generalizable
across languages and datasets.

A popular probing method introduced by Tenney
et al. (2019b) is edge probing (Figure 2). They
propose a suite of span-level tasks, including POS
tagging and coreference resolution. Despite the
widespread use of edge probing and other conven-
tional probes, the question of whether the probing
classifier is learning the task itself rather than iden-
tifying the linguistic knowledge raises concerns.

An Information-theoretic view can solve this is-
sue (Voita and Titov, 2020) by reformulating prob-
ing as a data transmission problem. They consider
the effort needed to extract linguistic knowledge in
addition to the final quality of the probe, showing
that this approach is more informative and robust
than normal probing methods. We employ both
edge and MDL probing in this work.

Probing multilingual PLMs. The application of
probing methods in NLP is extended to multilin-
gual PLMs as well (Pires et al., 2019; Eichler et al.,
2019; Ravishankar et al., 2019a,b; Choenni and
Shutova, 2020). Choenni and Shutova (2020) in-
troduce probing tasks for typological features of
multiple languages in multilingual PLMs. Ravis-
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hankar et al. (2019a,b) extend the probing tasks
of Conneau et al. (2018), to a few other lan-
guages. Pires et al. (2019) study the generaliza-
tion of multilingual-BERT across languages when
performing cross-lingual downstream tasks. Here,
as part of our study, we probe the generalization
of metaphorical knowledge in XLM-R (Conneau
et al., 2020), a notable multilingual PLM.

Out-of-distribution generalization. There has
been no earlier work on studying or evaluating out-
of-distribution generalization in metaphor detec-
tion. This generalization refers to scenarios where
testing and training sets come from different distri-
butions (Duchi and Namkoong, 2018; Hendrycks
et al., 2021, 2020). Here, we have scenarios where
testing and training data are in different languages
or domains / datasets. These are challenging eval-
uation scenarios for the generalization of encoded
information (metaphoricity in our case).

3 Inspecting Metaphorical Knowledge in
PLMs

Metaphors are used frequently in our everyday lan-
guage to convey our thoughts more clearly. There
are related theories in linguistics and cognitive sci-
ence. Following linguistic theories, metaphoric-
ity is mostly annotated using metaphor identifi-
cation procedure (MIP). MIP identifies a word
in a given context as a metaphor if it has a ba-
sic or literal meaning that contrasts with its con-
text words. Based on conceptual metaphor the-
ory (CMT) (Lakoff and Johnson, 2008), one target
domain (e.g., ARGUMENT) is explained using a
source domain (e.g., WAR). The source domain is
usually more concrete or physical, while the tar-
get is more abstract. Relating these two theories,
metaphors are expressed in language connecting
two contrasting domains. For example, in “We
won the argument”, the domain of ARGUMENT
is linked to the domain of WAR by using the word
“won”. The word “won” is a “metaphor” here since
its primary domain contrasts with its contextual
domain. The same word “won” in a sentence like
“The Allies won the war” refers to its literal mean-
ing and therefore is not a metaphor. The task of
metaphor detection is defined to do this classifica-
tion of “literal” and “metaphor”.

Accordingly, when designing a metaphor detec-
tion system, to figure out if a token is a metaphor
in a particular context, we assume following a pro-
cess like: (i) finding if the token has multiple mean-

Figure 2: Probing architecture for metaphors em-
ployed in edge probing and MDL probing.

ings in different domains, including a more basic,
concrete, or body-related meaning. For example,
“fight”, “win” and “mother” satisfy this condition.
(ii) finding if the source domain of the token con-
trasts with the target domain. Here the contrast
is important and finding the exact domains might
not be necessary. The source domain, in which its
literal / basic meaning resides, is a non-contextual
attribute, while the target domain is mainly found
using the contextual clues (WAR and ARGUMENT
for “won” in the above example).

Here, we use the metaphor detection datasets
annotated based on these theories and analyze
the PLM representations to see if they encode
metaphorical knowledge and if the encoding is
generalizable. To do so, we first probe PLMs for
their metaphorical information, generally and also
across layers. This gives us intuition on how well
metaphoricity is encoded and how local or con-
textual that is. Then, we test if the knowledge
of metaphor detection can be transferred across
languages and if multilingual PLMs capture that.
Finally, the generalization of metaphorical knowl-
edge across datasets is examined to see if the theo-
ries and annotations followed by different datasets
are consistent, and if PLMs learn generalizable
knowledge rather than dataset artifacts.

3.1 Probing

Here, we aim to answer general questions about
metaphors in PLMs: do PLMs encode metaphori-
cal information and, if so, how it is distributed in
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their layers. We do not attempt to achieve the best
metaphor detection results but to analyze layers of
PLMs to test if they contain the necessary infor-
mation to perform this task. In trying to answer
this question, we apply probing methods, discussed
as follows, to focus on the representation itself by
freezing the PLM parameters and training classi-
fiers on top.

We hypothesize that metaphorical information
does exist in PLM layers and more in the middle
layers. As we discussed earlier, metaphor detection
depends on contrast prediction between source and
target domains of a token. We assume that this pre-
diction is made mainly based on the initial layers
of PLM representations of either the token itself
or its context or both. In higher layers of PLMs,
the representations are dominated by contextual
information, making it hard to retrieve the source
domain, and so, reasoning about the contrast of the
source and target domains becomes difficult.

Methods We employ edge probing (Tenney et al.,
2019b) and MDL (Voita and Titov, 2020). Edge
probing consists of a classifier in which word repre-
sentations obtained from PLMs are fed as inputs af-
ter projecting to 256-dimensional vectors first. The
quality of the classifier illustrates how well the rep-
resentations encode a specific linguistic knowledge.
This method is designed for span-level tasks, i.e.,
the classifier can only access the representations
of a limited part of the input sentence specified in
the dataset. Edge probing has two pooler sections
for making fixed-sized vectors; one pools represen-
tations across the words in the span and the other
pools representations across the layers.

The Minimum Description Length (MDL) prob-
ing is based on information theory and combines
the quality of the classifier and the amount of effort
needed to achieve this quality.

Voita and Titov (2020) propose two methods for
computing MDL: “variational coding” and “online
coding.” The former computes the complexity of
the classifier with a Bayesian model. In the latter,
the classifier is trained gradually on different por-
tions of the dataset, and the code length will be the
sum of the cross-entropies, each for a data portion.
Voita and Titov (2020) show that the two methods’
results are consistent with each other. Accordingly,
we opted for the “online coding” method since it is
more straightforward in implementation. Since the
code length is related to the size of the dataset N ,
we report the “compression”, which is equal to 1

for a random classifier and larger for better models,
and is defined as: compression = N ·log2(K)

MDL See
extra details in Voita and Titov (2020).

3.2 Generalization

To see if PLMs encode generalizable metaphori-
cal knowledge, we evaluate them in settings where
testing and training data are in different distribu-
tions. We explore transferability analysis across
languages and datasets as two sources of distribu-
tion. We explain each in the following sections.

3.2.1 Cross-lingual
Multilingual encoders project the representations
in multiple languages into a shared space so that
semantically similar words and sentences across
languages end up close to each other. If we use a
multilingual PLM model, and our classifier shows
that representations in language S are informative
about metaphoricity, what happens if we apply this
classifier to the representations in language T ? We
hypothesize that if the representation is rich in both
languages, the annotation of metaphor is consis-
tent, and the concept of metaphor is transferable
across languages, then the classifier would be able
to predict metaphoricity in language T from what
it learns in S.

When testing cross-lingual generalization, the
linguistic and cultural differences of metaphoricity
are important as well. We assume that metaphors
are conceptualized in a similar process across lan-
guages, and metaphor detection is defined consis-
tently. The lexicalization is, of course, different,
but that is something that multilingual PLMs are
supposed to handle to some extent.

3.2.2 Cross-dataset
When training and testing on the same distribution,
any learning model often uses heuristics and an-
notation biases. The consequence is the recurring
overestimation of the capabilities of PLMs in doing
hard tasks. This might be the case for our probing
experiments as well. Therefore, another generaliza-
tion dimension we consider is cross-dataset trans-
fer, i.e., training on dataset S and testing on dataset
T . S and T could be annotated by different peo-
ple with possibly different goals in mind, and their
raw sentences could come from different domains.
However, they must be annotated for the same task
of metaphor detection.

In our case, the four datasets discussed more
in §4.1 differ in their distribution of the candidate
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VUA Verbs
He [finds]1 it hard to communicate with people , not least his separated parents .→ 1
He finds it hard to [communicate]1 with people , not least his separated parents . → 0

VUA POS
They picked up power from a [spider]1 ’s web of unsightly overhead wires . → 1
They picked up power from a spider ’s web of unsightly overhead [wires]1 . → 0

TroFi
“ Locals [absorbed]1 a lot of losses , ” said Mr. Sandor of Drexel → nonliteral
Vitamins could be passed right out of the body without being [absorbed]1 → literal

LCC

Lawful gun ownership is not a [disease]1 . → 3.0
But the Supreme Court says it’s not a way to [hurt]1 the Second Amendment → 2.0
Is he angry that gun rights [progress]1 has been done without him? → 1.0
I mean the 2nd amendment [suggests]1 a level playing field for all of us. → 0.0

Table 1: Examples of sentences, spans, and target labels for each probing dataset.

dataset POS Sizes

LCC (en) ALL 28,096 / 4,014 / 8,028
LCC (fa) ALL 12,238 / 1,802 / 3,604
LCC (es) ALL 12,238 / 2,236 / 4,474
LCC (ru) ALL 12,238 / 1,748 / 3,498
TroFi V 3,838 / 548 / 1,096
VUA Verbs V 9,176 / 1,310 / 2,622
VUA POS ALL 21,036 / 3,006 / 6,010

Table 2: Statistics of the datasets. We label-balance
each to have 50% metaphor. Number of instances
for train / dev / test sets and the types of POS are
given as well. N: Noun, V: Verb, ALL: Noun, Verb,
Adjective, Adverb.

POS types (e.g., TroFi is only verbs, but LCC is
not). Further, the annotation process is different
as each follows its own guidelines. However, the
essential task of metaphor detection, i.e., distin-
guishing metaphor and literal usages, is the same
for all. Therefore, we expect some transferability
across datasets but with differences aligned with
their mismatches.

4 Experimental Setup and Results

4.1 Datasets and Setup

Datasets We use four metaphor detection
datasets in our study. The annotations of LCC
(Mohler et al., 2016) are done mostly on web
crawled data as well as news corpora. It provides
metaphoricity scores including 0 as no , 2 as con-
ventional, and 3 as clear metaphor.2 We use the
examples with score 0 as literal, and others as
metaphor.

TroFi dataset (Birke and Sarkar, 2006) consists

21 is weak metaphor and as Mohler et al. (2016) describe
metaphors with 0.5 ≤ score < 1.5 as unclear, we ignore it.

of metaphoric and literal usages of 51 English verbs
from WSJ. VUA (Steen, 2010) corpus consists of
words in the academic, fiction, and news subdo-
mains of the British National Corpus (BNC). The
authors published two versions: VUA POS and
VUA Verbs.

LCC contains annotations in four languages: En-
glish, Russian, Spanish, and Farsi. The other three
datasets, TroFi, VUA Verbs and VUA POS, are
in English only. We have label-balanced all the
datasets to get a more straightforward interpreta-
tion of results (the accuracy of a fair-coin random
baseline is 50% in all cases) and have split the
datasets to train / dev / test sets with ratios of 0.7 /
0.1 / 0.2.

The statistics of the datasets are shown in Ta-
ble 2. Example sentences with the corresponding
annotations can be seen in Table 1.

Setup In implementing the edge probe, we use
batch size = 32 and learning rate = 5e-5 and train for
five epochs in all experiments. For the MDL probe,
the same structure of edge probing is employed.
We apply a logarithm to the base two instead of the
natural logarithm in cross-entropy loss to have all
the obtained code lengths in bits (see extra details
in Voita and Titov 2020). Our experiments are done
using the GPUs provided by Google Colab free and
pro.

4.2 Probing Results
Here, BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and ELECTRA (Clark et al., 2020)
represent our PLMs. Due to our resource limi-
tations, we conduct all experiments on the base
version of the models (12 layers, 768 hidden size,
110M parameters) implemented in HuggingFace’s
Transfomers (Wolf et al., 2020). We employ edge
probing for evaluating overall metaphorical knowl-
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Baseline BERT RoBERTa ELECTRA
Dataset Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp.

LCC (en) 74.86 1.052 88.25 1.856 88.06 1.965 89.30 2.055
TroFi 67.34 1.014 68.58 1.074 68.46 1.096 68.07 1.083
VUA POS 65.92 1.030 80.32 1.435 81.72 1.486 83.03 1.514
VUA Verbs 65.97 1.049 78.29 1.289 78.88 1.345 79.96 1.314

Table 3: Edge probing accuracy results for various metaphoricity datasets in BERT, RoBERTa, and
ELECTRA. Baseline is a randomly initialized BERT. The edge probing results are the average of three
runs. The compression result is the best across layers, and the subscript denotes the best layer.
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Figure 3: MDL compression across layers of three
PLMs in four metaphor detection datasets. Higher
number means better quality and extractability.

edge in our selected PLMs, and MDL for the layer-
wise comparisons. MDL is shown to be more effec-
tive for layer-wise probing (Fayyaz et al., 2021).

Table 3 shows the edge probing accuracy and
MDL probing compression results for our three
PLMs. Accordingly, RoBERTa and ELECTRA are
shown to encode metaphorical knowledge better
than BERT on both metrics. This is consistent with
their better performance on various tasks, acquired
by having better pre-training objectives and / or en-
joying more extensive pre-training data. The higher
probing quality of ELECTRA’s representations, is
also consistent with Fayyaz et al. (2021) results
on various linguistic knowledge tasks, including
dependency labeling, named entity recognition, se-

mantic role labeling, and coreference resolution.

MDL probing compression across layers is
demonstrated in Figure 3. We see the numbers
increase mostly at the first 3 to 6 layers, depend-
ing on the dataset, but it decreases afterwards3.
In other words, metaphorical information is more
concentrated in the middle layers, where the repre-
sentations are relatively contextualized but not as
much as higher layers. To put this in perspective,
we can consider Tenney et al. (2019a) and Fayyaz
et al. (2021) where the best layers for various lin-
guistic knowledge tasks in BERT are within 4 and
9. This shows that metaphor detection in PLM
representations can be resolved earlier than some
basic linguistic tasks.

In §3.1, we elaborated a hypothesis that the pro-
cess of detecting metaphors is not very deep since
what it needs to do is mainly contrast prediction
between source and target domains, and the deep
layers do not represent the source domain well. Our
reported probing results confirm that metaphor de-
tection is not deep in PLM layers. To further evalu-
ate our reasoning, we probe the domain knowledge
in PLM representations across layers. We employ
LCC’s annotation of source and target domains,
and run a similar MDL probing on different PLMs
but for domain prediction. The obtained results,
shown in Figure A.1 in appendix, demonstrate that
the source domain information is represented in the
initial layers (2-6), confirming that the source do-
main is dominated by other information in higher
layers. On the other hand, target domain informa-
tion generally increases across layers. Therefore,
the middle layers can be the best place for contrast-
ing source and target domains.

3For RoBERTa and in the case of TroFi and VUA Verbs,
we see exceptional increases in the last layers.
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Train Lang
en es fa ru

Te
st

L
an

g en 85.14 (65.37) 79.31 (52.71) 77.59 (50.22) 80.51 (52.40)
es 79.40 (53.17) 84.59 (66.09) 76.70 (50.32) 79.68 (53.32)
fa 75.70 (50.07) 75.29 (52.65) 81.04 (65.91) 77.14 (50.36)
ru 83.92 (53.25) 80.54 (51.48) 76.61 (51.05) 88.36 (67.98)

Table 4: Cross-lingual metaphor detection accuracies after five epochs of training for XLM-R and (its
random version). For each test language, we bold its in-distribution (e.g., en → en), and underline the best
out-of-distribution (e.g., ru → en) numbers.

4.3 Generalization Experiments

As our PLMs, we use XLM-R (Conneau et al.,
2020) for cross-lingual and BERT for cross-dataset
experiments. To compare the cross-lingual and
cross-dataset transferability, in §4.3.3, we employ
the same setup, including using XLM-R as PLM for
both. The results in §4.3.1 and 4.3.2 are not compa-
rable. We apply the same edge probing architecture
as in the probing experiments. We sometimes refer
to both language and dataset as distribution.

We run two experiments for each case of a source
distribution S and a target distribution T : one with
the PLM and one with a randomized version of
the PLM where weights are set to random val-
ues. Randomly initialized Transformers with the
same architecture as PLMs are common baselines
in the community. The difference between the
two gives evidence about the helpfulness of the
encoded knowledge gained during pre-training in
doing the task. When S = T , this effect is mea-
sured for in-distribution and when S 6= T , for
out-of-distribution generalization. Comparing re-
sults of in-distribution (e.g., training and testing on
English data) and out-of-distribution (e.g., training
on Spanish and testing on English) setups demon-
strates how generalizable the metaphorical knowl-
edge in PLM is and how consistent the annotations
are.

4.3.1 Cross-lingual
The four LCC datasets corresponding to four lan-
guages are used here. We subsample from the
datasets to have the same number of examples in
the training sets, i.e., 12,238 which is the size of
the Russian training set. The results are shown in
Table 4. The random baseline is acquired using a
randomly initialized XLM-R.

We observe that XLM-R significantly outper-
forms the random, confirming that metaphorical

knowledge learned during the pre-training is trans-
ferable across languages. This considerable trans-
ferability can be attributed to the ability of XLM-R
to build language-universal representations useful
for metaphoricity transfer. Moreover, the innate
similarities of metaphors in distinct languages can
contribute to higher transferability, despite the lexi-
calization differences. E.g., analogizing a concept
to a tool (en) occurs the same way in other lan-
guages like instrumento (es), ابزار (fa) and инстру-
мент (ru). Finally, the constraints of the dataset
producers in, for instance, keeping the languages in
relatively similar target and source domains, could
be influential. (See Figures A.2 and A.3).

An interesting observation is that training on
Russian shows the best out-of-distribution results
when testing on other languages. We analyze this
further. First, we observe that LCC(ru) has almost
the closest target domain distribution to all other
languages (See Table A.2 in Appendix).

Second, the reported results can also be influ-
enced by the amount of data from each of these
languages in the pre-training data of XLM-R. Rus-
sian has the second largest size after English (Con-
neau et al., 2020). Finally, for English, the higher-
resource language with closer target domain distri-
bution, we find out that there are considerable num-
ber of examples in the LCC(en) related to “GUNS”
and “CONTROL OF GUNS”. These domains are
not covered in other LCC datasets (See Figure A.3
in Appendix).

4.3.2 Cross-dataset

Similar to the cross-lingual evaluations, here we
have four datasets used as sources and targets. We
set the train size of each to the minimum of all, i.e.,
3,838. For each pair, we run two experiments: one
with randomized and one with pre-trained BERT
as our PLM. Results are shown in Table 5.
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Train Dataset
LCC(en) TroFi VUA POS VUA Verbs

Te
st

D
at

as
et LCC(en) 84.26 (54.93) 62.04 (50.05) 70.35 (50.69) 70.37 (50.14)

TroFi 59.49 (50.58) 68.73 (64.96) 55.38 (49.45) 59.67 (53.68)
VUA POS 62.23 (51.47) 55.29 (50.47) 76.86 (56.01) 71.6 (53.47)
VUA Verbs 60.20 (50.88) 54.55 (51.73) 72.6 (56.01) 75.21 (60.03)

Table 5: Cross-dataset edge probing accuracy results on BERT is shown in pairs: pre-trained model
and, in the parenthesis, the randomly initialized model. We set the training size to the minimum among
datasets, i.e., TroFi. For each test dataset, we bold its in-distribution (e.g., VUA Verbs → VUA Verbs),
and underline the best out-of-distribution (e.g., VUA POS → VUA Verbs) numbers.

PLM is much better than random in all out-
of-distribution cases, suggesting the presence of
generalizable metaphorical information. As ex-
pected, VUA Verbs and POS achieve the best re-
sults when mutually tested, because, apart from
the POS, they have the same distribution. VUA
datasets and LCC(en) show good transferability,
but the gap with in-distribution results is still con-
siderable (>13% absolute). VUA Verbs is the
best source for TroFi, likely because of the POS
match between them. Overall, apart from the two
VUA datasets, the gap between in- and out-of-
distribution performance is large.

The random PLM accuracies range from about
54%-64% and 50%-56% for in- and out-of-
distribution cases. We hypothesize that this drop in
the out-of-distribution is related to the annotation
biases, which a randomly initialized classifier can
leverage better when testing and training sets are
from the same distribution. When the sets have
different distributions, the biases do not transfer
well.

4.3.3 Comparing cross-dataset and
cross-lingual

LCC(en) LCC(es) LCC(fa) LCC(ru)
82.31 78.02 77.3 78.04

TroFi VUA POS VUA Verbs
60.54 68.61 67.15

Table 6: Comparing cross-dataset and cross-lingual
scenarios using the same model (XLM-R), train-
ing size, testing set, i.e., LCC(en), and different
training sources.

As additional transferability analysis, we com-
pare cross-lingual and cross-dataset results, by

using XLM-R and evaluating different training
sources on LCC(en) test set. We make the size
of each train set to be the same (3,838). The results
are shown in Table 6, where the first and second
rows belong to cross-lingual and cross-dataset, re-
spectively. To base our results, we include the
in-distribution result of training on LCC(en), i.e.,
82.31%.

Clearly, there is a substantial gap between cross-
lingual and cross-dataset accuracies. The annota-
tion guideline is consistent in the LCC language
datasets, while for the cross-dataset settings, we
have datasets that differ in many aspects, including
annotation procedure and definitions, covered part-
of-speeches (e.g., Trofi and VUA Verbs vs. LCC
and VUA POS) and sentence lengths (LCC: 25.9,
VUA: 19.4, Trofi: 28.3).

5 Discussion and Conclusion

Metaphors are important in human cognition, and
if we seek to build cognitively inspired or plausi-
ble language understanding systems, we need to
work more on their best integration in the future.
Therefore, any work in this regard is impactful.

Our probing experiments showed that PLMs do
in fact represent the information necessary to do
the task of metaphor detection. We assume this
information is related to metaphorical knowledge
learned during pre-training. Further, the layer-wise
analysis confirmed our hypothesis that middle lay-
ers are more informative.

Even though our probing experiments did show
that metaphorical knowledge is present in PLMs,
it was still unclear if this knowledge is generaliz-
able beyond the training data. So, to probe the
probe and evaluate generalization, we ran cross-
lingual and cross-dataset experiments. Our results
showed that the transferability across languages
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works quite well for the four languages in LCC an-
notation. However, when the definitions and anno-
tations were inconsistent across different datasets,
the cross-dataset results were not satisfactory.

Overall, we conclude that metaphorical knowl-
edge does exist in PLM representations and in mid-
dle layers mainly, and it is transferable if the an-
notation is consistent across training and testing
data. We will explore more the cross-lingual trans-
fer of metaphors and the impact of cross-cultural
similarities in the future. Also, the application
of metaphorical knowledge for text generation is
something important that we will address.
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Figure A.1: MDL probing compression across
layers for source and target domain detection for
LCC(en) dataset.

en es fa ru
en 0.0000
es 0.1622 0.0000
fa 0.1851 0.1688 0.0000
ru 0.1833 0.2239 0.2244 0.0000

Table A.1: Jensen–Shannon divergence between
source domain frequency distribution of different
languages. The datasets are the same ones used in
cross-lingual experiments where train set sizes are
set to 12,238. Bold denotes the closest distributions
and underline denotes the furthest distributions.

en es fa ru
en 0.0000
es 0.4116 0.0000
fa 0.5004 0.2148 0.0000
ru 0.4291 0.1209 0.2141 0.0000

Table A.2: Jensen–Shannon divergence between
target domain frequency distribution of different
languages. The datasets are the same ones used in
cross-lingual experiments where train set sizes are
set to 12,238. Bold denotes the closest distributions
and underline denotes the furthest distributions.
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Language Sentence Annotations

fa
با آغاز، همان از افغانستان، در امریکا اما

. است آمده 2[ دموکراسی ] 1[ س®ح ]

Score: 3.0
Src Concept: WAR(3.0)
Target Concept: DEMOCRACY
Polarity: NEUTRAL
Intensity: 1.0

es
[atorado]1 en la [deuda]2 pública
y sin avances en Estado de Derecho

Score: 3.0
Src Concept: BARRIER(3.0)
Target Concept: DEBT
Polarity: NEGATIVE
Intensity: 2.0

ru
Мировые [деньги]2 [мечутся]1 ,
не зная , куда вложиться .

Score: 3.0
Src Concept: MOVEMENT(3.0)
Target Concept: MONEY
Polarity: NEGATIVE
Intensity: 2.0

Table A.3: Examples of sentences, spans, and annotations for LCC dataset in Farsi, Spanish, and Russian.
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Figure A.2: Source domain frequency in training
set of cross-lingual datasets.

Figure A.3: Target domain frequency in training
set of cross-lingual datasets.
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