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Abstract

Clinical trials offer a fundamental opportunity
to discover new treatments and advance the
medical knowledge. However, the uncertainty
of the outcome of a trial can lead to unfore-
seen costs and setbacks. In this study, we
propose a new method to predict the effec-
tiveness of an intervention in a clinical trial.
Our method relies on generating an informa-
tive summary from multiple documents avail-
able in the literature about the intervention un-
der study. Specifically, our method first gath-
ers all the abstracts of PubMed articles related
to the intervention. Then, an evidence sen-
tence, which conveys information about the
effectiveness of the intervention, is extracted
automatically from each abstract. Based on
the set of evidence sentences extracted from
the abstracts, a short summary about the inter-
vention is constructed. Finally, the produced
summaries are used to train a BERT-based
classifier, in order to infer the effectiveness
of an intervention. To evaluate our proposed
method, we introduce a new dataset which
is a collection of clinical trials together with
their associated PubMed articles. Our exper-
iments demonstrate the effectiveness of pro-
ducing short informative summaries and using
them to predict the effectiveness of an interven-
tion.

1 Introduction

Clinical Trials (CT) present the basic evidence-
based clinical research tool for assessing the ef-
fectiveness of health interventions. Nevertheless,
only a small number of interventions make it suc-
cessfully through the process of clinical testing.
Approximately, 39%-64% of interventions actually
advance to the next step of each phase of clinical
trials (DiMasi et al., 2010). The uncertainty of a CT
outcome could lead to increased costs, prolonged
drug development and ineffective treatment for the
participants. At the same time, the volume of pub-
lished scientific literature is rapidly growing and

offers the opportunity to explore a valuable knowl-
edge. Therefore, there is a need to develop new
tools which can i) integrate such information and
ii) enhance the process of intervention approval in
CT.

Predicting the approval of an intervention, a task
that describes the ability of a system to predict
whether an intervention will reach the final stage
of clinical testing, is a topic that has been studied
before (Gayvert et al., 2016; Lo et al., 2018). The
majority of these studies use various traditional
machine learning methods and rely on structured
data from various sources, including biomedical,
chemical or drug databases (Munos et al., 2020;
Heinemann et al., 2016). However, only a few stud-
ies take into account the textual information that
is available online, and mostly in a supplementary
manner (Follett et al., 2019; Geletta et al., 2019). In
fact, employing natural language processing (NLP)
techniques to address the outcome prediction task
has been hardly explored.

Recognising this lack of related studies, the work
presented here addresses the task of predicting in-
tervention approval with the use of NLP. Particu-
larly, we relied on generating concise and infor-
mative summaries from multiple texts that are rel-
evant to the intervention under evaluation. In a
sense, we built an intervention-specific narrative
which combines key information from multiple
inter-connected documents. The benefit of using
multiple articles to generate summaries is that they
can cover the inherently multi-faceted nature of an
intervention’s clinical background.

More precisely, given an intervention, our sys-
tem retrieves all PubMed abstracts that are relevant
to the intervention and refer to a clinical study. It
then extracts the evidence sentences from each ab-
stract using a BERT-based evidence sentence clas-
sifier, in a similar fashion to (DeYoung et al., 2020).
This set of evidence sentences, which captures the
consolidated narrative about the intervention, can
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grow gradually, as new articles become available.
Thus, further analysis is necessary in order to select
the most important information. Using the set of
evidence sentences for each intervention, we gen-
erate short summaries by leveraging the power of
language models (BERT or BART). The resulted
summaries are then fed to a BERT-based binary
sequence classifier which makes a prediction about
the likely approval or not of the intervention.

Overall, the main contributions of the paper are
the following:

• We propose a new approach for predicting the
approval of an intervention which is based on
a three-step NLP pipeline.

• We provide a new dataset for the task of in-
tervention approval prediction that consists of
704 interventions and 15,800 PubMed articles
in total.

• We confirm through experimentation the ef-
fectiveness of the proposed approach.

2 Related Work

Intervention Success Prediction The predic-
tion of intervention approval belongs to a broader
category of medical prediction tasks. Relevant
work includes clinical trial outcome prediction
(Munos et al., 2020; Tong et al., 2019; Hong et al.,
2020), drug approval (Gayvert et al., 2016; Lo
et al., 2018; Siah et al., 2021; Heinemann et al.,
2016), clinical trial termination (Follett et al., 2019;
Geletta et al., 2019; Elkin and Zhu, 2021), pre-
dicting phase transition (Hegge et al., 2020; Qi
and Tang, 2019). All these studies rely either on
specific types of structured data or on combining
structured data with limited unstructured data.

Differently from this line of work, the authors of
(Lehman et al., 2019) proposed an approach that
employs NLP to infer the relation between an in-
tervention and the outcome of a specific clinical
trial. Their method is based on extracting evidence
sentences from unstructured text. An extension
of this work suggests the use of BERT-based lan-
guage models for the same task (DeYoung et al.,
2020). Another closely related study (Jin et al.,
2020), performs a large-scale pre-training on un-
structured text data to infer the outcome of a clin-
ical trial. Our approach builds upon this related
work, aiming to incorporate information from mul-
tiple articles. This extension is motivated by the

assumption that the inter-connected clinical knowl-
edge, coming from multiple sources can provide a
more holistic picture of the intervention, facilitat-
ing more precise analysis and accurate prediction.

Although all these prior efforts tackle, more or
less, the problem of intervention approval, none of
them attempted to predict the effectiveness of an
intervention using summarization methods.

Summarization The goal of summarization is
to produce a concise and informative summary of
a given text. There are two main categories of ap-
proaches: i) extractive, which tackles summariza-
tion by selecting the most salient sentences from
the text without changing them, and ii) abstrac-
tive, which attempts to generate out-of-text words
or phrases instead of extracting existing sentences.
Early systems were primarily extractive and relied
on sentence scoring, selection and ranking (Allah-
yari et al., 2017). However, both extractive and
abstractive approaches have advanced significantly
due to the novel neural network architectures, such
as Transformers (Vaswani et al., 2017). The Trans-
formers architecture is utilized by the BERT (De-
vlin et al., 2018) and BART (Lewis et al., 2019)
language models which are used by the state-of-the
art solutions for multiple NLP tasks, including sum-
marization. Although most of the summarization
literature focuses on single-document approaches,
there is also a line of work that applies summariza-
tion on a set of documents, i.e. multi-document
summarization (Ma et al., 2020). Such approaches
are of particular relevance to our work, as we aim
to summarize a set of sentences about a particular
intervention.

Summarization in the Medical Domain Sum-
marization has been used to address various prob-
lems in the field of medicine. These include elec-
tronic health record summarization (Liang et al.,
2019), medical report generation (Zhang et al.,
2019; Liu et al., 2021), medical facts generation
(Wallace et al., 2021; Wadden et al., 2020) and med-
ical question answering (Demner-Fushman and Lin,
2006; Nentidis et al., 2021).

Our work is inspired by recent work on multi-
document summarization of medical studies (DeY-
oung et al., 2021). Apart from introducing a new
summarization dataset of medical articles, that
work also proposed a method to generate abstrac-
tive summaries from multiple documents. Their
model is based on the BART language model, ap-
propriately modified to handle multiple texts. Our
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model differs in the way it handles the input texts.
Instead of concatenating all texts into a single repre-
sentative document, we order them chronologically
and split them into equal-size chunks. Doing so,
we expect the clinical studies that were conducted
during a similar time period, to reside in the same
chunk.

3 Task Overview

According to the U.S. Food and Drug Administra-
tion (FDA), a CT addresses one of five phases of
clinical assessment: Early Phase 1 (former Phase
0), Phase 1, Phase 2, Phase 3 and Phase 4. Each
phase is defined by the study’s objective, the inter-
ventions under evaluation, the number of partici-
pants, and other characteristics1. Notably, Phase 4
clinical trials take place after FDA has approved a
drug for marketing. Therefore, we can assume that
a CT in Phase 4 assesses effective intervention. On
this basis, our task is to predict whether an inter-
vention will advance to the final stage of clinical
testing (Phase 4), as shown in Figure 1.

We model the task of predicting the success or
failure of an intervention as a binary classification
task. All data relevant to Phase 4 are omitted from
the training stage.

Figure 1: The phases of a clinical trial.

4 Data

In this work, we introduce a new dataset2 for
the task of predicting intervention approval. The
dataset is a collection of structured and unstruc-
tured data in English derived from clinicaltrials.gov
and PubMed during May-June 2021.

As a first step in the construction of the dataset,
we retrieve all available CT studies from clinical-
trials.gov that satisfy some criteria. Then, we as-
sociate each CT with PubMed articles based on
the CT study identifier. Following some cleaning
process (i.e. deduplication and entity resolution)
we generate the final dataset.

Clinical Trials Studies At the time of writing,
more than 350,000 studies were available online

1https://clinicaltrials.gov/
2https://github.com/nneinn/ct_intervention_approval

at clinicaltrials.gov. We focused on cancer related
clinical testing and we retrieved approximately
85,000 studies related to this topic using a list of
associated keywords3.

From this set, we were interested in interven-
tional clinical trials and specifically in two cate-
gories that indicate the status of the trial: i) “Com-
pleted”, meaning that the trial has ended normally,
and ii) “Terminated”, meaning that the trial has
stopped early and will not start again. The result-
ing set of studies contains 34,517 completed and
6,872 terminated trials.

Interventions Dataset Using the selected CTs,
we associated each intervention with its correspond-
ing trials. Therefore, a clinical trial record was
formed for each intervention. Then, we selected
all interventions that are assessed in at least one
Phase 4 CT to form our positive target class (i.e.
approval). Likewise, we built our negative target
class (i.e. termination) using interventions that led
to a trial termination. In total, our dataset contains
404 approved and 300 terminated interventions.

For each intervention, we collect all articles from
PubMed that are explicitly related to one of the CTs
of the intervention. To achieve this, we combine
two approaches. First, we search for eligible arti-
cles (or links to articles) in the corresponding struc-
tured results of clinicaltrials.gov. Secondly, we
use the CT unique identifiers to query the PubMed
database. Then, the selected PubMed articles are
associated with the intervention. This way an in-
tervention is linked with multiple studies that are
inter-connected, and thus an intervention-specific
narrative is developed. In our dataset, an interven-
tion is associated on average with 22.4 pubmed
articles, though for terminated interventions this
number is just 1.4. This is because terminated in-
terventions are usually not assessed in many CTs.
Overall, our dataset contains 15,800 pubmed ar-
ticles. The details of the dataset are presented in
Table 1.

In addition, we attempted to evaluate4 our ap-
proach on a previously used dataset (Gayvert et al.,
2016), which consists of 884 (784 approved, 100
terminated) drugs along with a set of 43 features,
including molecular properties, target-based prop-
erties and drug-likeness scores.

3The complete list of the keywords used is: cancer, neo-
plasm, tumor, oncology, malignancy, neoplasia, neoplastic
syndrome, neoplastic disease, neoplastic growth and malig-
nant growth

4The results on this dataset are presented in appendix A
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Figure 2: Overview of the proposed approach for classifying an intervention.

Type |I| |A| avg
Approved 404 15,379 38.1
Terminated 300 421 1.4
Total 704 15,800 22.4

Table 1: The details of the interventions dataset. |I|, |A|
and avg denote the number of interventions, the num-
ber of articles and the average number of articles per
intervention respectively.

5 Methodology

In Figure 2, we illustrate the proposed approach,
which consists of three main steps. Initially, we
use the abstracts of the intervention’s clinical trial
record to extract evidence sentences. These sen-
tences are then used to generate a short summary
that contains information about the efficacy of the
intervention. The summary is then processed by a
BERT-based sequence classifier to make the final
decision about the intervention. Each of the three
steps is detailed in the following subsections.

5.1 Evidence Sentences
Identifying evidence bearing sentences in an arti-
cle for a given intervention is an essential step in
our approach. Differently from other sentences in
an article, evidence sentences contain information
about the effectiveness of the intervention (Figure
3). Therefore, it is crucial that our model has the
ability to discriminate between evidence and non-
evidence sentences.

First, all abstracts related to the given interven-
tion are broken into sentences. The sentences of
each abstract are then processed one-by-one by a
BERT-based classifier that estimates the probabil-
ity of each sentences containing evidence about the

effectiveness of the intervention. For the classifier,
we selected a version of the PubMedBERT (Gu
et al., 2020) model, which is pre-trained only on
abstracts from PubMed. We tested several mod-
els, including BioBERT (Lee et al., 2020), clinical-
BERT (Alsentzer et al., 2019) and RoBERTa (Liu
et al., 2019), but PubMedBERT performed the best
in our task. On top of PubMedBERT, we trained
a linear classification layer, followed by a Soft-
max, using the dataset from (DeYoung et al., 2020).
This dataset is a corpus especially curated for the
task of evidence extraction and consists of more
than 10,000 annotations. The classifier is trained
with annotated evidence sentences (i.e. positive
samples) and a random sample of non-evidence
sentences (i.e. negative samples). Regarding the ra-
tio of positive to negative samples, cross-validation
on the training set showed 1:4 to be a reasonable
choice. The evaluation of the different BERT-based
models was done based on the same data splits
(train, test and validation) as in (DeYoung et al.,
2020).

Figure 3: Evidence sentence identification. The
evidence sentences constitute the positive instances
whereas the non-evidence sentences the negative ones.

Once scored by the classifier, the highest scoring
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sentence is selected from each abstract. Therefore,
for each intervention we extract as many sentences
as the number of abstracts in its clinical record.

5.2 Short Summaries

To generate short and informative summaries we
explore both extractive and abstractive approaches.

Extractive Summaries were based on the ev-
idence sentences extracted in the previous step.
Specifically, we re-rank them and choose the top k
(k = 5) to compose our final summary. The model
we use here is the same BERT-based model as in
Section 5.1.

Abstractive Considering that an intervention is
linked to multiple abstracts and thus to multiple
evidence sentences, we first order all evidence sen-
tences chronologically and combine them into a
single text. Then, we split them to equal chunks5

and each chunk then is fed to a BART-based model
to produce the final summary.

BART has been shown to lead to state-of-
the-art performance on multiple datasets (Fabbri
et al., 2021). Specifically, we used the pre-trained
distilBART-cnn-12-6 model which is trained on
the CNN summarization corpus (Lins et al., 2019).
Since abstractive summarization produces out-of-
text phrases, it needs to be fine-tuned with domain
knowledge. In our case, we fine-tuned the BART
model with the MS2 dataset (DeYoung et al., 2021),
which contains more than 470K articles and 20K
summaries of medical studies.

We limited the length of the output summary to
140 words. For the extractive setting, in case the
top k sentences exceeded this limit, we removed
the extra words. For the abstractive setting we iter-
atively summarized and concatenated the chunks
for each intervention until the expected number of
140 words was accomplished.

5.3 Inferring Efficacy

We model the task of inferring the approval of an
intervention as a binary classification task. In our
approach, each intervention is represented by a
short summary. For the classification of the sum-
maries, we used again a PubMedBERT model. On
top of it, we trained a linear classification layer,
followed by a sigmoid, using the summaries gen-
erated in the previous step: Our positive training
instances were the summaries of interventions that

5A chunk has length equal to the maximum input length
of the BART model (1024).

have been approved, and correspondingly, the neg-
ative ones were the summaries of interventions that
have been terminated. Hence, the model decides
on the approval of the interventions.

5.4 Technical set-up

All models were pre-trained and fine-tuned for the
corresponding task. The maximum sequence size
was 512 and 1024 for BERT-based and BART-
based models respectively. The Adam optimizer
(Kingma and Ba, 2015) was used to minimize the
cross-entropy losses with learning rate 2e-5 and
epsilon value 1e-8 for all models. We trained all
models for 5 epochs, with batch sizes of 32, except
the abstractive summarizer for which the batch size
was decreased to 4 due to RAM memory limita-
tions of our system. The implementation was done
using the HuggingFace library (Wolf et al., 2020)
and Pytorch(Paszke et al., 2019).

6 Results and Analysis

We followed different training approaches for the
different trainable components of our pipeline. For
the evidence sentence selection and the abstractive
summarization models we split the data into devel-
opment and test and then split the development set
further into training (90%) and validation (10%).
We kept the model that performed best on the vali-
dation set and evaluated it on the held-out test set
of each task respectively, averaged over three ran-
dom data splits. Considering the small size of the
interventions dataset, we applied a 10-fold cross
validation for the final classification task. For this
task, we report macro averages of the evaluation
metrics over the ten folds.

6.1 Ablation Study

Our experimentation started with a comparison of
different variants and choices that were available
for the various modules of our approach.

Evidence Classifier Coming early in the
pipeline, the performance of the evidence classifier
can play a significant role in downstream tasks. The
chosen approach relied on domain-specific BERT
models. As domain-specific training that can affect
the performance of BERT-based models, we con-
ducted a comparison between different variants of
BERT. The results in Table 2 demonstrate that the
performance of the models is comparable, with all
models obtaining scores over 90% in terms of F1
and AUC. PubMedBERT model achieved the best
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scores and was used in the rest of the experiments.

Model P R F1 AUC
BioBERT .928 .938 .933 .957
ClinicalBERT .913 .925 .919 .945
RoBERTa .905 .919 .912 .931
PubMedBERT .931 .956 .943 .969

Table 2: The results of the domain-specific BERT vari-
ants that were used for the evidence classifier. All mod-
els were trained with negative sampling ratio 1:4. The
results denote the averages over three random train-test
splits.

Summarization Adequacy We assess the per-
formance of the summarization methods on the
MS2 dataset which is a collection of summaries
extracted from medical studies. The task of the
summarizers is to produce texts that approximate
the target summaries. We measure the performance
of the summarization methods using ROUGE and
the results are presented in Table 3. As expected,
the abstractive method achieves higher scores, as it
has more flexibility in forming summaries. We
also observed that domain-specific training im-
proves performance. The abstractiveno model
is a generic BART model without fine-tuning in
the domain. Comparing its performance to the
abstractive model, which was fine-tuned on a
small sample of the MS2 dataset that was excluded
from the evaluation process, we notice a statisti-
cally significant improvement.

Model R-1 R-2 R-L
abstractiveno 24.85 4.34 15.48
abstractive 39.38 11.98 20.13
extractive 19.24 3.22 13.19

Table 3: Evaluation of summarization methods on the
MS2 dataset. The abstractiveno refers to the generic
BART model without any fine-tuning in the domain.

Abstractive methods seem to provide better sum-
maries, however, whether these are more useful
than the extractive summaries for our donwstream
task is still to be determined.

6.2 Predicting Intervention Efficiency
Having made the choices for the individual mod-
ules, we now turn to the ultimate task, which is the
prediction of the efficiency of the intervention. We
evaluate two variations of our proposed method; i)
with abstractive summarization denoted as PIASabs

and ii) with extractive summarization denoted as

PIASext. We compare their performance against
two baselines:

• BS: This is a PubMedBERT model that is
trained with a single evidence sentence per
intervention (instead of a summary). The
sentence is extracted from the most recent
PubMed article relevant to the intervention.

• BN: This is similar to BS but instead of using
a single sentence for each intervention it is
trained with n evidence sentences extracted
from n different articles (n = 3). The arti-
cles are selected randomly among the ones
referring to the intervention.

The performance of all models is shown in Table
4. The proposed method outperforms the baselines
independent of the summarization methods that is
used. Interestingly, even selecting randomly se-
lected evidence sentences seem to help, as BN
achieved a higher performance than BS. Still, the
use of summarization provides a significant boost
over both baseline methods, validating the value of
using short summaries to evaluate the efficiency of
an intervention. Models that do not take advantage
of the inter-connected documents suffer a signifi-
cant drop in performance. Thus, this result justifies
the design of the proposed method.

We can also observe that the best performance
of the proposed method is achieved when using
the extractive summarization method. Extractive
summaries have demonstrated low ROUGE scores
in Section 6.1. Still, they can properly capture the
properties involved in the data for the classifica-
tion task. On the other hand, although the abstrac-
tive summarizer achieved better ROUGE scores, it
seems that the generated summaries cannot discrim-
inate the target classes (approved or terminated) as
well as the extractive ones. This indicates that the
quality of the summary, in terms of the ROUGE
score, is not decisive in the classification of the
intervention.

Model P R F1
BS .717 .706 .702
BN .732 .731 .731
PIASabs .781 .774 .773
PIASext .796 .793 .792

Table 4: The classification results of all models. The
reported precision, recall and f1 scores the macro aver-
ages over ten folds.
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Analyzing further the performance of our best
model, PIASext, we report macro average scores
for each target class in Table 5. We notice that the

class P R F1
positive (approved) .808 .819 .815
negative (terminated) .778 .765 .772

Table 5: The performance of our best model, i.e.
PIASext, for each target class. The scores denote macro
averages over ten folds.

model is slightly better at predicting the approval
of an intervention rather than its termination. This
can be explained by the fact that the approved inter-
ventions are associated with a considerably larger
number of articles than the terminated ones. This
leads to richer summaries for the approved inter-
ventions and thus to a more informed decision.

6.3 Predicting Phase Transition

Early prediction of approval To build our mod-
els, we considered all the available data from Phase
1, Phase 2 and Phase 3. However, predicting the
success of an intervention at the earliest phase pos-
sible is compelling. Therefore, we examine the
ability of our model in making early predictions.
More precisely, we evaluate PIASext model on the
following three transitions: Phase 1 to Approval,
Phase 2 to Approval and Phase 3 to Approval.

To perform this experiment, we select the inter-
ventions that have CTs in various stages and there
is least one article for each phase. In total, this
subset contains 249 interventions (193 approved
and 56 terminated). Then, we use 80% for train-
ing and 20% for testing. For each transition, we
train our model only with training instances from
the corresponding phase. In Table 6, we report the
macro average scores over ten random splits of the
data.

transition P R F1
phase1 to−→approval .39 .50 .44
phase2 to−→approval .78 .70 .72
phase3 to−→approval .81 .84 .82

Table 6: The performance of our best model, i.e.
PIASext, in predicting phase-to-approval transitions.
The scores denote the averages over ten random runs.

The results indicate that prediction of approval,
while at Phase 1 is very hard, but the transition

from Phase 2 and Phase 3 to approval can be pre-
dicted with considerable success. The large gap in
performance between Phase 1 and Phase 2, 3 tran-
sitions is explained by the lack of clinical evidence
in early phases.

Phase to Phase Another interesting and chal-
lenging task is to predict the transition of an inter-
vention to the next phase of the clinical trial process.
In this experiment, we want to predict Phase 1 to
Phase 2 and Phase 2 to Phase 3 transitions. For
each transition, we use data only from the former
phase for training (e.g. for Phase 2 to Phase 3 tran-
sition we use data from Phase 2) for both target
classes. Again, we use 80% for training and 20%
for testing and present the average scores over ten
random splits.

transition P R F1
phase2 to−→phase3 .84 .82 .83
phase1 to−→phase2 .77 .76 .77

Table 7: The performance of our best model, i.e.
PIASext, in predicting phase-to-phase transitions. The
scores denote the averages over ten random runs.

Table 7 shows the results for the two transitions,
which are comparable to the overall predictive per-
formance of the model. Considering the small size
of the datasets used in both phase transition tasks,
these results can serve only as an indication of how
our model behaves. Further analysis and experi-
ments should be conducted for a more thorough
evaluation.

6.4 Explainability of Predictions
It is clinically very valuable to identify the factors
that contribute most to a particular decision of the
classifier. Interestingly, the summaries generated
from our models can also serve that purpose very
well.

Table 8 illustrates some examples of interven-
tions along with their abstractive and extractive
summaries as produced by our pipeline. For
the first intervention, pertuzumab, it is notable
that both summaries report a improved median
progression-free survival which somewhat explains
the prediction. For the second intervention, tax-
ane, the summaries mention the greater incidence
of serious adverse events and lower median over-
all survival, which counts against the approval of
the intervention. We also notice that many numer-
ical entities are randomly placed or changed in
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Intervention PIASabs PIASext

pertuzumab 3 the primary endpoint of the study is progression-
free survival. median progression- free sur-
vival was 12.4 months in the control group, as
compared with 18.5months in the pertuzumab
group. median survival was <dig> months, 12.3
months, and 12.5 months, respectively, in the
p=0·0141 group and p =0·0% in the qtl group, re-
spectively. the p <dig) group had a significantly
improved pathological complete response rate
compared with the group without complete re-
sponse. p=dig> month and qtl were the most
significantly different groups in both groups. p
=dig>

Disease-free survival results were consistent
with progression-free survival results and were
81% (95% CI 72-88) for group A, 84% (72-91)
for group B, 80% (70-86) for group C, and 75%
(64-83) for group D. Patients who achieved to-
tal pathological complete Three patients [1.5%;
95% confidence interval (CI) 0.31% to 4.34%]
in cohort A experienced four New York No evi-
dence of DDIs for pertuzumab on trastuzumab,
trastuzumab on pertuzumab, or pertuzumab on
chemotherapy PK was observed. The median
progression-free survival (PFS) among patients
who received NAT was 15.8 months compared
with CNS ORR was 11% (95% CI, 3 to 25),
with four partial responses (median duration of
response, 4.6 months).

taxane 7 the most common serious adverse events
were anaemia, upper gastrointestinal haem-
orrhage, pneumonia, and pneumonia in the
trastuzumab emtansine 24 mg/kg weekly group
compared with pneumonia, febrile neutropenia,
and anaemia in the taxane group. median overall
survival was 11.8 months with trastzumab 2.4
mg/ kg weekly and 10.0 months with taxane.2)
with taxanes.3) with t-dm1 was not associated
with superior os or superior os versus taxane in
any subgroup.5–10% of the patients with high
body weight and low baseline trast

The most common serious adverse events were
anaemia (eight 4), upper gastrointestinal haem-
orrhage (eight 4), pneumonia (seven 3), gas-
tric haemorrhage (six 3), and gastrointestinal
haemorrhage (five 2) in the trastuzumab em-
tansine 24 mg/kg weekly group compared with
pneumonia (four 4), febrile neutropenia (four 4),
anaemia (three 3), and neutropenia (three 3) in
the taxane group. Median overall survival was
11.8 months (95 confidence interval ci, 9.3-16.3)
with trastuzumab emtansine 2.4 mg/kg weekly
and 10.0 months (95 ci, 7.1-18.2) with taxane
(unstratified hazard ratio 0.94, 95 ci, 0.52-1.72).

Table 8: Examples of generated summaries from our models. These summaries can be used to explain the predic-
tions of the classifier. The second column displays the prediction of the classifier for the specific intervention; 3
denotes approval and 7 denotes termination.

the abstractive summary. This contributes to the
tendency of the abstractive methods to generate
"hallucinated" evidence, as observed in the litera-
ture (Cao et al., 2018). However, the abstractive
summaries look more readable. A more exhaus-
tive analysis, including also a human evaluation,
is needed to assess the ultimate explainability of
these summaries.

7 Conclusion

Predicting intervention approval in clinical trials
is a major challenge with significant impact in
healthcare. In this paper, we have proposed a new
pipeline to address this problem, based on state-
of-the-art NLP techniques. The proposed method
consists of three steps. First, it identifies evidence
sentences from multiple abstracts related to an inter-
vention. Then, these sentences are used to produce
short summaries. Finally, a classifier is trained on
the generated summaries in order to predict the
approval or not of an intervention.

Moreover, we introduced a new dataset for this
task which contains 704 interventions associated

with 15,800 abstracts. This data was used to evalu-
ate our pipeline against other baseline models. The
experimental results verified the effectiveness of
our approach in predicting the approval of an in-
tervention and the contribution of each step of the
proposed pipeline to the final result. Further evalu-
ation on predicting phase transitions, showed that
our model can assist in all stages of a clinical trial.
Besides, the generated multi-document summaries
can be naturally used to explain the predictions of
the model.

There are multiple ways to extend this work.
In terms of multi-document summarization, there
is room to explore more advanced summarization
models, quality and performance metrics as well as
better explainability assessment. In the bigger pic-
ture, we shall also consider to expand the dataset by
extending its size and incorporating different types
of resources (e.g. drug interaction networks). Fi-
nally, we are interested in enhancing the proposed
method to incorporate temporal information associ-
ated with the CTs to maintain the history of clinical
changes.

1954



Acknowledgements

We would like to thank the anonymous reviewers
for their valuable and constructive comments on
this research. This works was partially supported
by the ERA PerMed project P4-LUCAT (Personal-
ized Medicine for Lung Cancer Treatment:Using
Big Data-Driven Approaches For Decision Sup-
port) ERAPERMED2019-163.

References
Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi,

Saeid Safaei, Elizabeth D Trippe, Juan B Gutierrez,
and Krys Kochut. 2017. Text summarization tech-
niques: a brief survey. International Journal of Ad-
vanced Computer Science and Applications.

Emily Alsentzer, John R Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical bert
embeddings. arXiv preprint arXiv:1904.03323.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstrac-
tive summarization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Dina Demner-Fushman and Jimmy Lin. 2006. An-
swer extraction, semantic clustering, and extractive
summarization for clinical question answering. In
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 841–848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jay DeYoung, Iz Beltagy, Madeleine van Zuylen, Bai-
ley Kuehl, and Lucy Lu Wang. 2021. Ms2: Multi-
document summarization of medical studies. arXiv
preprint arXiv:2104.06486.

Jay DeYoung, Eric Lehman, Ben Nye, Iain J Mar-
shall, and Byron C Wallace. 2020. Evidence infer-
ence 2.0: More data, better models. arXiv preprint
arXiv:2005.04177.

Joseph A DiMasi, Lanna Feldman, Abraham Seckler,
and Andrew Wilson. 2010. Trends in risks asso-
ciated with new drug development: success rates
for investigational drugs. Clinical Pharmacology &
Therapeutics, 87(3):272–277.

Magdalyn E Elkin and Xingquan Zhu. 2021. Predictive
modeling of clinical trial terminations using feature
engineering and embedding learning. Scientific re-
ports, 11(1):1–12.

Alexander R Fabbri, Wojciech Kryściński, Bryan
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A Results on Proctor Dataset

To further evaluate our method, we attempted a
comparison with the method presented in (Gayvert
et al., 2016) using their data. The data contains
a list of approved and terminated drugs together
with various features. Using this dataset, we ex-
perienced two issues that made the comparison
incomparable: i) For many drugs we could not find
relevant articles in PubMed. The original dataset
contains 828 drugs whereas we managed to collect
information only for 537. Thus, the scores of our
method are not directly comparable to the ones re-
ported in (Gayvert et al., 2016) ii) Four important
features that were used in (Gayvert et al., 2016) are
missing in the dataset. Therefore, the reproduction
of the exact model is not possible.

Despite these facts, we performed a comparison
of the methods for the subset that we collected:

• RF1: This model reports the scores from
(Gayvert et al., 2016).

• RF2: This is a Random Forest model similar
to the original one, but it is trained only with
the available features.

The overall performances of all models are de-
picted in Table 9.

Model AUC
RF1 .826
RF2 .484
PIASext .586

Table 9: The classification results of all models on the
Proctor dataset. The reported precision, recall and f1
scores are macro averages over ten folds.
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