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Abstract

The robustness of Text-to-SQL parsers against
adversarial perturbations plays a crucial role in
delivering highly reliable applications. Previ-
ous studies along this line primarily focused
on perturbations in the natural language ques-
tion side, neglecting the variability of tables.
Motivated by this, we propose the Adversarial
Table Perturbation (ATP) as a new attacking
paradigm to measure the robustness of Text-
to-SQL models. Following this proposition,
we curate ADVETA, the first robustness eval-
uation benchmark featuring natural and real-
istic ATPs. All tested state-of-the-art mod-
els experience dramatic performance drops on
ADVETA, revealing models’ vulnerability in
real-world practices. To defend against ATP,
we build a systematic adversarial training ex-
ample generation framework tailored for bet-
ter contextualization of tabular data. Experi-
ments show that our approach not only brings
the best robustness improvement against table-
side perturbations but also substantially em-
powers models against NL-side perturbations.
We release our benchmark and code at:
https://github.com/microsoft/ContextualSP.

1 Introduction

The goal of Text-to-SQL is to generate an exe-
cutable SQL query given a natural language (NL)
question and corresponding tables as inputs. By
helping non-experts interact with ever-growing
databases, this task has many potential applications
in real life, thereby receiving considerable interest
from both industry and academia (Li and Jagadish,
2016; Zhong et al., 2017; Affolter et al., 2019).

Recently, existing Text-to-SQL parsers have
been found vulnerable to perturbations in NL ques-
tions (Gan et al., 2021; Zeng et al., 2020; Deng
et al., 2021). For example, Deng et al. (2021) re-
moved the explicit mentions of database items in a
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Student 
Name

Citizenship Score Semester

A Country X 92 Fall

B Country Y 90 Spring

A Country X 89

B Country Y 85 Fall

C Country Z 97 Spring

Original Table

List names and citizenships of students who 

achieved top 3 scores.

SELECT Student Name, Citizenship FROM Student

ORDER BY Score desc LIMIT 3

SELECT Student Name FROM Student

ORDER BY Score desc LIMIT 3 (Missing Nationality)

SELECT Student Name, Instructor Name, Citizenship

FROM Student ORDER BY Grade desc LIMIT 3

Student 
Name

Nationality Score Semester

A Country X 92 Fall

B Country Y 90 Spring
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Grade

A Country X 92 Fall D 6

B Country Y 90 Spring E 6

A Country X 89 Spring E 6

B Country Y 85 Fall D 5

C Country Z 97 Spring F 5
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Figure 1: Adversarial examples based on table pertur-
bations for a Text-to-SQL parser. Leaving the NL ques-
tion unchanged, both replacement of column names
(e.g., replace “Citizenship” with “Nationality”) and
addition of associated columns (e.g., add “Instructor
Name” based on “Student Name”; add “Grade” based
on “Score”) mislead the parser to incorrect predictions.

question while keeping its meaning unchanged, and
observed a significant performance drop of a Text-
to-SQL parser. Gan et al. (2021) also observed
a dramatic performance drop when the schema-
related tokens in questions are replaced with syn-
onyms. They investigated both multi-annotations
for schema items and adversarial training to im-
prove parsers’ robustness against permutations in
NL questions. However, previous works only stud-
ied the robustness of parsers from the perspective
of NL questions, neglecting variability from the
other side of parser input – tables.

We argue that a reliable parser should also be
robust against table-side perturbations since they
are inevitably modified in the human-machine in-
teraction process. In business scenarios, table main-
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tainers may (i) rename columns due to business de-
mands and user preferences. (ii) add new columns
into existing tables when business demands change.
Consequently, the extra lexicon diversity intro-
duced by such modifications could harm perfor-
mances of unrobust Text-to-SQL parsers. To for-
malize these scenarios, we propose a new attacking
paradigm, Adversarial Table Perturbation (ATP),
to measure parsers’ robustness against natural and
realistic ATPs. In accordance with the two scenar-
ios above, we consider both REPLACE (RPL) and
ADD perturbations in this work. Figure 1 conveys
an intuitive understanding of ATP.

Ideally, ATP should be conducted based on two
criteria: (i) Human experts consistently write cor-
rect SQL queries before and after table perturba-
tions, yet parsers fail; (ii) Perturbed tables look nat-
ural and grammatical, and are free from breakage
of human language conventions. Accordingly, we
carefully design principles for RPL/ADD and man-
ually curate the ADVErsarial Table perturbAtion
(ADVETA) benchmark based on three existing
datasets. All evaluated state-of-the-art Text-to-SQL
models experience drastic performance drops on
ADVETA: On ADVETA-RPL, the average relative
percentage drop is as high as 53.1%, whereas on
ADVETA-ADD is 25.6%, revealing models’ lack
of robustness against ATPs.

Empirically, model robustness can be improved
by adversarial training, i.e. re-train models with
training set augmented with adversarial exam-
ples (Jin et al., 2020). However, due to the dif-
ferent natures of structured tables and unstruc-
tured text, well-established text adversarial exam-
ple generation approaches are not readily appli-
cable. Motivated by this, we propose an effec-
tive Contextualized Table Augmentation (CTA)
approach that better leverages tabular context infor-
mation and carry out ablation analysis. To summa-
rize, the contributions of our work are three-fold:

• To the best of our knowledge, we are the
first to propose definitions and principles of
Adversarial Table Perturbation (ATP) as a
new attacking paradigm for Text-to-SQL.

• We contribute ADVETA, the first benchmark
to evaluate the robustness of Text-to-SQL
models. Significant performance drops of
state-of-the-art models reveals that there is
much more to explore beyond high leader-
board scores.

• We design CTA, a systematic adversarial
training example generation framework tai-
lored for better contextualization of tabular
data. Experiments show that our approach
brings model best robustness gain and low-
est original performance loss, compared with
various baselines. Moreover, we show that
adversarial robustness brought by CTA gener-
alizes well to NL-side perturbations.

2 Adversarial Table Perturbation

We propose the Adversarial Table Perturbation
(ATP) paradigm to measure robustness of Text-to-
SQL models. For an input table and its associated
NL questions, the goal of ATP is to fool Text-to-
SQL parsers by perturbing tables naturally and re-
alistically. More specifically, human SQL experts
can consistently maintain their correct translations
from NL questions to SQL with their understand-
ing of language and table context. Formally, ATP
consists of two approaches: REPLACE (RPL) and
ADD. In the rest of this section, we first discuss
our consideration of table context, then introduce
conduction principles of RPL and ADD.

2.1 Table Context
Tables consist of explicit and implicit elements –
both are necessary for understanding table context.
“Explicit elements” refer to table captions, columns,
and cell values. “Implicit elements”, in our con-
sideration, contains Table Primary Entity (TPE)
and domain. (Relational) Tables are structured
data recording domain-specific attributes (columns)
around some central entities (TPE) (Sumathi and
Esakkirajan, 2007). Without the explicit annotation,
humans could still make correct guesses on them.
For example, it’s intuitive that tables in Figure 1 can
be classified as “education” domain, and all of the
columns center around the TPE “student”. Com-
bining both explicit and implicit elements, people
achieve an understanding of table context, which
becomes the source of lexicon diversity in column
descriptions.

2.2 REPLACE (RPL) Principles
Given a target column, the goal of RPL is to seek
an alternative column name that makes sense to
humans but misleads unrobust models. Gold SQL,
as illustrated in Figure 1, should be correspond-
ingly adapted by mapping the original column to
its new name. In light of this, RPL should fulfill
the following two principles:
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ADVETA Statistics
Spider WTQ WikiSQL

Orig. RPL ADD Orig. RPL ADD Orig. RPL ADD

Basic Statistics
#Total tables 81 81 81 327 327 327 2, 716 2, 716 2, 716
#Avg. columns per table 5.45 – – 6.31 – – 6.41 – –
#Avg. perturbed columns per table – 2.62 3.64 – 2.65 3.27 – 3.70 4.44
#Avg. candidates per column – 3.33 3.97 – 2.90 3.55 – 3.32 3.97
#Unique columns 211 911 1, 061 527 1, 656 2, 976 2, 414 10, 787 10, 474
#Unique vocab 199 598 782 596 1, 156 1, 459 2, 414 4, 147 5, 099

Analytical Statistics
#Unique semantic meanings 144 144 683 156∗ 156∗ 702∗ 203∗ 203∗ 818∗

#Avg. col name per semantic meaning 1.35 6.33 1.55 1.59∗ 5.87∗ 1.64∗ 1.67∗ 6.12∗ 1.52∗

Table 1: ADVETA statistics comparison between original and RPL/ADD-perturbed dev set. The ∗ mark denotes
that results are based on at most 100 randomly sampled tables and obtained by manual count.

Semantic Equivalency: Under the table con-
text of target column, substituted column names are
expected to convey equivalent semantic meaning
as the original name.

Phraseology Correctness: ATP aims to be nat-
ural and realistic and does not target worst-case
attacks. Therefore, replaced column names are
expected to follow linguistic phraseology conven-
tions: (i) Grammar Correctness: Substituted col-
umn names should be free from grammar errors.
(ii) Proper Collocation with TPE: New column
names should collocate properly with TPE. For ex-
ample, height and tallness both collocate well with
student (TPE), but conventionally not altitude. (iii)
Idiomaticity: New column names should sound nat-
ural to a native speaker to address target columns.
For example, runner-up means second place, and
racer-up is a bad replacement despite runner is
synonymous to racer.

2.3 ADD Principles

ADD perturbs tables with introductions of new
columns. Instead of adding random columns that
fit well into the table domain, we pertinently add
adversarial columns with respect to a target column
for the sake of adversarial efficiency. Gold SQL
should remain unchanged after ADD perturbations
1. Below states ADD principles:

Semantic-association & Domain-relevancy:
Given a target column and its table context, newly
added columns are expected to (i) fit nicely into the
table context; (ii) have high semantic associations
with the target column yet low semantic equiva-
lency (e.g. sales vs. profits, editor vs. author).

Phraseology Correctness: Same as RPL,
columns should obey human language conventions.

Irreplaceability: Unlike RPL, any added

1We omit cell value alignment in ADD for simplicity.

columns should be irreplaceable with any origi-
nal table columns. In other words, ADD requires
semantic equivalency to be filtered out from highly
semantic associations. Otherwise, the original gold
SQL will not be the single correct output, which
makes the perturbation unreasonable.

3 ADVETA Benchmark

Following RPL and ADD principles, we manu-
ally curate the ADVErsarial Table perturbAtion
(ADVETA) benchmark based on three mainstream
Text-to-SQL datasets, Spider (Yu et al., 2018),
WikiSQL (Zhong et al., 2017) and WTQ (Paper-
not et al., 2017). For each table from the origi-
nal development set, we conduct RPL/ADD anno-
tation separately, perturbing only table columns.
For its associated NL-SQL pairs, we leave the NL
questions unchanged and adapt gold SQLs accord-
ingly. As a result, ADVETA consists of 3 (Spi-
der/WTQ/WikiSQL) ∗ 2 (RPL/ADD) = 6 subsets.
We next introduce annotation details and character-
istics of ADVETA.

3.1 Annotation Steps

Five vendors join the annotation process. Each base
dev set is split into small chunks and is manually
annotated by one vendor and reviewed by another,
with an inter-annotator agreement to resolve anno-
tation inconsistency.

Before annotation, vendors are first trained to
understand table context as described in § 2, then
are further instructed of the following details.

RPL: RPL principles are the mandatory require-
ments. During annotation, vendors are given full
Google access to ease the conception of synony-
mous names for a target column. ADD: ADD prin-
ciples will be the primary guideline. Unlike free-
style RPL annotations, vendors are provided with
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Name
Citizenship Score Age

A Country X 92 19

B Country Y 89 21

Student

Name
Citizenship Score School Term

A Country X 92 Fall

B Country Y 89 Spring

Student

Name
Citizenship Score

Academic 

Year

A Country X 92 Fall

B Country Y 89 SpringCandidate Tables
WDC

Dense Retrieval
TAPAS

Reranker
Number-batch

Student

Name
Citizenship Score Semester

A Country X 92 Fall

B Country Y 89 Spring

Caption: School Scores Statistics

Top K Similar Tables
... ... ... ...

Tom P Psychology 2018

Lily F Statistics 2016

School Nation Season Medal

Tom P Psychology 2018

Lily F Statistics 2016

Course ID Title Instructor
School 

Term

Tom P Psychology 2018

Lily F Statistics 2016

Student ID Age Department
Enroll

Year

10086 19 Psychology 2018

12319 21 Statistics 2016

Academic Year

….

Enroll Year

School Term

Age

…

Premise Hypothesis e1 e2

Student semester

(Text).

Student academic year

(Text).
0.65 0.85

Student semester

(Text).

Student school term

(Text).
0.94 0.71

Student semester

(Text).

Student season

(Text).
0.35 0.55

Student semester

(Text).

Student age

(Text).
0.05 0.21

… …

Contextualization 
Matching 

(Top 20 )

Dictionary 
Matching

Synonym Dictionary

Primary Entity Predictor
NLI Model

Final Decision Maker
NLI Model“Student”

Target

RPL

RPL

Template: {TPE} {Col Name} ({Col Type})

Student from country Y?

Students with score > 90?

Student A’s score?

ADD

ADD

Candidate Column Names

Column Names  

Student

Name
Citizenship Score

Enroll

Year

A Country X 92 2018

B Country Y 89 2016

RPL Perturbed ADD Perturbed

Figure 2: Overview of our CTA framework. In rare cases where TPE is missing, we apply Primary Entity Predictor (addressed
in B.2). Otherwise we simply use annotated TPE. e1 is obtained with premise-hypothesis as input; e2 with hypothesis-premise.

a list of 20 candidate columns from where they se-
lect 3-5 based on semantic-association2 Notice that
we only consider columns mentioned at least once
across NL questions to avoid vain efforts. In Ap-
pendix A, We display some representative bench-
mark annotation cases.

3.2 ADVETA Statistics and Analysis

We present comprehensive benchmark statistics
and analysis results in Table 1. Notice that we limit
the scope of statistics only to perturbed columns
(as marked by #Avg. perturbed col per table).

Basic Statistics reflects elementary information
of ADVETA. Analytical Statistics illustrate high-
lighted features of ADVETA compared with orig-
inal dev-sets: (i) Diverse column names for a sin-
gle semantic meaning: each table from the RPL
subset contains approximately five times more lexi-
cons which are used to express a single semantic
meaning3. (ii) Table concept richness: each table
from ADD subset contains roughly five times more
columns with unique semantic meanings.

4 Contextualized Table Augmentation

In this section, we introduce our Contextualized
Table Augmentation (CTA) framework as an ad-
versarial training example generation approach tai-
lored for tabular data. The philosophy of adversar-
ial example generation is straightforward: Pushing

2We generate the candidate list with a retriever-reranker
combo from § 4.

3For example, column names {Last name, Family name,
Surname} express a single semantic meaning. In practice, we
random sample at most 100 tables from each split, and obtain
the number of unique semantic meanings by manual count.

augmented RPL/ADD lexicon distributions closer
to human-agreeable RPL/ADD distributions. This
requires maximization of lexicon diversity under
the constraints of domain relevancy and clear differ-
entiation between semantic association & semantic
equivalency, as stated in ADD principle from § 2.

Well-established text adversarial example gen-
eration approaches, such as TextFooler (Jin et al.,
2020) and BertAttack (Li et al., 2020), might fail to
meet this objective because: (i) They rely on syn-
tactic information (e.g. POS-tag, dependency, se-
mantic role) to perform text transformations. How-
ever, such information is not available in structured
tabular data, leading to poor-quality adversarial ex-
amples generated by these approaches. (ii) They
perform sequential word-by-word transformations,
which could narrow lexicon diversity (e.g. writ-
ten by will not be replaced by author). (iii) They
cannot leverage tabular context to ensure domain
relevancy. (iv) They generally fail to distinguish
semantic equivalency from high semantic associ-
ation according to our observations (e.g., fail to
distinguish sales vs. profits).

To tackle these challenges, we construct the
CTA framework. Given a target column from a ta-
ble with NL questions, (i) a dense table retriever
properly contextualizes the input table, thereby pin-
pointing top-k most domain-related tables (and
columns) from a large-scale database while boost-
ing lexicon diversity. (ii) A reranker further
narrows down semantic-association and produces
coarse-grained ADD/RPL candidates. (iii) NLI de-
cision maker distinguishes semantic equivalency
from semantic association and allocates candidate
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columns to RPL/ADD buckets. A detailed illustra-
tion of our CTA framework is shown in Figure 2.
We next introduce each component of CTA.

4.1 Dense Retrieval for Similar Tables

The entire framework starts with a dense retrieval
module to gather most domain-related tables of
user queries. We utilize the Tapas-based (Herzig
et al., 2020) dense retriever in this module (Herzig
et al., 2021), due to its better tabular contextualiza-
tion expressiveness over classical retrieval meth-
ods such as Word2Vec (Mikolov et al., 2013) and
BM25 (Robertson, 2009). Following the original
usage proposed by Herzig et al. (2020), we re-
trieve the top 100 most domain-related tables from
the backend Web Data Commons (WDC) (Lehm-
berg et al., 2016) database consisting of 600k non-
repetitive tables with at most five columns.

4.2 Numberbatch Reranker

From these retrieved domain-related tables, we
further narrow down the range of most semanti-
cally associated candidate columns. This is done
by a ConceptNet Numberbatch word embedding
(Speer et al., 2017) reranker, who computes the
cosine similarity score for a given column pair. We
choose ConceptNet Numberbatch due to its advan-
tage of far richer (520k) in-vocabulary multi-grams
compared with Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and Counter-
fitting (Mrkšić et al., 2016), which is especially
desirable for multi-gram columns. We keep the top
20 similar among them as RPL/ADD candidates
for each column of the original table.

4.3 Word-level Replacement via Dictionary

Aside from candidates obtained from retriever-
reranker for whole-column level RPL, we consider
word-level RPL for a target column as a comple-
ment. Specifically, we replace each word in a
given target column with its synonyms recorded in
the Oxford Dictionary (noise is more controllable
compared with synonyms gathered by embedding).
With a probability 25% for each original word to
remain unchanged, we sample until the max pre-
defined number (20) of candidates is reached or 5
consecutively repeated candidates are produced.

4.4 NLI as Final Decision Maker

So far we have pinpointed candidate columns
whose domain relevancy and semantic association

are already guaranteed. The final stage is to deter-
mine which one of RPL/ADD candidates is more
suitable for based on its semantic equivalent against
target column. Therefore, we leverage RoBERTa-
MNLI (Liu et al., 2019; Williams et al., 2017), the
expert in differentiating semantic equivalency from
semantic association4. Practically, we construct
premise-hypothesis by contextualized columns and
judge semantic equivalency based on output bidi-
rectional entailment scores e1 and e2.

NLI Premise-Hypothesis Construction The
Quality of premise-hypothesis plays a key factor
for NLI’s functioning. We identify three potentially
useful elements for contextualizing columns with
surrounding table context: TPE, column type, and
column cell value. Through manual experiments,
we observe that: (i) Adding cell value significantly
hurt decision accuracy of NLI models. (ii) TPE is
the most important context information and cannot
be ablated. (iii) Column type information can be
a desirable source for word-sense disambiguation.
Thus the final template for premise-hypothesis con-
struction as python formatted string is expressed
as: f“{TPE} {CN} ({CT}).”, where CN is
column name, and CT is column type.

RPL/ADD Decision Criterion In practice, we
observe a discrepancy in output entailment
scores between premise-hypothesis score e1 and
hypothesis-premise score e2. Thus we take scores
from both direction into consideration. For RPL,
we empirically choose min(e1, e2) >= 0.65
(Figure 2) as the final RPL acceptance criterion
to reduce occurrences of false positive entail-
ment decision. For ADD, the criterion is instead
max(e1, e2) <= 0.45 to reduce false negative en-
tailment decisions5.

5 Experiments and Analysis

5.1 Experimental Setup
Datasets and Models The five original Text-to-
SQL datasets involves in our experiments are: Spi-
der (Yu et al., 2018), WikiSQL (Zhong et al.,
2017), WTQ (Shi et al., 2020)6, CoSQL (Yu et al.,
2019a) and SParC (Yu et al., 2019b). Their corre-
sponding perturbed tables are from our ADVETA

4We highly recommend reading our pilot study in B.1.
5To avoid semantic conflict between a new column c̃ and

original columns c1, · · · , cn, we apply to each pair of (c̃, ci).
6Note that we use the version with SQL annotations pro-

vided by Shi et al. (2020) here, since the original WTQ (Pasu-
pat and Liang, 2015) only contains answer annotations.
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Dataset Baseline Dev RPL ADD

Spider
DuoRAT 69.9 23.8± 2.1

(-46.1)
36.4± 1.3

(-33.5)
ETA 70.8 27.6± 1.8

(-43.2)
39.9± 0.9

(-30.9)

WikiSQL
SQLova 81.6 27.2± 1.3

(-54.4)
66.2± 2.3

(-15.4)
CESQL 84.3 52.2± 0.9

(-32.1)
71.2± 1.5

(-13.1)

WTQ SQUALL 44.1 22.8± 0.5
(-21.3)

32.9± 0.8
(-11.2)

CoSQL
EditSQL 39.9 13.3± 0.7

(-26.6)
30.5± 1.1

(-9.4)
IGSQL 44.1 16.4± 1.2

(-27.7)
32.8± 2.1

(-11.3)

SParC
EditSQL 47.2 30.5± 0.9

(-16.7)
40.2± 1.2

(-7.0)
IGSQL 50.7 34.2± 0.5

(-16.5)
42.9± 1.7

(-7.8)

Table 2: Results on original dev and ADVETA (RPL
and ADD subsets). Red fonts denote absolute percent-
age performance drop compared with original dev.

benchmark. WikiSQL and WTQ are single-table,
while Spider, CoSQL, and SParC have multi-tables.
CoSQL and SParC are known as multi-turn Text-to-
SQL datasets, sharing the same tables with Spider.
Dataset statistics are shown in Appendix Table 11.

We evaluate open-source Text-to-SQL models
that reach competitive performance on the afore-
mentioned datasets. DuoRAT (Scholak et al., 2021)
and ETA (Liu et al., 2021) are baselines for Spider;
SQUALL (Shi et al., 2020) is the baseline for WTQ;
SQLova (Hwang et al., 2019) and CESQL (Guo
and Gao, 2019) are baselines for WikiSQL. For the
two multi-turn datasets (CoSQL & SParC), base-
lines are EditSQL (Zhang et al., 2019) and IGSQL
(Cai and Wan, 2020). Exact Match (EM) is em-
ployed for evaluation metric across all settings.
Training details are shown in C.2.

5.2 Attack
Attack Details All baseline models are trained
from scratch on corresponding original training
sets, and then independently evaluated on origi-
nal dev sets, ADVETA-RPL and ADVETA-ADD.
Since columns have around three manual candi-
dates in ADVETA-RPL/ADD, the number of possi-
ble perturbed tables scales exponentially with col-
umn numbers for a given table from the original dev
set. Therefore, models are evaluated on ADVETA-
RPL/ADD by sampling perturbed tables. For each
NL-SQL pair and associated table(s), we sample
one RPL-perturbed table and one ADD-perturbed
table in each attack. Each column mentioned from
gold SQL is perturbed by a randomly sampled man-

ual candidate from ADVETA. For performance
stability and statistical significance, we run five
attacks with random seeds for each NL-SQL pair.

Attack Results Table 2 presents the performance
of models on original dev sets, ADVETA-RPL and
ADVETA-ADD. Across various task formats, do-
mains, and model designs, state-of-the-art Text-
to-SQL parsers experience dramatic performance
drop on our benchmark: by RPL perturbations,
the relative percentage drop is as high as 53.1%,
whereas on ADD the drop is 25.6% on average7.
Another interesting observation is that RPL consis-
tently leads to higher performance drops than ADD.
This is perhaps due to models’ heavy reliance on
lexical matching, instead of true understanding of
language and table context. Conclusively, Text-to-
SQL models are still far less robust than desired
against variability from the table input side.

Attack Analysis To understand the reasons for
parsers’ vulnerability, we specifically analyze their
schema linking modules which are responsible for
recognizing table elements mentioned in NL ques-
tions. This module is considered a vital compo-
nent for Text-to-SQL (Wang et al., 2020; Scholak
et al., 2021; Liu et al., 2021). We leverage the
oracle schema linking annotations on Spider (Lei
et al., 2020) and test ETA model on ADVETA us-
ing the oracle linkings. Note that we update the
oracle linkings accordingly when testing on RPL.
Table 4 compares the performance of ETA with or
without the oracle linkings, from which we make
two observations: (i) When guided with the oracle
linkings, ETA performs much better on both RPL
(27.6% → 55.7%) and ADD (39.9% → 71.3%).
Therefore, the failure in schema linking is one of
the essential causes for the vulnerability of Text-
to-SQL parsers. (ii) Even with the oracle linkings,
the performance of ETA on RPL and ADD still
lags behind its performance on the original dev set,
especially on RPL. Through a careful analysis on
failure cases, we find that ETA still generates table
elements that have a high degree of lexical match-
ing with NL questions, even though the correct
table elements are specified in the oracle linkings.

5.3 Defense

Defense Details We carry defense experiments
with SQLova, SQUALL and ETA on WikiSQL,
WTQ and Spider, respectively. We compare CTA

7Average relative performance presented in Appendix C.3.
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Approach
WikiSQL WTQ Spider

Dev RPL ADD Dev RPL ADD Dev RPL ADD

Orig. 81.6 27.2±1.3 66.2±2.3 44.1 22.8±0.5 32.9±0.8 70.8 27.6±1.8 39.9±0.9
BA 80.1±0.2 56.8±0.8 77.9±0.5 43.9±0.3 33.6±0.4 42.8±0.7 68.1±0.5 26.9±1.1 43.1±0.7
TF 80.5±0.3 57.7±0.7 77.7±0.4 43.7±0.4 35.2±0.5 42.6±0.6 67.9±0.6 28.4±1.2 42.2±0.6
W2V 80.8±0.1 60.7±1.1 78.2±0.6 43.4±0.1 36.8±0.6 42.2±0.9 68.3±0.2 30.1±1.3 43.3±1.4
MAS – – – – – – 69.1±0.3 27.3±0.7 35.3±0.5

CTA 81.2± 0.1 69.2± 0.5 79.9± 0.3 44.1± 0.1 41.8± 0.3 44.6± 0.5 69.8± 0.1 35.8± 0.5 50.6± 0.1
w/o Retriver 81.0±0.2 68.1±0.2 78.1±0.5 44.0±0.2 40.6±0.2 42.1±0.3 69.7±0.3 34.7±0.5 43.0±0.8
w/o MNLI 80.6±0.3 61.3±0.5 78.6±0.2 43.8±0.1 36.9±0.3 43.1±0.2 69.6±0.2 29.8±0.2 47.8±0.2

Table 3: Defense results on ADVETA (RPL and ADD subsets). Avg. EM and fluctuations of 5 runs are reported.
Orig. denotes performance without defense from Table 2.

Schema Linking Dev RPL ADD

w/o oracle 70.8 27.6
(-43.2)

39.9
(-30.9)

w/ oracle 75.2 55.7
(-19.5)

71.3
(-3.9)

Table 4: Schema linking analysis of ETA on Spider.

with three baseline adversarial training approaches:
Word2Vec (W2V), TextFooler (TF) (Jin et al.,
2020), and BERT-Attack (BA) (Li et al., 2020)
(details found in D.). Models are trained from
scratch on corresponding augmented training sets.
Specifically, for each NL-SQL pair, we keep the
original table while generating one RPL and one
ADD adversarial example. As a result, augmented
training data is three times as large in the sense
that each NL-SQL pair is now trained against
three tables: original, RPL-perturbed, and ADD-
perturbed. In addition to the adversarial training
defense paradigm, we also include the manual ver-
sion of Multi-Annotation Selection (MAS) by Gan
et al. (2021) on Spider, using their released data.
The rest evaluation process is same as attack.

Defense Results Table 3 presents model perfor-
mance through various defense approaches. We get
two observations: (i) CTA consistently brings bet-
ter robustness. Compared with other approaches,
CTA-augmented models have the best performance
across all ADVETA-RPL/ADD settings, as well
as on all original dev sets. These results demon-
strate CTA can effectively improve the robustness
of models against RPL and ADD perturbations
while introducing fewer noises into original train-
ing sets. Interestingly, we observe that textual ad-
versarial example generation approaches (BA, TF)
are outperformed by the simple W2V approach.
This verifies our analysis stated in § 4. We include
a case study in Appendix B.3 on characteristics of
various baselines.

Method ColP ColR ColF TabP TabR TabF

ETA 85.4 36.8 51.4 61.3 63.4 62.3
W2VRPL 86.1 40.2 54.8 70.4 72.6 71.5
CTARPL 88.1 50.8 64.4 80.1 85.4 82.7

ETA 86.3 60.2 70.9 71.2 75.8 73.4
W2VADD 86.5 63.7 73.4 75.9 82.1 78.9
CTAADD 88.1 70.2 78.2 83.6 89.5 86.4

Table 5: The schema linking analysis of attacking with
ETA and two defense approaches, namely W2V and
CTA on Spider; Col as column and Tab as table. P, R, F
is short for precision, recall and F1 score, respectively.

(ii) CTA fails to bring models back to their orig-
inal dev performance. Even if trained with high-
quality data augmented by CTA, models could still
be far worse than their original performance. This
gap is highly subjected to the similarity of lexicon
distribution between train and dev set. Concretely,
on WikiSQL and WTQ where train and dev set
have a similar domain, both RPL performance and
ADD performance are brought back closer to origi-
nal dev performance when augmented with CTA.
On the contrary, on Spider where train-dev domains
overlap less, there is still a notable gap between per-
formance after adversarial training and the original
dev performance. In conclusion, more effective
defense paradigms are yet to be investigated.

Defense Analysis Following attack analysis, we
conduct schema linking analysis with ETA model
augmented with top 2 approaches (i.e. W2V &
CTA) on Spider. We follow metric calculation of
(Liu et al., 2021) and details are shown in § C.4.
As shown in Table 5, both approaches improve the
schema linking F1. Specifically, CTA improves col-
umn F1 by 3% ∼ 8%, and table F1 by 13% ∼ 20%,
compared with vanilla ETA. This reveals that im-
provement of robustness can be primarily attributed
to better schema linking.

Some might worry about the validity of the
CTA’s effectiveness due to data leakage risks in-
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Model Spider Spider-Syn

RAT-SQLBERT (Wang et al., 2020) 69.7 48.2
RAT-SQLBERT+MAS (Gan et al., 2021) 67.4 62.6

ETA (Liu et al., 2021) 70.8 50.6
ETA+CTA 69.8 60.4

Table 6: EM on Spider/Spider-Syn dev-sets.

curred by the annotation design that vendors are
given CTA-retrieved candidate list for ADD anno-
tations. However, we emphasize that: (i) RPL have
NO vulnerability to data leakage since it is entirely
independent of CTA. (ii) The leakage risk in ADD
is negligible. On the one hand, our vast-size (600k
tables) backend DB supplies tremendous data di-
versity, maximally reducing multiple retrievals of
a single table; On the other hand, CTA’s superior
performance on Spider, the representative feature
of which is cross-domain & cross-database across
train-test splits (thus makes performance gain from
data leakage hardly possible), further testifies its
authentic effectiveness.

5.4 CTA Ablation Study

We carry out an ablation study to understand the
roles of two core components of CTA: dense re-
triever and RoBERTa-MNLI. Results are shown in
Table 3.

CTA w/o Retriever RPL candidates are gener-
ated merely from the dictionary; ADD generation
is the same as W2V baseline. Compared with com-
plete CTA, models augmented with this setting
experience 1.1% ∼ 1.2% and 1.8% ∼ 7.6% per-
formance drop on RPL and ADD, respectively. We
attribute RPL drops to loss of real-world lexicon
diversity and ADD drops to loss of domain rele-
vancy.

CTA w/o MNLI RPL and ADD candidates are
generated in the same way as CTA, but without
denoising of MNLI. RPL/ADD decisions solely
rely on ranked semantic similarity. Compared
with complete CTA, models augmented by this
setting experience significant performance drops
(4.9% ∼ 7.9%) on all RPL subsets, and moderate
drops (1.5% ∼ 2.8%) on all ADD subsets. We
attribute these drops to the inaccurate differentia-
tion between semantic equivalency and semantic
association due to lack of MNLI, which results in
noisy RPL/ADD adversarial examples.

5.5 Generalization to NL Perturbations

Beyond CTA’s effectiveness against table-side per-
turbations, a natural question follows: could re-
training with adversarial table examples improve
model robustness against perturbations from the
other side of Text-to-SQL input (i.e., NL ques-
tions)? To explore this, we directly evaluate ETA
(trained with CTA-augmented Spider train-set) on
Spider-Syn dataset (Gan et al., 2021), which re-
places schema-related tokens in NL question with
its synonym. We observe an encouraging 9.8% EM
improvement compared with vanilla ETA (trained
with Spider train-set). This verifies CTA’s gener-
alizability to NL-side perturbations, with compa-
rable effectiveness as the previous SOTA defense
approach MAS, which fails to generalize to table-
side perturbations on ADVETA in Table 3.

6 Related Work

Robustness of Text-to-SQL As discussed in § 1,
previous works (Gan et al., 2021; Zeng et al., 2020;
Deng et al., 2021) exclusively study robustness of
Text-to-SQL parsers against perturbations in NL
question inputs. Our work instead focuses on vari-
ability from the table input side and reveals parsers’
vulnerability to table perturbations.

Adversarial Example Generation Existing
works on adversarial text example generations can
be classified into three categories: (1) Sentence-
Level. This line of work generates adversarial
examples by introducing distracting sentences or
paraphrasing sentences (Jia and Liang, 2017; Iyyer
et al., 2018). (2) Word-Level. This dimension of
work generates adversarial examples by flipping
words in a sentence, replacing words with their
synonyms, and deleting random words (Li et al.,
2020; Ren et al., 2019; Jin et al., 2020). (3)
Char-Level. This line of work flips, deletes,
and inserts random chars in a word to generate
adversarial examples (Belinkov and Bisk, 2018;
Gao et al., 2018). All the three categories of
approaches have been widely used to reveal
vulnerabilities of high-performance neural models
on various tasks, including text classification
(Ren et al., 2019; Morris et al., 2020), natural
language inference (Li et al., 2020) and question
answering (Ribeiro et al., 2018). Previous work on
robustness of Text-to-SQL and semantic parsing
models primarily adopt word-level perturbations
to generate adversarial examples (Huang et al.,
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2021). For example, the Spider-Sync adversarial
benchmark (Gan et al., 2021) is curated by
replacing schema-related words in questions with
their synonyms.

Despite these methods’ effectiveness in generat-
ing adversarial text examples, they are not readily
applicable for structural tabular data, as we dis-
cussed in § 4. Apart from this, table-side perturba-
tions enjoy much higher attacking efficiency: the
attack coverage of a single table modification in-
cludes all affiliated SQLs, whereas one NL-side
perturbation only affects a single SQL. Combined
with the lighter cognitive efforts of tabular con-
text understanding than NL-understanding, ATP is
arguably lower in annotation costs.

Previous work on table perturbations (Cartella
et al., 2021; Ballet et al., 2019) focuses on table
cell values; another work, (Ma and Wang, 2020)
study impacts of naively (i.e., without considera-
tion of table context information and without hu-
man guarantee) renaming irrelevant columns and
adding irrelevant columns. In this work, we focus
on table columns and propose an effective CTA
framework that better leverages tabular context in-
formation for adversarial example generation, as
well as manually annotate ADVETA benchmark.

7 Conclusion

We introduce Adversarial Table Perturbation
(ATP), a new paradigm for evaluating model ro-
bustness on Text-to-SQL and define its conduction
principles. We curate the ADVETA benchmark, on
which all state-of-the-art models experience dra-
matic performance drop. For defense purposes, we
design the CTA framework tailored for tabular ad-
versarial training example generation. While CTA
outperforms all baseline methods in robustness en-
hancement, there is still an unfilled gap from the
original performance. This calls for future explo-
ration of the robustness of Text-to-SQL parsers
against ATP.

Ethical Considerations

Our ADVETA benchmark presented in this work is
a free and open resource for the community to study
the robustness of Text-to-SQL models. We col-
lected tables from three mainstream Text-to-SQL
datasets, Spider (Yu et al., 2018), WikiSQL (Zhong
et al., 2017) and WTQ (Papernot et al., 2017),
which are also free and open datasets for research
use. For the table perturbation step, we hire profes-

sional annotators to find suitable RPL/ADD candi-
dates for target columns. We pay the annotators at
a price of 10 dollars per hour. The total time cost
for annotating our benchmark is 253 hours.

All the experiments in this paper can be run on
a single Tesla V100 GPU. Our benchmark will be
released along with the paper.
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A Benchmark Examples

We display some representative benchmark annota-
tion cases for to convey readers a intuitive feeling
on our RPL and ADD subsets. As reflected in Fig-
ure 3, RPL reflects the following characteristics
beyond RPL principles: (i) Abbreviation of com-
mon words. e.g. Cell number vs. Tel. (ii) Idiomatic
transformation e.g. Air date vs. Release time (iii)
Part of speech structure transformation e.g. Written
by vs. Author. ADD perturbations faithfully obey
ADD principles and additions demonstrate high
coherency with respect to original domain.

B CTA Details

B.1 NLI-based Substitutability Verification

Approach e1 e2 ∆e1 ∆e2

Roberta-RTE
human 48.5 48.1 0.65 0.46
embedding 45.7 45.6 0.26 0.30
ranodm 43.0 42.8 0.53 0.70

Roberta-SNLI
human 74.5 74.1 0.48 0.61
embedding 56.7 66.0 0.75 0.37
ranodm 31.2 30.9 0.78 0.64

Roberta-MNLI
human 77.1 76.4 0.86 0.36
embedding 52.2 58.7 0.34 0.69
ranodm 16.5 14.8 0.50 0.49

Table 7: Average foward entailment score e1, backward
entail e2, and corresponding standard deviations across
9 settings. In all human annotation cases, higher entail-
ment is better. In all random replacement cases, lower
is better.

Implementation Details For each pair of tar-
get column and candidate column, we contextu-
alize each column with the template described in
Premise-Hypothesis Construction from section § 4.
Then with the contextualized target column as the
premise and the contextualized RPL candidate as
the hypothesis, the NLI model computes both for-
ward entailment score e1 and backward score e2.
Notice that e2 computation takes the contextualized
RPL candidate as premise and the contextualized
target column as hypothesis in input. We obtain
entailment scores from both directions because of
the observed score fluctuation caused by reversion
in practicable cases.

2018

http://arxiv.org/abs/1909.00161
http://arxiv.org/abs/1909.00161
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537


Date of birth Abandoned yes or no Date arrived Date departed

Birthday
Born day
Born time

Abandoned ?
Is abandoned

When reached
Time of arrival

Arrived at

Time left
Time of Departure

Left at

First name Last name Cell number Homepage

Given name
Forename

Family name
Surname

Tel.
Mobile #

Phone No.

Website
Webpage

Personal site URL

Movie name Air date Directed by Written by

Movie Title
Title

Release time
Initial release day

First show time

Director
Conductor

Conducted by

Author
Authored by

Writer

Singer name Album name Citizenship Net work millions

Composer name
Director name

Artist manager name

Song name
Genre name

Song number

Issue region
Home address
Passport type

Total downloads
Best sale amounts

Total works

Country Code Continent Population GNP

Government code
State name

Zipcode

Industry
Geographical measure

Longitude

Households
Density

Core city population

Currency
Total oil consumption

Net oil export

Venue Home team Opponent High points

Country
Final position

Round

Home or away
Home team score

Home stadium

Opponent score
Opponent avg. rank

Champion

Point per game
Average points
Goal per game

RPL Annotations ADD Annotations 

Figure 3: RPL and ADD annotation examples from our ATP benchmark. Rows with shallow colors are original
headers, whereas those deep-shaded ones are our human annotations.

Pilot Study for Model Ability We carry out a
pilot study to test NLI models’ capability of dif-
ferentiating semantic equivalency and similarity in
this section. RoBERTa (Liu et al., 2019) is chosen
as the backbone model due to its outstanding perfor-
mance and computational efficiency across various
NLI datasets. Fine-tuned RoBERTa on three well-
known NLI datasets: RTE (Dagan et al., 2013),
SNLI (Bowman et al., 2015), and MNLI (Williams
et al., 2017) are compared to demonstrate model
ability difference due to training data,.

We consider three levels of substitutability,
from highest to lowest: human manual substitu-
tion (human-annotated replacements sampled from
benchmark RPL subsets), embedding-based sub-
stitution (top-10 similar multi-grams from Con-
ceptNet Numberbatch word embedding (Speer
et al., 2017)), and random substitution (randomly
sampled columns across benchmark(Speer et al.,
2017)). Practically, we randomly sample 1000
pairs of data each time and repeat each setting five
times.

We report the both average forward e1 and back-
ward entailment scores e2, as well their standard
deviations for each setting across five runs (table
8). It is immediately obvious that RoBERTa-MNLI
surpasses other models in verbal dexterity: the en-
tailment score correlates best with true degrees of
substitutability.

Performance on SimLex-999 SimLex-999 (Hill
et al., 2015b) is a gold standard resource for mea-
suring how well models capture similarity, rather

Approach ρ

Word2Vec (Mikolov et al., 2013) 0.37
Glove (Pennington et al., 2014) 0.41
Glove + Counter-fitting (Mrksic et al., 2016) 0.58
NMT Emedding (Hill et al., 2015a) 0.58
aragram-SL999 (Wieting et al., 2015) 0.69
RoBERTa-MNLI (ours) 0.70

Table 8: Results on SimLex-999. ρ ( Perason correla-
tion) is used as the primary metric.

than relatedness or association between a input pair
of words (e.g. cold and hot are closely associated
but definitely not similar). Thus it is especially suit-
able for our purpose of further testing RoBERTa-
MNLI’s ability of semantic discrimination. We
treat the entailment score produced by the model
as its judgment of semantic similarity and report its
Pearson correlation against the ground truth simi-
larity score. Results suggest that RoBERTa-MNLI
is quite competitive at discriminating association
and relatedness from similarity.

Case Study To test the hard case performance of
RoBERTa-MNLI, we come up with some tricky
examples as shown in Table 9. The upper half of
the table presents hard replaceable cases that em-
phasize idiomatic transformations or word-sense
disambiguation. The lower half contains hard ir-
replaceable cases in which phrases have a high
degree of conceptual association, yet still not se-
mantically equivalent. Results reveal the surpris-
ingly abundant and accurate lexicon knowledge
condensed in RoBERTa-MNLI.
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Premise Hypothesis ENT NON-ENT

Replaceable
Runner-up. Second place. 97.1 2.9
First name. Given name. 93.7 6.3
Airline code. Airline number. 82.3 17.7
Cartoon air date. Cartoon release time. 91.4 8.6
Book author. Book written by. 97.8 2.2

Irreplaceable
Student height. Student altitude. 26.9 73.1
Company sales. Company profits. 1.9 98.1
People killed. People injured. 2.1 97.9
Population number. Population code. 37.1 62.9
Political party. Political celebration. 27.5 72.5

Table 9: Hard cases we come up with to explore
upper-bounds of Roberta-MNLI ability. ENT as entai-
ment score, NON-ENT as contradiction + neutral score.
Score of expected label is bolded.

B.2 Zero-shot TPE Classification
We build the previous premise-hypothesis construc-
tion in § 4.4 based on the assumption of availability
of TPE, which is frequently not true. Thus our
goal is to make a reasonable prediction on TPE
for those missing cases. Practically, we make use
HuggingFace (Wolf et al., 2020) implementation
of zero-shot text classification (Yin et al., 2019)
to classify missing TPE into 48 pre-defined cate-
gories with the input of concatenated table caption,
columns, and cell values.

Implementation Details Based on the 60+ fine-
grained categories defined in Few-NERD (Ding
et al., 2021), We modify and integrate them into
48 classes as candidate labels (|L| = 48). With a
Roberta-MNLI as the workhorse model, our overall
modeling process is modeled as

c̃t = arg max
i

exp(fθ(Li | d; c;v; d)ent)∑
j∈|L| exp(fθ(Lj | d; c;v)ent)

where c is column names, v is a randomly selected
column value affiliated with a given column, and d
is table captions for a given table. Roberta-MNLI
(annotated as fθ) outputs raw logits of contradic-
tion, neutral, and entailment scores. Softmax is fi-
nally applied entailment logits across 48 categories,
with the top 1 label as final the primary entity pre-
diction.

Human evaluation We randomly sample 100 ta-
bles from our benchmark and ask three vendors to
rate the reasonability of each predicted TPE from a
scale of 1−5. 1 as totally unreasonable, 3 as mildly
acceptable, and 5 as perfectly parallel with human
guesses. We average out the rating from all three

vendors and get a result of 4.13. This indicates the
practicability of zero-shot TPE classification.

B.3 Perturbation Case Study

In this section, we present a case study on adver-
sarial training examples generated by CTA and
baseline approaches in Table 10. We can make the
following observations: (i) CTA tend to produce
less low-frequency words (e.g. padrone, neosurre-
alist) in both RPL and ADD i.e. lower perplexity.
(ii) CTA-generated samples fit better with the speci-
ficity level of table columns. For example, RPL
pair (region, sphere) is overly broadened, whereas
names such ballads denomination, supermanager,
thespian might be overly specified to fit into ta-
ble headers. (iii) CTA incurs least semantic drift
in RPL. In all baseline methods, there is a good
chance to observe semantic-distinctive pairs such
as (region, member), (type, number), (type, guy).
With CTA, such risk is minimal.

C Experimental Details

C.1 Original Datasets statistics

The detail statistics of five Text-to-SQL datasets
are shown in Table 11. According to CoSQL (Yu
et al., 2019a) and SParC (Yu et al., 2019b) paper,
the two multi-turn Text-to-SQL datasets share the
same tables with Spider (Yu et al., 2018).

C.2 Baseline Details

SQLova For all defense results of the WikiSQL
dataset, we employ the SQLova model, whose of-
ficial codes are released in (Hwang et al., 2019).
We use uncased BERT-large as the encoder. The
learning rate is 1 × 10−3 and the learning rate of
BERT-large is 1× 10−5. The training epoch is 30
with a batch size of 12. The training process lasts
12 hours on a single 16GB Tesla V100 GPU.

SQUALL We employ the SQUALL model, fol-
lowing (Shi et al., 2020), to get all defense results
of the WTQ dataset. The training epoch is 20 with
a batch size of 30; The dropout rate is 0.2; The
training process lasts 9 hours on a single 16GB
Tesla V100 GPU.

ETA We implement the ETA model following
(Liu et al., 2021). We use an uncased BERT-large
whole word masking version as the encoder. The
learning rate is 5× 10−5 and the training epoch is
50. The batch size and gradient accumulation steps
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Perturbation Table Context BA TF W2V CTA

RPL

club id
region
name

member
regional
district

districts
zones
sphere

regionary
location
regions

place
location
district

author id
type
title

types
number
style

guy
genus
categories

typeful
example
sort

category
genre
kind

singer id
song name
country

songs title
singer name
chorus name

ballads denomination
ballads appointments
song designation

name
polynymous
folk-song name

music name
song title
music designation

ADD

course id
semester
section id

classes
honors
session

sophomore
majoring
freshman

studential
intersession
undergraduate

school
enrollment
university

artist id
artist
age

composition
creator
design

musicianship
thespian
arranger

tachiste
neosurrealist
creative person

publisher
album
genre

movie id
director
year

designer
operator
composer

officers
padrone
guide

corporate leader
supermanager
executive

producer
scenarist
writer

Table 10: Adversarial training examples generated by CTA and baseline approaches. Words with red color font are
target columns.

Datasets
Train Dev

#T #Q #Avg. Col #T #Q #Avg. Col

WTQ 1, 290 9, 030 6.39 327 2, 246 6.41
WikiSQL 18, 590 56, 355 6.40 2, 716 8, 421 6.31
Spider 795 6, 997 5.52 81 1, 034 5.45
CoSQL 795 9, 478 5.52 81 1, 299 5.45
SParC 795 12, 011 5.52 81 1, 625 5.45

Table 11: Original datasets statistics. #T represents
total number of tables in a dataset (#Q for questions).
#Avg. Col stands for avg. number of columns per table.
Spider, CoSQL and SParC share the same tables.

are 6 and 4. The training process lasts 24 hours on
a single 32GB Tesla V100 GPU.

C.3 Attack Performance Calculation Details

Table 12 shows the attack performance of RPL and
ADD perturbations. In this section, we show the
calculation details of the average attack relative
performance drop. For example, on the Spider
dataset, the relative performance drop of the Duo-
RAT model against RPL perturbation is 65.9%, and
61.0% for the ETA model. For RPL perturbation,
we average out the relative performance drop of 9
models and report the average relative percentage
drop (53.1%). Same as RPL, we get the average
relative percentage drop (25.6%) for ADD pertur-
bation.

Dataset Baseline Dev RPL ADD

Spider
DuoRAT 69.9 23.8± 2.1

(-46.1 / -65.9%)
36.4± 1.3
(-33.5 / -47.9%)

ETA 70.8 27.6± 1.8
(-43.2 / -61.0%)

39.9± 0.9
(-30.9 / -43.6%)

WikiSQL
SQLova 81.6 27.2± 1.3

(-54.4 / -66.7%)
66.2± 2.3
(-15.4 / -18.9%)

CESQL 84.3 52.2± 0.9
(-32.1 / -38.1%)

71.2± 1.5
(-13.1 / -15.5%)

WTQ SQUALL 44.1 22.8± 0.5
(-21.3 / -48.3%)

32.9± 0.8
(-11.2 / -25.4%)

CoSQL
EditSQL 39.9 13.3± 0.7

(-26.6 / -66.7%)
30.5± 1.1
(-9.4 / -23.6%)

IGSQL 44.1 16.4± 1.2
(-27.7 / -62.8%)

32.8± 2.1
(-11.3 / -25.6%)

SParC
EditSQL 47.2 30.5± 0.9

(-16.7 / -35.4%)
40.2± 1.2
(-7.0 / -14.8%)

IGSQL 50.7 34.2± 0.5
(-16.5 / -32.5%)

42.9± 1.7
(-7.8 / -15.4%)

Table 12: The Exact Match Accuracy on the devel-
opment set and ADVETA. Red font denotes the abso-
lute(left) and relative(right) performance drop percent-
age compared with original dev accuracy.

C.4 Schema Linking Calculation

We follow the work of Liu et al. (2021) to measure
the performance of ETA schema linking predic-
tions. Let Ωcol be a set {(c, q)i|1 ≤ i ≤ N} which
contains N gold (column-question token) tuples.
Let Ωcol be a set {(c, q)j |1 ≤ j ≤ M} which
contains M predicted (column-question token) tu-
ples. We define the precision(ColP ), recall(ColR),
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F1-score(ColF ) as:

|Γcol|∣∣Ωcol

∣∣ , |Γcol||Ωcol|
,

2ColPColR
ColP + ColR

where Γcol = Ωcol
⋂

Ωcol. The definitions of TabP ,
TabR, TabF are similar.

D Baseline Approach Details

W2V To generate candidates for a given column,
W2V randomly samples five candidates from the
top 15 cosine-similar (Numberbatch word embed-
dings) for RPL and 15-50 for ADD. Textfooler and
BERT-Attack also follow this hyper-parameter set-
ting. For both TextFooler and BERT-Attack, we
skip their word importance ranking (WIR) modules
while only keeping the word transformer modules
for candidate generation8.

TextFooler TextFooler is one of the state-of-the-
art attacking frameworks for discriminative tasks
on unstructured text. We skip its word importance
ranking (WIR) step since our target column has
already been located. Its word transformer mod-
ule is faithfully re-implemented to generate can-
didates for a target column. Counter-fitted word
embedding (Mrksic et al., 2016) are used for sim-
ilarity computation, and modified sentences are
constrained by both POS-tag consistency and Sim-
CSE (Gao et al., 2021) similarity score.

BERT-Attack BERT-Attack is another represen-
tative text attacking framework. Similar to our
adaptation of TextFooler, we skip WIR and only
keep the core masked language model-based word
transformation. Following original work, low-
quality or sub-word tokens predicted by BERT-
Large are discarded; perturbed sentence similari-
ties compared with the original are guaranteed by
Sim-CSE.

8We contextualize columns with templates that addition-
ally considers cell values and POS-tag consistency.
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