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Abstract

Chinese pre-trained language models usually
exploit contextual character information to
learn representations, while ignoring the lin-
guistics knowledge, e.g., word and sentence
information. Hence, we propose a task-free en-
hancement module termed as Heterogeneous
Linguistics Graph (HLG) to enhance Chinese
pre-trained language models by integrating
linguistics knowledge. Specifically, we con-
struct a hierarchical heterogeneous graph to
model the characteristics linguistics structure
of Chinese language, and conduct a graph-
based method to summarize and concretize
information on different granularities of Chi-
nese linguistics hierarchies. Experimental re-
sults demonstrate our model has the ability
to improve the performance of vanilla BERT,
BERTwwm and ERNIE 1.0 on 6 natural lan-
guage processing tasks with 10 benchmark
datasets. Further, the detailed experimental
analyses have proven that this kind of mod-
elization achieves more improvements com-
pared with previous strong baseline MWA.
Meanwhile, our model introduces far fewer
parameters (about half of MWA) and the
training/inference speed is about 7x faster
than MWA. Our code and processed datasets
are available at https://github.com/
lsvih/HLG.

1 Introduction

Pre-trained Language Models (PLM) (Peters et al.,
2018; Devlin et al., 2019; Radford et al., 2018;
Yang et al., 2019) have recently demonstrated the
effectiveness on a variety of natural language pro-
cessing (NLP) tasks, such as machine translation
and text summarization. For a specific downstream
task, the parameters of PLMs can be fine-tuned
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with accurately labeled instances or weakly labeled
instances of the task to achieve better performance.

In recent, there are a series of studies on adapting
PLMs for Chinese (Meng et al., 2019; Sun et al.,
2019; Cui et al., 2019a; Sun et al., 2020; Wei et al.,
2019; Diao et al., 2020; Lai et al., 2021). Many re-
searchers introduce the Chinese-specific linguistics
knowledge such as word information into PLMs by
conducting elaborate self-supervised tasks to pre-
train Chinese PLMs from scratch. Nevertheless,
pre-training a PLM is computationally expensive
and time-consuming since it needs large-scale Chi-
nese corpus and heavy computational resources.
The high cost makes it difficult for researchers to
pre-train a PLM from scratch.

An alternative way is to integrate the Chinese-
specific linguistics knowledge into pre-trained
PLMs in the fine-tuning stage in downstream tasks
directly. Following this idea, the task-free enhance-
ment module is widely used in the fine-tuning stage
by adding an additional adapter in PLMs to in-
tegrate external knowledge (Li et al., 2020). As
shown in Figure 1, the enhancement module is in-
serted between PLMs and task-specific module,
and its inputs are the hidden representations of
PLMs and embeddings of external knowledge. To
achieve the goal of integrating external knowledge
into PLMs in the fine-tuning stage, the enhance-
ment module should have the following character-
istics. First, as a plug-in adapter module in fine-
tuning stage, it should maintain consistent output
formulation with PLM. Second, it should not in-
troduce unacceptable time or space complexity for
training and inference. Third, it should improve the
performance of downstream tasks universally.

With the core idea of the enhancement mod-
ule, Li et al. (2020) proposed a multi-source word-
aligned model (MWA) to enhance PLMs by inte-
grating Chinese Word Segmentation (CWS) bound-
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Figure 1: The diagram of Enhancement Module frame-
work. Left: Fine-tuning PLM ordinarily. Right: En-
hancement for Fine-tuning PLM.

aries information implicitly. It first exploits var-
ious CWS tools to generate multiple word se-
quences and then utilizes word-aligned attention
with a mixed pooling to integrate the word infor-
mation into characters. Experimental results show
that MWA has the ability to utilize CWS segmen-
tation information to enhance Chinese PLMs to
achieve SOTA performance in many downstream
NLP tasks. However, MWA has two weaknesses:
1) Efficiency Degradation: The model structure of
MWA is naturally non-parallel and cannot benefit
from GPU acceleration (detailed in §4.3.3), which
results in time inefficiencies in both training and
inference processes. 2) Linguistic Information
Loss: MWA utilizes a pooling-based mechanism to
perform interaction between characters and words.
Such a heuristic method could not make full use of
information, resulting in sub-optimal results.

To tackle the aforementioned limitations, we pro-
pose Heterogeneous Linguistics Graph (HLG),
which is Graph Neural Network (GNN) based
method to integrate CWS information to enhance
PLMs. Specifically, the hierarchical CWS informa-
tion is first conducted by a heterogeneous graph,
which contains character nodes, word nodes and
sentence nodes. The edge between nodes indicates
the inclusion relationship of the grammatical struc-
ture between the linguistic hierarchies. Then, a
simple but effective multi-step information propa-
gation (MSIP) is proposed to incorporate the lin-
guistics knowledge of heterogeneous graph to en-
hance Chinese PLMs inductively. In this way, we
can obtain adequate information interaction among
characters, words and sentences. Furthermore, the
internal implementation of HLG is highly paral-
lelized, which is conducive to GPU accelerate and
raises the operating efficiency.

In summary, we abstract out an adapter com-
ponent named enhancement module for PLMs to
integrate external knowledge during the fine-tuning
stage. In this paradigm, we further introduce HLG
to integrate CWS information delicately and model
it via an effective MSIP. Extensive experiments
conducted on 10 benchmark datasets of 6 NLP
tasks demonstrate that our model outperforms the
BERT, BERTwwm and ERNIE 1.0 significantly
and steadily. Comparing with MWA, a strong base-
line that also incorporates CWS information to en-
hance PLMs, our model achieves a steady improve-
ment with the same information. Meanwhile, com-
pared with previous work, MWA, our proposed
HLG introduces only half additional parameters
and the training/inference speed is about 7x faster.

2 Preliminaries

2.1 Pre-trained Language Model (PLM)

As mentioned in §1, the pre-trained language mod-
els (PLMs) have achieved great success in many
NLP applications with the 2-stage paradigm of pre-
training and fine-tuning. The PLMs usually per-
form pre-training on large-scale unlabeled corpus
in virtue of self-supervised reconstruction tasks.
For example, BERT (Bidirectional Encoder Repre-
sentations from Transformers) (Devlin et al., 2019)
is a typical well-known PLM, which conducts
masked language modeling and next sentence pre-
diction as pre-training tasks. After completing the
pre-training, the PLMs learn substantial contextual-
ized text representations, and then adapt fine-tuning
on specific downstream tasks.

In Chinese NLP, PLMs are generally character-
based models (Li et al., 2019; Cui et al., 2019a).
Specifically, given a character sequence:

,Cn] (D

S = [Cl, Co, ...

the outputs of Chinese PLMs can be treated as the
character-level representations H € R™*¢, where
the d is the dimension of representation.

2.2 Chinese Word Segmentation

As the same as most East-Asian languages, Chinese
language is written without explicit word delimiters
and the character is the smallest morpheme unit in
Chinese linguistic (Cai and Zhao, 2016). Although
character-based models could achieve good per-
formance (Li et al., 2019), Li et al. (2020) point
out that introducing Chinese Word Segmentation
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Figure 2: Overview of HLG structure. Different colored lines represent sentences formed by different CWS tools.

(CWS) information to character-based models can
effectively improve the model performance.

We give a formality definition of segmenter and
its partition strategy 7. Given a sentence consisting
of a sequence of characters as Eq. 1, a segmenter
is defined as:

SEGMENTER =7 : S — S’

where 7 is a partition strategy of sentence. Specifi-
cally, 7 partition and group the character sequence
S into the word sequence S’

7(S) = 5 = [wy, w2, ..., wp) )
where m < n and w; = [Cs,Cs41, ey Cspi—1]
is the i-th segmented word with a length of [
and s is the index of w;’s first character in S.
Namely, the word w; is a sequence of characters
{¢s, Cs41, -, Cs11—1} and the sentence S’ is a se-
quence of words {w1, wa, ..., Wy, }.

2.3 MWA for Enhancing Chinese PLM

Li et al. (2020) carried out researches on integrat-
ing CWS information into Chinese PLMs. The au-
thors brought an architecture named Multi-source
Word-aligned Attention (MWA) to incorporate
multi-granularity segmentation via pooling atten-
tion weights among characters within the word.
Formally, given a character sequence S as Eq. 1
and its partition strategy 7 as Eq. 2. The character-
based representation H could be gained via PLM,
MWA conducted self-attention between characters:

(Kwk)(QWq)T>
Vd

where Q and K are both H, d is defined in §2.1,
and A represents the attention score matrix. We
decompose A over columns as [al a? ... a"],
and then perform partition 7 on it: w(A) =

A= softmax(

[{a',a%}, {2}, .. {a3, oadt o {2 a")]
where s and [ are defined in §2.2. Pooling each
group of partitioned columns:

a! = MixPooling({as,...,ast"1})
in which MixPooling is defined in Yu et al.
(2014). The gained A,, = [al a2 .. a7 €
R™*™ is the character-to-word attention weight
matrix. After performing alignment-wise multi-
ply (Li et al., 2020) between character-to-word at-
tention weight matrix A, and the character-based
representation H, the enhanced character-based rep-
resentation which integrates CWS information can
be obtained.

In essence, the MWA conducts interaction be-
tween characters and words via character-to-word
attention weight matrix A,,, implicitly summary
the information from characters, and performs Mix-
Pooling to aggregate the word-based segmentation
information and concrete the character-level repre-
sentation.

3 Heterogeneous Linguistics Graph

This section introduces the components of our
model HLG which instantiates the enhancement
module by exploiting the CWS information. We
first briefly explain the graph convolutional net-
work as our base encoder, and then describe the
graph construction of HLG. Finally, we give the
details of the multi-step information propagation
(MSIP) to integrate the CWS information into
PLMs.

3.1 Graph Convolutional Network

Graph Convolutional Network (GCN) (Bruna et al.,
2014; Kipf and Welling, 2017; Defferrard et al.,
2016) is a powerful tool to extend the convolution
operation from the grid data to irregular graph data.

1988



The basic idea of GCN is to aggregate the represen-
tations of neighbors to obtain better representation
expression of nodes in the graph. For instance, con-
sider a homogeneous graph G = (V, £) constructed
by nodes set 1 and edges set £. A € RVIXIVI is a
binary adjacency matrix where each element A;;
denotes whether node ¢ has an edge with node j
in the edge set £. Formally, a standard GCN layer
can be abstracted as:

H,.: = U(AHmW), A= Norm(A) (3)
where H;,, denotes the input representation matrix,
H,,; is the updated representation matrix, Norm(-)
means row normalizing function, A is the normal-
ized adjacency matrix, o(-) is the ReLU function
and W is a parameter matrix. After such convolu-
tion operation, the representation H;,, were aggre-
gated rely on edge connections defined by A, and
transformed into H,,; by linear multiplication and
active function.

3.2 Graph Construction

We build a heterogeneous graph G = (C, W, S, €)
to model the structure of Chinese linguistic, where
C, W, S, &€ denote the character nodeset, word
nodeset, sentence nodeset and edge set, respec-
tively. Besides, different from homogeneous graph,
HLG models relationship between three granulari-
ties of linguistic in a hierarchical way.

As presented in Figure 2, G is composed of three
hierarchies including characters, words and sen-
tences. In this case, we employed three different
CWS tools, and got three different segmentation re-
sults, which resulted in three sentences with slightly
different semantics. Note that the same word seg-
mentation results in the same position obtained
by different CWS tools will be regarded as the
same word node to enhance the interaction (e.g.,
Beijing and park in Figure 2). This purpose is to
denoise the mistake word nodes brought by seg-
menter error. If a word is segmented by multiple
segmenters at the same time, the corresponding
word node will have a higher vertex degree. Such
nodes with higher betweenness centrality will lead
to a stronger influence on the followed information
propagation and achieve the effect of denoising
intuitively, like the vote-based multi-model ensem-
ble.

In HLG, only one adjacency matrix A is not
enough to describe the hierarchical relationships be-
tween characters, words and sentences. Hence, we

HS
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Figure 3: Tllustration of learning procedure of MSIP.
The colored circles denote characters, words or sen-
tences representations. The green, orange and gray lines
describe the summarization (Eq. 4), concretization (Eq.
6) and skip connection (Eq. 7) operations, respectively.

conduct two interaction matrices A" € RIWIx[C]
and A“** € RISIXIWI (o indicate aforementioned
relationships. To be specific, we take the A" as
an example (the one for AV is analogous), the
element flff“’ denotes whether word ¢ has an edge
with character j in the edge set £. Similar to Eq.
3, we also denote normalized interaction matrices

~w2s

as ACQw and A .

3.3 Multi-Step Information Propagation

To model the granularities hierarchical relation-
ships in G, we devise a multi-step information prop-
agation to learn the linguistics knowledge. In CWS,
the partition and group processes could be consid-
ered as the partition of semantic representation and
the aggregation of separated semantic respectively
(detailed in §2.2). Inspired by CWS processes, we
introduce two operations into MSIP to simulate
such processes and named as summarization and
concretization. Figure 3 shows the information
propagation procedure of MSIP.

Summarization. The summarization operation
focuses on generalizing hierarchical word and sen-
tence representations (e.g., from character-level to
word-level). Specifically, given a heterogeneous
graph G and corresponding character representa-
tions H® from PLM, the summarization operation
can be formulated as follows:

HY = o (A" H W),

~w2s (4)
H o (A waw2s) ’

where the W%, W¥2s are parameter matrices,
H"Y, H® are the interim representations of words
and sentences.
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Concretization. Concretization is the inverse op-
eration of summarization, it is used to repartition
the semantics from high-level to low-level (e.g.
from sentence-level to word-level). To do so, we
first calculate the normalized interaction matrices
A" and szc’ which can be simply obtained
by first transposed then normalized the predefined
interaction matrices A" and Aczw, respectively.

Thus, we have:

A= Norm((szs)T),

~

®)
AVE Norm((ACQw)T) ,

where (-) is the transpose function. Afterward,
the concretization operation is defined as follows:

H” = o (A "H W), ;
H = oA HY Wu2) ©

where WSQw and W¥%¢ are parameter matrices,

ﬁw and H are also interim word and character
representations, H"' denote the final word repre-
sentations defined in Eq. 7.

Skip Connection. Intuitively, it is difficult to gen-
erate satisfied low-level representations from the
high-level representations directly. For example,
it is easy to learn a few sentence representations
from dozens of word representations, but hard to
generate dozens of word representations from a few
sentence representations.

To mitigate this problem, in this paper, we in-
troduce the skip connection to enhance the MSIP,
which is to simulate the self-loop in vanilla GCN.
As shown in Figure 3, we add skip connections
between the summarization representations and the
concretization representations directly. Formally,
the skip connection can be simply expressed as:

HY = HY + o(H"W"Y), -

HY = H" + o(H°W°),
where W* and W€ are parameter matrices. Fur-
thermore, H® denote the final representations for
characters, which incorporates the fine-grained lin-
guistics knowledge in G.

4 Experiments

4.1 Experimental Setting

For a fair comparison with MWA, which also gives
an enhancement module by incorporating CWS in-
formation. We conduct the same experiments on

five NLP tasks with various benchmark datasets.
Three frequently-used Chinese PLMs: BERT (De-
vlin et al., 2019), ERNIE 1.0 (Sun et al., 2019) and
BERTwwm (Cui et al., 2019a) are employed as
the basic PLM to enhance. Three CWS tools: thu-
lac (Sun et al., 2016a), ictclas (Zhang et al., 2003)
and hanlp (He, 2014) are employed to gain the seg-
mentation information. The time of pre-processing
including applying CWS tools is ignored in the ex-
perimental report. In the production, preprocessing
and inference can be asynchronously executed in
parallel (while inference a batch of data, the subse-
quence data can be preprocessed with multiprocess)
(Cheng et al., 2019), all three of the CWS tools
we’ve introduced are fast enough to achieve this
effect. According to rough estimates and technical
reports, the processing speed of these tools are thu-
lac 1221KB/s, ictclas 769KB/s, hanlp 1375KB/s,
respectively.

Specifically, we instantiate the enhancement
module as HLG and incorporate with downstream
task-specific model. To verify the effectiveness of
HLG, we execute 5 times fine-tuning on 10 bench-
mark datasets of 6 NLP tasks and report the aver-
age score. The tasks include Sentiment Classifica-
tion (SC), Document Classification (DC), Named
Entity Recognition (NER), Sentence Pair Match-
ing (SPM), Natural Language Inference (NLI) and
Machine Reading Comprehension (MRC). Specifi-
cally, the following benchmark datasets are chosen
to evaluate the performance: 1) SC: ChnSenti! and
weibo100k? sentiment datasets are used for eval-
uating the capacity of short text classification. 2)
DC: THUCNews (Sun et al., 2016b) dataset con-
tains 10 types of news for performing long text
classification. 3) NER: Ontonotes 4.0 (Weischedel
et al., 2011) and MSRA-NER (Levow, 2006a) are
used for testing model in sequence tagging task. 4)
SPM: LCQMC (Liu et al., 2018) and BQ (Chen
et al., 2018) are used to evaluate the text match-
ing ability of model. 5) NLI: We conduct experi-
ments on the Chinese part of XNLI (Conneau et al.,
2018) dataset, and adopt the same pre-processing
strategy as ERNIE (Sun et al., 2019). 6) MRC:
Commonly used datasets DRCD (Shao et al., 2018)
and CMRC2018 (Cui et al., 2019b) are tested.
CMRC2018 is only evaluated on dev set as same
as (Wei et al., 2019; Sun et al., 2020).

1https://github.com/pengming617/bert_
classification

https://github.com/SophonPlus/
ChineseNlpCorpus/
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SC NER SPM
CHNSENTI WEIBO100OK MSRA-NER ONTONOTES LCQMC BQ
BERT 94.72 97.31 93.62 79.18 86.50 84.73
+MWA  95.34(+0.62) 98.14(+0.83) 93.86(+0.24)  79.86(+0.68) 86.92(+0.42) 84.87(+0.14)
+HLG 95.83(+1.11) 98.17(+0.86)  93.82(+0.20)  80.42(+1.24) 87.79(+1.29) 85.01(+0.28)
BERTwwm 94.38 97.36 93.83 79.28 86.11 84.75
+MWA  95.01(+0.63) 98.13(+0.77)  93.84(+0.01) 80.32(+1.04) 86.28(+0.17)  85.02(+0.27)
+HLG 95.25(+0.87) 98.11(+0.75)  93.96(+0.13)  80.46(+1.18) 88.13(+2.02) 84.98(+0.23)
ERNIE 1.0 95.17 97.30 93.97 77.74 87.27 84.78
+MWA  95.52(+0.35) 98.18(+0.88)  94.04(+0.07)  78.78(+1.04) 87.58(+0.31)  85.06(+0.28)
+HLG 95.83(+0.66) 98.22(+0.92)  94.04(+0.07)  79.16(+1.42) 87.80(+0.53) 85.04(+0.26)
DC NLI MRC
THUNEWS XNLI DRCDIEM | F1] CMRC2018[EM | F1]
BERT 96.78 78.19 85.57 | 91.16 66.36 | 85.88
+MWA  97.13(+0.35) 78.42(+0.23) 86.86(+1.29) | 92.22(+1.06) 67.21(+0.85) | 86.22(+0.34)
+HLG 97.20(+0.42)  78.68(+0.49) 86.96(+1.39) | 92.28(+1.12) 67.30(+0.94) | 86.27(+0.39)
BERTwwm 97.01 77.92 84.11 | 90.46 66.20 | 85.85
+MWA  97.28(+0.27) 78.68(+0.76)  87.00(+2.89) | 92.21(+1.75) 67.43(+1.23) | 86.49(+0.64)
+HLG 97.32(+0.31)  79.01(+1.09) 86.92(+2.81) | 92.15(+1.69) 67.51(+1.31) | 86.53(+0.68)
ERNIE 1.0 97.04 78.04 87.85 | 92.85 65.74 | 85.78
+MWA  97.34(+0.30) 78.71(+0.67) 88.61(+0.76) | 93.72(+0.87) 67.12(+1.38) | 86.30(+0.52)
+HLG 97.35(+0.31)  78.80(+0.76)  88.58(+0.73) | 93.60(+0.75) 67.03(+1.29) | 86.26(+0.48)

Table 1: The experimental results on various datasets. All of the experiments except CMRC2018 are conducted
on test set, the reported values are F1 unless specified (EM means exact match score). We run each experiment
with a random seed for five times and report the average score. Numbers in brackets indicate the relative increment
brought by enhancement module. The bold numbers mark the highest value within the same base-model.

We implement the presented approach in Py-
Torch and fine-tune the downstream tasks on multi-
ple Nvidia Tesla V100 GPUs. The basic architec-
ture of PLMs and pre-trained parameters are pro-
vided by Huggingface (Wolf et al., 2020). The ini-
tial learning rate and other hyper-parameters refer
to the previous works reported (Cui et al., 2019a;
Li et al., 2020; Sun et al., 2020). Since the pa-
rameters of PLMs have been optimized, while the
parameters of HLG and the downstream tasks are
untrained. Hence, the learning rate of HLG part
is larger than PLM part, we manually tuned the
learning rates of PLM and HLG separately.

4.2 Experimental Results

The experimental results are shown in Table 1.
Overall, we can observe that both HLG and MWA
outperform baseline models (BERT, BERTwwm
and ERNIE 1.0). Comparing with WMA, HLG
achieves further improvement and significantly out-
performs baseline models on 10 tasks. In detail,
HLG outperforms MWA on ChnSent, weibo100k,
MSRA-NER, ontonotes, LCQMC, BQ, THUC-
News and XNLI tasks, and obtains comparable
results on DRCD and CMRC2018 datasets.

For the text classification tasks, namely SC
and DC, HLG respectively achieves 0.88% and
0.84% average improvement on ChnSenti and
weibo100k dataset, while MWA gains 0.53% and
0.82%. Meanwhile, HLG obtains 0.35% improve-
ment on the long text multi-classification bench-
mark THUCNews, and MWA gets 0.31% points.

Comparing with text classification tasks, the
improvements over NER tasks are more obvious.
The main reason may be that CWS explicitly pro-
vides the word boundaries, which are important
to recognize entities accurately. On the ontonotes
dataset, the promotion of HLG (1.28% averagely)
is distinctly higher than that of MWA (0.92% av-
eragely). Compared to the strong baseline models,
the F1 scores of MSRA-NER have improved aver-
age 0.13% and 0.10% by HLG and MWA, respec-
tively.

HLG achieves the best results on the text match-
ing tasks (SPM) and its variant NLI, which brings
1.28% average improvement to LCQMC, 0.26%
average improvement to BQ, and 0.78% average
improvement to XNLI. The improvements of HLG
are much higher than that of MWA (0.3%, 0.23%
and 0.55%). As described in Chen et al. (2020) and
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Accumulative Word Count

No. CWS tool - -
ChnSenti weibo100k
0 None 0 0
1 thulac(Sun et al., 2016a) 69,877 398,046
2 ictclas(Zhang et al., 2003) 78,695 452,059
3 hanlp(He, 2014) 82,768 479,134
4 pkuseg(Luo et al., 2019) 84,273 481,201
5 jieba(Sun, 2013) 85,062 483,390

Table 2: Adding the CWS tools one by one, and accu-
mulate the total number of word nodes.

Lyu et al. (2021), text matching tasks can benefit
from the interaction between the paired sentences.
HLG follows them to construct graphs over sen-
tence pairs collectively, which naturally obtains
advantages in text matching tasks.

For MRC task, HLG and MWA achieve com-
parable results on those datasets. HLG gets an
average improvement of 1.41 in EM and 0.85 in F1
score, while MWA gets 1.4 EM and 0.86 F1 score.
However, HLG has dominant advantage in training
speed and inference speed. Detail analysis of time
efficiency is in §4.3.3.

4.3 Analyses
4.3.1 Ablation Study

We conduct ablation experiments to explore the
effectiveness of the number of CWS tools. The
ablation experiments are organized on sentiment
classification task, ChnSenti and weibol100k dev
set. As shown in Table 2, 5 popular CWS tools
are added into our model successively according
to the order, and we also show the total number
of word nodes in our HLG. Meanwhile, the infor-
mation from multiple word segmentation tools can
be integrated at the same time without increasing
parameter size in HLG (only the A is changed).
Figure 4 shows the performance of BERT+HLG
with different numbers of CWS tools on ChnSenti
and weibol00k dev sets. Experimental results
demonstrate the effectiveness of introducing word
segmentation information. We can observe that
when the number of CWS tools is larger, the num-
ber of generated word nodes gradually increasing
to converge, and the performance of the model
slightly is not always increasing as the word count.
The more CWS tools introduced will bring more
diversity but also bring noise caused by segmenter
error. In practice, we find using 4 or more CWS
tools can slightly increase the performance but take
much longer preprocessing time, hence we select
the elbow of the curve as the number of CWS tools.

Weibo 100k
500,000

ChnSenti
100,000

480,000 eg1s 9827 9836 9841 9842
)

97.62

L9563 95.72 95.71
- 9527
95.11

94.6

95,000

460,000 90,000

440,000
85,000
420,000
80,000
400,000
75,000
380,000

360,000 70,000

340,000 65,000

320,000 60,000

0 1 2 3 4 5
Word Node Count
F1 score (%) ——

Word Node Count
F1 score (%) ——

Figure 4: The histogram chart is the cumulative number
of word nodes obtained by CWS tools, and the line
chart is the performance of the model (BERT+HLG) in
dev-set with the corresponding number of CWS tools.

Model Params. (K =3) Fl

BERT 110M 79.28
+MWA 117.7M(+7.7M) 79.68(+0.40)
+HLG 113.5M(+3.5M) 79.75(+0.47)

BERTwwm 110M 79.32
FMWA 117 7MGE7.7M)  79.77(+0.45)
+HLG  113.5M(+3.5M)  80.16(+0.84)

ERNIE 1.0 110M 79.75
+MWA  117.7MGE7.7M)  79.98(+0.23)
+HLG 113.5M(+3.5M) 80.21(+0.46)

Table 3: The amount of additional parameters and per-
formance improvement of MWA and HLG.

That is, using 3 as the number of CWS tools might
be a balance between the performance of model
and the cost of preprocessing. This number also
coincides with the configuration in MWA.

4.3.2 Parameter-Efficient Analysis

In general, the enhancement module should be able
to bring performance improvements without unac-
ceptable space complexity. Therefore, we conduct
a comparative experiment on XNLI dev set to ex-
plore the performance improvement and the space
overhead between MWA and HLG.

To be specific, the number of parameters in
MWA depends on the dimension of PLM’s rep-
resentation and the number of CWS tools K. Con-
cretely, MWA contains K transformer layers and
1 aggregation layer. Nevertheless, our HLG only
depends on the dimension of PLM’s representation
and simply contains 4 basic GCN layers and 2 skip
connections. Thus, the number of parameters of
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Model Params. Fl1

BERTwwm-base 110M 79.32

+HLG(random tokenizer) 113.5M  79.16(-0.16)
+HLG(character tokenizer) 113.5M 79.41(+0.09)
+HLG(thulac) 113.5M  79.68(+0.36)
+HLG(ictlas) 113.5M  79.91(+0.59)
+HLG(hanlp) 113.5M  79.81(+0.49)
+HLG(thulac+ictlas+hanlp) 113.5M 80.16(+0.84)

Table 4: The performance comparison between random
tokenizer, character tokenizer that segments each char-
acter into a single word, and sole segmenters.

them can be calculated as:

size(MWA) =K x (4 X dQ)Transformer + &
size(HLG) = (4 x d*)gen + 2 x d?

As discussed before, we employ 3 CWS tools
in both MWA and HLG. Table 3 reports the per-
formance of BERT, BERTwwm, and ERNIE 1.0
on the XNLI dev set. Obviously, HLG can get a
greater performance improvement with only half
additional parameters. It shows that as an enhance-
ment module, HLG is superior to MWA in terms
of parameter utilization efficiency.

In addition, to verify the impact of the addi-
tional parameters, we also conduct an ablation
experiment on XNLI dev set that utilizes the ran-
dom tokenizer, the single-character tokenizer, and
sole segmenter to obtain the different word seg-
mentation results, and send those results to HLG to
eliminate the additional benefit from the change of
neural network structure and the increase of param-
eters. The results are shown in Table 4, which indi-
cates that the increment of parameters can slightly
affect character-based model performance, and the
CWS information is significantly useful to promote
the performance of character-based PLM.

4.3.3 Time Efficiency Analysis

Time efficiency is an important indicator in the
real-world production. Less training time and infer-
ence time means lower costs. In order to analyze
the additional time cost of different enhancement
modules, we conduct comparative experiments
among BERT, BERT+MWA, and BERT+HLG on
ChnSenti, LCQMC and XNLI datasets. For the
fair comparison, we remain other hyper-parameters
consistent for the three models.

As shown in Figure 5, we compare time cost
during training and inference between vanilla
BERT, BERT+MWA and BERT+HLG. We can
observe that the training time and inference time of

I —— 408.83
99.23
I 89.41
J—— 398.40
67.14

BN 60.08

I 3402
3.05

| 3.02

ChnSenti LCQMC  XNLI

(a) Training time (minutes/per epoch)

I m— 30.83
3.11

B 3.03
1 — 25.65
3.29
B 255
[ 10.53
2.04

B 186

s BERT+MWA
BERT+HLG
uBERT

ChnSenti LCQMC ~ XNLI

(b) Inference time (seconds/1,000 samples)

Figure 5: The training time, inference time of vanilla
BERT, BERT+MWA and BERT+HLG on ChnSenti,
LCQMC and XNLI benchmarks. All of these time dose
not include CWS process.

BERT+HLG are basically consistent with vanilla
BERT. However, when MWA is introduced, the
average training time increases by 7 times, and
the average inference time increases by 7.6 times.
This is because MWA must calculate aligned atten-
tion weights token by token, and it cannot benefit
from CUDNN parallelization, resulting in terrible
operating efficiency. On the contrary, HLG is com-
posed of GCNs, and its internal implementation
is basically the simplest non-linear transformation.
Therefore, HLG could be maximally accelerated
through the optimized matrix operation of CUDNN
primitive, which only produces a negligible impact
on time efficiency.

5 Related Works

Pre-training language models, such as ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), XL-
NET (Yang et al., 2019) and GPT (Radford et al.,
2018), have shown their powerful performances on
various natural language processing tasks and have
been applied in many applications.

In recent past, there are studies adapting PLMs
for Chinese with Chinese-specific features such as
word information. Glyce (Meng et al., 2019) pro-
posed to use the glyph information of Chinese char-
acters to enhance PLMs. ERNIE 1.0/2.0 (Sun et al.,
2019, 2020) and BERTwwm (Cui et al., 2019a)
used the whole word mask to learn the structure
of words or entities in the pre-training stage and
conducted more and better pre-training tasks to per-
ceive large-scale data. NEZHA (Wei et al., 2019)
used a series of methods such as functional relative
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positional encoding and whole word masking to
improve the pre-training tasks, which had brought
improvement. ZEN (Diao et al., 2020) adopted
n-gram masking to enhance pre-trained encoder
and obtained outstanding performance. Lattice-
BERT (Lai et al., 2021) introduced word lattice in-
formation (Zhang and Yang, 2018) into pre-training
framework via lattice position attention.

As a fundamental feature of Chinese, word seg-
mentation information is flexibility, granularity,
and easy-to-get (Sproat and Emerson, 2003; Levow,
2006b). Further, Zhang et al. (2018); Li et al. (2019,
2020) conducted detailed research and experiments
on the application of CWS in deep learning, and
found that CWS information can effectively im-
prove the performance of Chinese character-based
PLMs.

Recently, a lot of works have been proposed to
prompt NLP applications by constructing graph on
text and modeling with graph neural networks. Yao
et al. (2019) first constructed word co-occurrence
graph between documents and introduced GCN to
modeling and aggregating document representa-
tion for text classification. Chen et al. (2020); Lyu
et al. (2021) constructed lattice graph to maintain
multi-granularity information and external knowl-
edge in Chinese short text matching task. Nguyen
and Grishman (2018) proposed performing GCN
over dependency trees to extract event trigger. Sui
et al. (2019) conducted a character-word interaction
graph and performed graph attention network on
it to recognize Chinese named entities. Shu et al.
(2020) introduced a bipartite-graph based trans-
former PLM for integrating hierarchical semantic
information.

6 Conclusion

In this paper, we propose HLG which acts as the en-
hancement module to enhance Chinese PLMs with
CWS information. The HLG firstly constructs het-
erogeneous graph based on multiple word segmen-
tations to model the hierarchy of Chinese. Then,
the MSIP is proposed to model the fine-grained
linguistics knowledge of the heterogeneous graph.
Experimental results on 6 NLP tasks with 10 bench-
mark datasets demonstrate that the performance of
our model outperforms previous work, MWA. Be-
sides the performance improvements, HLG intro-
duces only half the additional parameters of MWA
and its training/inference speed is 7x faster than
MWA. At present, the experimental results of HLG

are lagging behind SOTA, and we will try to mi-
grate it to some of the latest PLMs. Besides, HLG
has the expansibility to introduce the representation
layer of the CWS model directly, or introduce some
other information sources such as the knowledge
graph, etc. We leave these further improvements to
the future.
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