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Abstract

Cross-lingual natural language inference
(XNLI) is a fundamental task in cross-lingual
natural language understanding. Recently this
task is commonly addressed by pre-trained
cross-lingual language models. Existing meth-
ods usually enhance pre-trained language mod-
els with additional data, such as annotated par-
allel corpora. These additional data, however,
are rare in practice, especially for low-resource
languages. Inspired by recent promising re-
sults achieved by prompt-learning, this paper
proposes a novel prompt-learning based frame-
work for enhancing XNLI. It reformulates the
XNLI problem to a masked language modeling
problem by constructing cloze-style questions
through cross-lingual templates. To enforce
correspondence between different languages,
the framework augments a new question for
every question using a sampled template in an-
other language and then introduces a consis-
tency loss to make the answer probability distri-
bution obtained from the new question as sim-
ilar as possible with the corresponding distri-
bution obtained from the original question. Ex-
perimental results on two benchmark datasets
demonstrate that XNLI models enhanced by
our proposed framework significantly outper-
form original ones under both the full-shot and
few-shot cross-lingual transfer settings.

1 Introduction

Cross-lingual language understanding (XLU) plays
a vital role in multilingual systems. It aims at train-
ing a model in a source language which is then
applied to other languages. Cross-lingual natural
language inference (XNLI) is a challenge task for
evaluating XL.U (Conneau et al., 2018). Natural
language inference (NLI) aims to determine the in-
ferential relationship between the text of a premise
and the text of a hypothesis while XNLI upgrades
NLI to the cross-lingual scenarios.
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Training example in English with English template:

Premise Hypothesis
[—% ,__\
<s> I hope to hear from you soon </s> </s> hope we talk soon [<MASK>|</s>

Applying English template to Arabic example:

Premise Hypothesis

<s>L 8 elie gand o Jal </5> </5> \,g)i Eaa3 () el <MASK>|</s>

Applying Arabic template to Arabic example:

Premise Hypothesis

<s>L 8 dlia g o JT <fs> </s>)a ey g u:.‘: e

Figure 1: Examples of applying cross-lingual templates.

Nowadays pre-trained cross-lingual language
models (Conneau and Lample, 2019; Conneau
et al., 2020) have become a dominant paradigm for
XLU, significantly improving the performance in
various XLU tasks included XNLI. Existing meth-
ods (Huang et al., 2019; Chi et al., 2021a,b) usually
utilize various auxiliary tasks to improve the cross-
lingual transferability of a pre-trained cross-lingual
language model, mainly relying on annotated par-
allel corpora. In practice, these methods can hardly
work for low-resource language scenarios where
parallel corpora are rare.

Recently, prompt-learning based methods
(Schick and Schiitze, 2021; Shin et al., 2020) have
shown to achieve promising results for few-shot
natural language processing (NLP). These methods
reformulate the text classification problem into a
masked language modeling problem. In particular,
the work (Zhao and Schiitze, 2021) demonstrates
that prompt-learning outperforms fine-tuning in
few-shot XNLI. We argue that the effectiveness of
prompt-learning in XNLI still needs to be explored
by a larger margin. The reasons are two-fold. On
one hand, the effectiveness of prompt-learning in
XNLI under the full-shot setting is still unknown.
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On the other hand, the way to make the best of ques-
tion templates is unexplored yet. The work (Zhao
and Schiitze, 2021) uses a uniform template in En-
glish for all examples in different languages. This
way can hardly capture language-specific character-
istics in XNLI, especially for those languages that
are right-to-left written such as Arabic and Urdu.
We naturally expect that language-specific ques-
tion templates lead to higher performance in XNLI.
Figure 1 illustrates how language-specific question
templates are used. The second sub-figure shows
the uniform question template used in (Zhao and
Schiitze, 2021) to handle an Arabic example, where
the corresponding example in English is shown in
the first sub-figure. The last sub-figure shows the
Arabic-specific question template used for the same
Arabic example, which is right-to-left written and
conforms to the Arabic grammar.

In order to introduce language-specific character-
istics in question templates while capturing corre-
spondence between different languages, we pro-
pose a novel prompt-learning based framework
named PCT (shot for Prompt-learning from Cross-
lingual Templates) for XNLI. As illustrated in Fig-
ure 2, PCT first constructs a cloze-style question by
filling the template in the source language (namely
English), then randomly samples a template in an-
other language (such as Chinese) to construct an
augmented question, where the augmented ques-
tion is written in two languages and thus its tem-
plate is called a cross-lingual template. Both the
original question and the augmented question are
fed into a pre-trained cross-lingual language model
to calculate the answer probability distributions for
inferential relationships that are represented by pre-
defined tokens mapped from the mask token. To
enforce answer consistency for the two questions,
i.e., to make the two probability distributions of
inferential relationships as similar as possible, the
two probability distributions are regularized by the
Kullback-Leibler divergence (KLD) loss. The en-
tire model is trained by minimizing the sum of the
cross-entropy loss for classification accuracy and
the KLD loss for answer consistency.

We employ PCT to enhance pre-trained cross-
lingual language models XLM-R (Conneau et al.,
2020) and INFOXLM (Chi et al., 2021a). Experi-
mental results on the XNLI (Conneau et al., 2018)
benchmark and the PAWS-X (Yang et al., 2019)
benchmark show that PCT improves the original
models by a significant margin under both the full-

shot and few-shot cross-lingual transfer settings.
Main contributions of this work include:

1. We propose a novel prompt-learning based
framework for XNLI. In this framework,
a data augmentation strategy is introduced
which relies merely on predefined cross-
lingual templates; moreover, a consistency
loss is introduced to enforce similar output
probability distributions for arbitrary two lan-
guages so as to capture correspondence be-
tween different languages.

2. We conduct extensive experiments on two
large-scale benchmarks to demonstrate signif-
icant improvements achieved by the proposed
framework, under both the full-shot and few-
shot cross-lingual transfer settings.

2 Related Work

Up to date XLU including XNLI are widely ad-
dressed by pre-trained cross-lingual language mod-
els (Devlin et al., 2019; Conneau and Lample,
2019; Conneau et al., 2020). Multilingual BERT
(mBERT) (Devlin et al., 2019) extends the basic
pre-trained language model BERT by training with
multilingual corpora. XLM (Conneau and Lam-
ple, 2019) enhances mBERT by introducing the
translation language modeling (TLM) objective.
XLM-RoBERTa (XLM-R) (Conneau et al., 2020)
trains XLLM with larger corpora and more epochs.
Cross-lingual language models can further be
enhanced by post-training tasks that rely on large-
scale parallel corpora. UNICODER (Huang et al.,
2019) introduces several post-training tasks to uti-
lize parallel corpora. INFOXLM (Chi et al., 2021a)
enhances XLM-R by introducing the cross-lingual
contrastive learning task using 42 GB parallel cor-
pora. XLM-ALIGN (Chi et al., 2021b) introduces
a denoising word alignment pre-training task us-
ing several parallel corpora. These enhancements
can hardly be applied to low-resource languages
for which parallel corpora are rare. To alleviate
the dependence on parallel corpora, some data
augmentation strategies have been proposed for
XNLI. TMAN (Qi and Du, 2020) enhances XNLI
by exploiting adversarial training from translated
data. The work (Dong et al., 2021) proposes a
data augmentation strategy for XNLI by generating
augmented data from a pre-trained sequence-to-
sequence model. UXLA (Bari et al., 2021) im-
proves the performance of XNLI by data augmen-
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Premise Hypothesis

Premise Hypothesis

D Template tokens

D Special token <MASK>

D MLM module
C] Training Loss

<s> I hope to hear from you soon. </s> </s>|Question;I hope we talk soon|? Answer:||<MASK>| </s>

<s> I hope to hear from you soon. </s> </s>| [@@: |Ihope we talk soon| ? &2 : [[<MASK>|</s>

Yes CE Loss

MLM Layer

Vocabulary

KLD Loss

+ Minimalization
Objective

MLM Layer

Yes CE Loss

Vocabulary

Verbalizer
Y E SR » Entailment
N O v — » Contradiction
Maybe --------- * Neutral

Figure 2: The proposed PCT framework.

tation and unsupervised sample selection. All these
strategies require a large amount of external re-
sources for data augmentation. In contrast, our
proposal augments data by only predefined cross-
lingual templates.

Recently prompt-learning based methods have
shown to achieve promising results in various few-
shot NLP tasks. The key of these methods is re-
formulating the text classification problem into a
masked language modeling problem by construct-
ing cloze-style questions. The work (Schick and
Schiitze, 2021) applies prompt-learning to text clas-
sification (including NLI) with manually defined
templates. The work (Shin et al., 2020) proposes
to search for optimal discrete templates by a gra-
dient based approach. Several approaches (Li and
Liang, 2021; Liu et al., 2021; Han et al., 2021) have
been proposed to search continuous prompts. The
work (Zhao and Schiitze, 2021) compares prompt-
learning with fine-tuning in few-shot XNLI. Dif-
ferent from (Zhao and Schiitze, 2021), this work
significantly advances prompt-learning in XNLI
further by introducing a new data augmentation
strategy and a new consistency loss for regulariza-
tion. The effectiveness of prompt-learning is also
demonstrated further under both the full-shot and
few-shot cross-lingual transfer settings.

3 The PCT Framework

The proposed PCT framework is illustrated in Fig-
ure 2. For every training triple (premise, hypothe-
sis, label) in English, PCT first constructs a cloze-

style question by filling the template in English,
then samples a predefined template from another
language such as Chinese to construct an aug-
mented question. Both the original question and
the augmented question are fed into a pre-trained
cross-lingual model to calculate the answer dis-
tributions of the mask token, through the masked
language modeling (MLM) layer in the pre-trained
cross-lingual model. The entire model is trained
by minimizing the cross-entropy loss for classifica-
tion accuracy and the Kullback-Leibler divergence
(KLD) loss for answer consistency.

3.1 Formalization of PCT

The training phase of PCT is formalized in Algo-
rithm 1. For every training triple (P;, H;, Y;) in
English, where P; = {w]P }7L, denotes the word
sequence of the premise, H; = {wJH }7_ the word
sequence of the hypothesis, Y; € ) the index of
the NLI label, PCT first constructs a cloze-style
question X; by filling the English template, and
then randomly samples a template from other lan-
guages to construct an augmented question X ;. A
template in an arbitrary language is a textual string
with three unfilled slots: a input slot [P] to fill
the input premise, a input slot [H] to fill the input
hypothesis and an answer slot [Z] that allows lan-
guage models to fill label words. [Z] is usually
filled by the mask token [MASK] when using pre-
trained language models. For instance, the English
template is expressed as “<s>[P]</s></s>Question:
[H]? Answer: [MASK]</s>", where <s> and </s>
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Algorithm 1 The training phase of PCT

Require: the number of epochs E' and the training
set D = {(P;, H;,Y;)}, in English.

1: Reform D to a set of tuples S = {X;,Y;}M,

by filling the English template.

2: Extend Sto T = {(X;, X;, Vi) }, by filling
a randomly sampled template from other lan-
guages for each (P;, H;).

Divide T into a set of mini-batches B.
for epoch from 1 to E' do
Shuffle B.
for each mini-batch {(XZ, YZ', Y;)}ISZ'SN in
B do
Compute total loss £ by Eq. (5).
Update parameters 6 by gradient descent.
: end for
10: end for

AN AN

[c BN

are special tokens in XLM-R to separate sentences.
The verbalizer M : Y — V is a function to map
NLI labels to indices of answer words in the given
vocabulary. Let [ denote the size of the given vo-
cabulary and d the dimension of the contextualized
representation of a token, output by a pre-trained
cross-lingual language model with an MLM layer,
such as XLM-R (Conneau et al., 2020). The answer
probability distribution is calculated by:

y; = softmax (W), hEMASK])

()
where Wi, € R*? denotes the parameters of the
pre-trained MLM layer and HMASK] & Rd denotes
the contextualized representation of the [MASK]
token of the i'" training triple. Compared with the
standard fine-tuning method, no extra parameters
are required to be initialized, therefore the model
can be optimized by fewer samples.

Given a mini-batch (X;, X;,Y;)1<i<y of N
triples, the two cross-entropy losses for the original
question and the augmented question are respec-
tively calculated by:

=]
=
M-

Ly=~— I(j = M(Y)) log gl (2)
i=1 j=1
N o
. X;
Ly =5 2D 16 =M¥))logy; ()
i=1 j=1
where yz ‘ (resp. yz ) denotes the ;" element of

Yi € R! for the input X; (resp. for the input X;).

I(C) is an indicator function that returns 1 if C' is
true or O otherwise.

We observe that, given the same input premise
and hypothesis, the answer probability distribution
of the question constructed by a cross-lingual tem-
plate may evidently deviate from that of the ques-
tion constructed from the English template. Such a
deviation may lead to an increase of errors when ap-
plying cross-lingual templates to examples in other
languages. Our ablation study in Section 4 con-
firms this phenomenon. To eliminate the negative
effect of this deviation, we propose a consistency
loss function to regularize the answer probability
distributions. More precisely, we employ the sym-
metric Kullback-Leibler divergence (KLD) loss to
enforce the answer probability distributions leZ

and y,LXT to be as similar as possible, which is for-
mally defined bellow.

N
1
=1
| N yXi 71-
SO AT AR
i=1 j=1 yJ yu
4)

The entire model is trained by minimizing the
total loss £ formally defined as:

L=Lx+ Lx+ Lkp 5

where we simply apply the same weight for the
three loss terms.

3.2 Inference with Cross-lingual Templates

Since the English template may not conform to the
grammar of other languages such as Arabic and
Urdu, PCT uses the cross-lingual template in the
target language for predicting test examples in the
target language. For instance, every Chinese test ex-
ample is reformed to a Chinese cloze-style question
by ﬁlling the Chinese template “<s>[P]</s></s>[1]
Al: [H]? & %8: [MASK]</s>", which is obtained
from the English template by translating prompt
words in English to prompt words in Chinese,
where the slots [P] and [H] are filled by the premise
and the hypothesis in Chinese, respectively. More
generally, all cross-lingual templates are obtained
from the English template by translating prompt
words in English to prompt words in other lan-
guages using Google translator !, where for Arabic

"https://translate.google.com/
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and Urdu, the prompt part is written from right to
left rather than from left to right as in English and
other languages. By considering that the English
label words have been fine-tuned to work for dif-
ferent languages during the training phase, we use
the same English verbalizer M for all languages in
the inference phase.

4 Experiments

To evaluate the effectiveness of the proposed PCT
framework, we applied PCT to enhance several pre-
trained cross-lingual language models including
XLM-Rpases XEM-Ryyre and INFOXLMypge. We
call the enhanced models PCT-X, where X denotes
the original pre-trained cross-lingual model.

4.1 Datasets

We conducted experiments on two large-scale
benchmarks, namely XNLI and PAWS-X.

XNLI: The XNLI (Conneau et al., 2018) bench-
mark? extends the MultiNLI (Williams et al., 2018)
benchmark (in English) to 15 languages through
translation and comes with manually annotated de-
velopment set and test set. For each language, the
training set comprises 393K annotated sentence
pairs, whereas the development set and the test set
comprises 2.5 K and 5K annotated sentence pairs,
respectively.

PAWS-X: The PAWS-X (Yang et al., 2019) is a
cross-lingual paraphrase identification benchmark?,
which extends the Wikipedia portion of the PAWS
(Zhang et al., 2019) dataset to 7 languages through
translation. For each language, the training set
comprises 49.5K annotated sentence pairs, whereas
both the development set and the test set comprise
2K annotated sentence pairs each.

4.2 Implementation Details

We implemented our enhanced models by Tensor-
flow 2.4.0 and trained all the models with 8 TPUs
on the Google Colab platform*.

PCT-XLM-Ry,s was initialized by the pre-
trained XLM-Ry,,sc model with 12 transformer lay-
ers, which outputs 768-dimensional token embed-
dings. The transformer encoder was built with
12 heads. We applied dropout (Srivastava et al.,
2014) to each layer by setting the dropout rate to

Mttp://www.nyu.edu/projects/bowman/
xnli/

*https://github.com/
google-research—-datasets/paws

*nttps://colab.research.google.com/

0.1. The model was trained by Adam (Kingma and
Ba, 2015) with the warmup mechanism (Devlin
et al., 2019) and two training epochs, where the
initial learning rate was set to 5e-5, the warmup
proportion to 10%, and the mini-batch size to 64.

PCT-XLMj,ge and PCT-INFOXLMj,,ee Were
respectively initialized by the pre-trained XLM-
Riarge and INFOXLMj,, e models with 24 trans-
former layers, both of which output 1024-
dimensional token embeddings. The transformer
encoder was built with 16 heads. The models were
trained by RMSProp (Dauphin et al., 2015) with
one training epoch, where the initial learning rate
was set to 5e-6, the mini-batch size to 32, and the
dropout rate to 0.1. We used RMSProp instead
of Adam for these large models since the training
memory is limited by the Google Colab platform.
For all the above models, the input sentence pairs
were truncated to maximum 128 tokens. Code and
data about our implementations are available at
https://github.com/gikunxun/PCT.

4.3 Compared Models

We compared our models with the following pre-
trained cross-lingual language models: (1) multi-
lingual BERT (mBERT; Devlin et al. (2019)) is a
BERT model pre-trained on Wikipedia with 102
languages; (2) XLM (Conneau and Lample, 2019)
is pre-trained for two tasks (MLM and TLM) on
Wikipedia with 100 languages; (3) XLM-R (Con-
neau et al., 2020) extends XLM with larger cor-
pora (i.e. the CC-100 corpora with 100 languages)
and more training epochs; (4) UNICODER (Huang
et al.,, 2019) continues training XLM by intro-
ducing several post-training tasks using parallel
corpora; (5) INFOXLM (Chi et al., 2021a) en-
hances XLM-R by introducing the cross-lingual
contrastive learning task using 42 GB parallel cor-
pora; (6) XLM-ALIGN (Chi et al., 2021b) en-
hances XLM-R by introducing the denoising word
alignment pre-training task using several parallel
corpora; (7) The work (Dong et al., 2021) proposes
an adversarial data augmentation strategy for XNLI
based-on XLM-R; (8) UXLA (Bari et al., 2021)
extends XLM-R with data augmentation and un-
supervised sample selection. (9) The work (Zhao
and Schiitze, 2021) proposes three prompt-learning
methods for few-shot XNLI, including DP (direct
prompting), SP (soft prompting) and MP (mixed
prompting).
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Models | @ en fr es de el bg 1 tr ar vi th zh hi  sw u | A
Train multilingual model on training data in English (Cross-lingual Transfer)

mBERT N | 737 704 70.7 687 69.1 704 678 663 668 665 644 683 642 618 593 | 672
XLM Y | 8.0 787 789 778 76.6 774 753 725 731 76.1 732 765 69.6 684 673 | 75.1
XLM (w/o TLM) N | 82 767 777 740 727 741 727 687 686 729 689 725 656 582 624 | 70.7
UNICODER Y | 84 792 798 782 773 785 767 738 739 759 718 747 701 674 663 | 753
XLM-Ry,ase N 84.6 782 792 710 759 775 755 729 721 748 71.6 737 69.8 647 65.1 74.2
INFOXLM Y | 864 803 809 793 778 793 776 756 742 711 746 710 722 675 673 | 765
XLM-ALIGN Y | 8.7 806 81.0 788 774 788 714 752 739 769 738 710 719 671 66.6 | 76.2
Dong et al. (2021) N | 808 758 773 745 749 763 749 714 700 745 716 73.6 685 648 657 | 73.0
DP-XLM-R! ase N | 839 781 785 761 757 771 753 732 716 747 709 734 702 636 655 | 739
SP-XLM-RfASG N | 847 783 788 756 753 763 757 733 703 740 706 741 702 628 649 | 73.7
MP—XLM-RZase N | 842 784 788 769 753 765 757 727 712 752 708 728 70.7 615 66.0 | 73.8
PCT-XLM-Ry, 55¢ (this work) N | 849 794 79.7 717 76.6 789 769 740 729 760 720 749 717 659 673 | 753
XLM-Rjarge N | 889 836 848 831 824 837 807 792 79.0 804 778 79.8 768 727 733 | 804
UXLA N - - 857 842 - - - - 80.5 - - - 78.7 747 734 -
INFOXLMjarge Y | 89.7 845 855 841 834 842 813 809 804 808 789 809 779 748 737 | 814
PCT-XLM-R|arge(this work) N | 883 842 851 837 831 844 819 812 809 80.7 788 803 784 736 75.6 | 813
PCT-INFOXLMia,ge(this work) | Y | 88.6 845 854 84.6 837 847 823 814 811 817 795 814 795 756 756 | 82.0

Table 1: Comparison results on XNLI under the full-shot cross-lingual transfer setting. Every value is the test
accuracy in percent. ¢ indicates whether the model uses additional datasets for training, where Y denotes additional

datasets being used and N being not. A is the average accuracy for 15 languages. DP-XLM-R! _ SP-XLM-R!

and MP-XLM-R/

base

base? base

respectively denote the reproduced result of discrete prompting, soft prompting and mixed

prompting approaches proposed in (Zhao and Schiitze, 2021) based on XLM-Ry, 5.

Models en fr es de ja ko zh A

mBERT 940 87.0 874 857 73.0 69.6 77.0 82.0
XLM 940 874 883 859 693 648 76.5 80.0
XLM-RLLSe 94.1 88.7 879 875 76.6 750 804 843
PCT-XLM-Rpase 94.5 89.8 89.1 83.0 77.6 77.3 818 854
XLM-Rjarge 947 904 90.1 89.7 78.7 79.0 823 86.4
PCT-XLM-Riarge | 95.6 922 91.2 905 822 819 84.2 883

Table 2: Comparison results on PAWS-X under the
full-shot setting. Every value is the test accuracy in per-
cent. A is the average accuracy for 7 languages. XLM-
R/ _ denotes the reproduced result of XLM-Ry, .

base

4.4 Main Results

We conducted experiments on both XNLI and
PAWS-X under the cross-lingual transfer setting,
where models are trained on data in the source lan-
guage (usually English) and tested on data in the
target language. This setting is commonly used to
evaluate XNLI models. It can be further divided
into two sub-settings: the full-shot setting using
the whole training set, and the few-shot setting us-
ing a fixed number of training samples. For both
XNLI and PAWS-X we evaluated models under the
full-shot setting, whereas for XNLI we additionally
evaluated models under the few-shot setting.
Table 1 reports the results for comparing PCT-
enhanced models with other models on XNLI under
the full-shot setting. The results of compared mod-
els are taken from (Chi et al., 2021a) and (Liang
et al., 2020). PCT-XLM-Ry,,sc achieves 75.3% ac-
curacy on the XNLI test set averaged by 15 tar-
get languages, significantly outperforming its basic
model XLM-Ry,s. by an absolute gain of 1.1%
accuracy on average. The difference between PCT-

XLM-Ry,se and XLLM-Ry,,¢ in average accuracy
is statistically significant with p-value 1.7e-6 by a
two-tailed t-test. Meanwhile, PCT-XLM-R},..¢c Out-
performs the three prompt-learning approaches (i.e.
DP-XLM-R]__, SP-XLM-R] _ and MP-XLM-
R},..) in (Zhao and Schiitze, 2021) under the full-
shot setting. PCT-XLM-R ;4. achieves 81.3% ac-
curacy on the XNLI test set averaged by 15 tar-
get languages, pushing XLM-R,.¢c by an absolute
gain of 0.9% accuracy on average. The difference
between PCT-XLM-R,;ge and XLM-Ry,ge in aver-
age accuracy is statistically significant with p-value
2.5e-4 by a two-tailed t-test. Furthermore, it can be
seen that the average accuracy of PCT-XLM-Rj,ge
is close to that of the current state-of-the-art model
INFOXLMj,ge (i.€. 81.4%), which is trained with
additional data. To further verify the effectiveness
of PCT, we also applied PCT to INFOXLMj;,ge,
denoted by PCT-INFOXLMj,,ge. It can be seen
that PCT-INFOXLM,, . achieves 82.0% accuracy
on average, pushing INFOXLMj,,,. by an absolute
gain of 0.6% on average. The difference between
PCT-INFOXLMj,;ge and INFOXLMj,,ge in aver-
age accuracy is statistically significant with p-value
7.5e-3 by a two-tailed t-test. These results imply
that PCT is able to further improve the cross-lingual
transferability of state-of-the-art models.

Table 2 reports the comparison results on PAWS-
X under the full-shot setting. The results of com-
pared models are taken from (Hu et al., 2020).
Since the work (Hu et al., 2020) has not reported
the result of XLM-Ry,4¢e, wWe produced the result of
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Shots Models en fr es de el bg ru tr ar vi th zh hi SW ur AN
FT 347 338 338 343 335 338 341 341 33.6 340 331 335 331 337 332 337
DP 382 366 369 375 374 371 365 357 351 358 372 379 359 338 349 364
K=16 SP 39.5 409 394 40.2 404 406 406 363 389 385 395 374 369 37.1 359]| 388
MP 332 344 345 340 326 33.0 339 347 325 333 335 357 343 333 327 337
PCT (this work) | 46.5 443 41.5 369 457 40.8 424 437 43.6 447 439 448 448 40.1 425| 43.1
FT 36.6 365 360 36.0 36.1 363 357 359 358 36.1 357 357 362 353 348 359
DP 437 439 428 435 425 435 425 420 418 419 405 399 393 375 39.8| 417
K=32 SP 4477 423 423 421 423 434 438 388 403 4211 400 39.6 389 375 388| 4l.1
MP 455 447 412 426 423 422 422 412 41.0 417 402 409 402 365 40.5| 415
PCT (this work) | 49.6 48.8 455 444 474 454 455 443 457 467 41.6 456 467 403 429| 454
FT 417 395 403 401 399 396 383 395 402 409 392 396 395 39.6 392 398
DP 489 48.0 450 481 469 476 449 457 456 473 457 452 416 41.0 433 | 457
K=64 SP 49.0 46.1 458 46.0 4377 438 445 419 435 453 447 442 409 405 40.1| 440
MP 51.8 483 466 482 468 46.0 448 448 439 483 450 43.0 40.1 378 44.0| 453
PCT (this work) | 51.5 51.3 509 493 50.6 502 49.1 474 481 497 473 482 476 44.6 44.0| 48.6
FT 469 46.0 458 456 444 455 449 437 435 448 433 448 43.0 414 418 444
DP 537 493 485 51.0 474 505 469 496 462 489 448 496 448 420 442 480
K=128 | SP 495 464 458 450 463 462 450 419 448 450 456 457 433 412 412 449
MP 52.6 503 49.7 49.0 49.1 48.0 464 485 465 482 481 505 47.0 429 440| 48.0
PCT (this work) | 55.0 533 538 528 534 519 517 509 504 517 50.0 512 515 47.0 479| 515
FT 578 554 559 544 540 546 529 523 521 542 512 521 50.7 500 48.6| 53.1
DP 60.1 544 506 554 551 556 514 508 532 551 534 527 461 453 484 525
K=256 | SP 60.6 558 548 53.0 531 560 525 521 523 545 545 546 494 473 485| 533
MP 60.1 553 51.6 507 546 540 535 513 528 523 534 538 496 453 472 524
PCT (this work) | 60.3 583 583 563 579 567 552 546 547 574 556 558 546 51.6 52.6| 56.0

Table 3: Comparison results on XNLI under the few-shot setting. Every value is the test accuracy in percent,
taking from the mean performance of 5 runs. FT, DP, SP, MP denote the fine-tuning, discrete prompting, soft
prompting and mixed prompting approaches proposed in (Zhao and Schiitze, 2021). A is the average accuracy.

Models | en fr es de el bg ru

Train multilingual model on all training data including translated data in other 14 languages (TRANSLATE-TRAIN-ALL)

XLMRiarge
PCT-XLM-Ry,rge

89.1 851 86.6 857 853

859 835
88.7 850 860 852 848 863 832 822 826 838 815

tr ar vi th zh hi SW ur A
832 83.1 837 815 837 8l.6 780 78.1 83.6
829 80.7 782 751 83.1

Table 4: Comparison results on XNLI under the TRANSLATE-TRAIN-ALL setting. Every value is the test

accuracy in percent. A\ is the average accuracy.

XLM-Ry,;¢e (denoted by XLM-RLase). PCT-XLM-
Rpase achieves 85.4% accuracy on the test set aver-
aged by 7 languages, pushing XLLM-Ry,,5.T by an
absolute gain of 1.1% accuracy on average. The
difference between PCT-XLM-Rp,sc and XLM-
Rpaset in average accuracy is statistically signifi-
cant with p-value 3.2e-3 by a two-tailed t-test. PCT-
XLM-Rj, e achieves 88.3% average accuracy on
the PAWS-X test set, pushing XLM-Rj,,¢c by an
absolute gain of 1.9% accuracy on average. The
difference between PCT-XLM-R},;. and XLM-
Riarge in average accuracy is statistically significant
with p-value 3.2e-3 by a two-tailed t-test.

Table 3 reports the results for comparing PCT-
XLM-Ry,5e With all approaches proposed in (Zhao
and Schiitze, 2021). Note that all compared models
are based on XLM-R},.. and we evaluated PCT-
XLM-Ry,se using the same split of data from (Zhao
and Schiitze, 2021). The training and validation
data are randomly sampled by (Zhao and Schiitze,
2021) with K € {16, 32,64, 128,256} shots per
class from the English training data in XNLI. Re-
sults show that PCT-XLLM-Ry,,. statistically out-
performs all baselines in all experiments. In partic-

ular, PCT-XLLM-R},,5c outperforms the fine-tuning
baseline by an absolute gain of 9.4% accuracy on
average in the 16-shot experiments. It can also be
seen that the difference between PCT-XLM-R},.¢c
and fine-tuning baseline becomes larger as K de-
creases, implying that the PCT framework becomes
more effective when training data are fewer.

4.5 Evaluation on Translated Training Data

We also evaluated PCT on XNLI under the
TRANSLATE-TRAIN-ALL setting, where all
translated data are used in training, to see how
well PCT is adapted to this setting. We construct
an original question from the template of each of
the 15 languages and an augmented question from
a sampled template of other languages. Table 4 re-
ports the comparison results. PCT-XLM-Ry;gc un-
der this setting achieves significantly better perfor-
mance than under the cross-lingual transfer setting,
but fails to outperform its original model XLM-
Rjarge. This inferiority may be caused by the rela-
tively low quality of examples in source languages.
Note that an example in a source language other
than English is translated from an English example
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Variant Models \ en fr es de el bg tr ar vi th  zh hi swour A ‘ p-value
Original PCT-XLM-Rp a5 84.9 794 79.7 777 76.6 789 769 743 729 760 720 749 717 659 673 753 -

(1) W/o the consistency loss 84.6 79.6 795 767 763 78.1 76.0 739 72.1 750 723 739 7.1 639 66.8 74.7| 12e-3
(2) W/o the PCT framework 839 78.1 785 76.1 757 771.1 753 732 71.6 747 709 734 702 63.6 655 73.9| 1.5¢-9
(3) Using cross-lingual templates in (2) | 83.9 77.4 783 756 75.1 765 748 723 708 743 70.6 72.0 69.7 63.7 650 73.3| 3.0e-10
(4) W/o the cross-lingual templates 84.8 795 79.6 779 764 782 76.7 742 725 76.0 719 746 71.6 648 669 75.0| 3.0e-2
(5) Using substitute word templates 84.6 79.0 79.6 77.1 765 779 759 73.8 720 755 715 739 70.6 663 658 74.7| 4.2e-4

Table 5: Ablation study results for PCT-XLM-Ry,,s.. Every value is the test accuracy in percent.

A is the average

accuracy for 15 languages. The p-value is calculated by two-tailed t-tests.

Variant Models en fr e de el bg ru tr ar  vi th  zh hi SW o ur A p-value
PCT-XLM-Rp a5 (uniform) 849 794 79.7 717 76.6 789 769 743 729 76.0 72.0 749 71.7 659 67.3 75.3 -
PCT-XLM-Rpase (directly proportional) 851 794 79.8 77.8 76.0 78.4 784 739 727 758 713 742 716 64.1 669 75.0| 0.28
PCT-XLM-Ry,,5¢ (inversely proportional) 84.5 80.1 804 77.8 76.9 79.0 76.1 744 72.8 76.1 71.5 748 71.7 66.0 67.1 753| 0.1
PCT-XLM-R}a,ge (uniform) 88.1 842 85.1 83.7 83.1 84.4 819 81.2 80.9 80.7 78.8 803 784 73.6 75.6 81.3 -
PCT-XLM-R}a,ge (directly proportional) 88.4 84.0 845 84.0 83.1 84.2 81.7 80.8 80.3 80.7 78.1 80.3 785 734 749 81.1| 0.03
PCT-XLM-Rjarge (inversely proportional) | 88.4 84.4 84.8 83.8 83.2 84.5 82.0 80.8 80.6 81.1 78.6 80.8 78.9 73.6 749 81.4| 0.8l

Table 6: Comparison results for template selection. Every value is the test accuracy in percent. A is the average
accuracy for 15 languages. The p-value is calculated by two-tailed t-tests. “uniform” denotes the strategy with
uniform selection probabilities. “directly proportional” and “inversely proportional” denote two strategies where the
selection probabilities are directly proportional to and inversely proportional to the XX-En BLEU scores.

and may have translation errors. As a future work,
we will go on studying whether using training data
in multiple languages helps to improve XNLI by
collecting more real-world data in other languages.

4.6 Ablation Study

Table 5 reports the ablation study results for PCT-
XLM-Ryp,s0. For the variant (1), we omit the consis-
tency loss in course of training. Results show that
the usage of consistency loss achieves better per-
formance on average. For (2), we omit the whole
PCT framework in course of training. Results show
that the usage of PCT pushes XLM-Ry,,5. with stan-
dard prompt-learning by an absolute gain of 1.4%.
For (3), we apply the cross-lingual templates to
the variant (2). Results show that the performance
drops about 0.6% on average when applying only
the cross-lingual templates. For (4), we use only
the English template in the inference phase. Re-
sults show that PCT-XLM-R},.cc achieves better
performance on average when the cross-lingual
templates are used in inference. For (5), we use
the substitute word templates for Arabic and Urdu
as for other languages, i.e., the templates for Ara-
bic and Urdu are also left-to-right written. Results
show that PCT-XLM-Ry,,s is able to capture cer-
tain language-specific characteristics in the target
language to achieve better performance.

4.7 Visualization Analysis

To clarify why the proposed PCT framework im-
proves accuracy in predicting NLI labels, we visu-
ally compared the representations of the [MASK]

token generated by standard prompt-learning based
XLM-Rpse (denoted by PL-XLM-Ry,,50) With that
generated by PCT-XLM-Ry,,5e, by using t-SNE
(Laurens and Hinton, 2008) to reduce the dimen-
sion. The results are shown in Figure 3. For the
sub-figures (a) and (d), the points marked with “x",
“+" and “0” correspond to examples with the label
“entailment”, “contradiction” and “neutral”, respec-
tively. The points with different colors correspond
to examples in different languages. The figures
were obtained by randomly selecting 200 exam-
ples for each language from the XNLI test set. It
can be seen in (a) that a group of red points (for
Urdu) and purple points (for Arabic) are dissoci-
ated while all points from different languages are
mutually overlapped in (d). Considering that the
the points from Arabic and Urdu are quite differ-
ent, we further analyzed them. For the sub-figures
(b), (c), (e) and (f), the points marked with “o" and
“+" respectively correspond to examples in English
and in either Arabic or Urdu. The points with blue,
red and green color correspond to examples with
the label “entailment”, “neutral” and “contradic-
tion”, respectively. Sub-figures (b) and (e) (resp.
sub-figures (c) and (f)) were obtained by randomly
selecting 1000 examples in English and 1000 in
Arabic (resp. in Urdu) from the XNLI test set.
Compared with PL-XLM-Ry .50, PCT-XLM-Ry, e
yields clearer distinction between different labels
and more confusion between English and the target
language (Arabic or Urdu). These results imply
that the PCT framework tends to align contextual-
ized representations in different languages into the
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(f) PCT-XLM-R(en+ur)

Figure 3: Visualization of the [MASK] representations.

same space, which helps to improve the prediction
accuracy in the XNLI task.

4.8 Different Strategies for Template Selection

We also conducted experiments to show how dif-
ferent strategies for template selection impact the
performance. The results are reported in Table 6.
We compared the default uniform strategy with two
different selection strategies, where one sets the
probabilities for selecting XX directly proportional
to and the other inversely proportional to the XX-
En BLEU scores, which are directly taken from
Table 3 in (Conneau et al., 2018) and can be con-
sidered as similarity degrees between the target
languages XX and English. Results show that the
performances of both PCT-XLM-Ry,,s. and PCT-
XLM-Rj4rge slightly drop when using the “directly
proportional” strategy. It can also be seen that,
PCT-XLM-Ry,se With the “inversely proportional"
strategy achieves the same average accuracy as
with the uniform strategy, while PCT-XLM-Ry;ge
with the “inversely proportional" strategy is lightly
better than with the uniform strategy. This implies
that the “inversely proportional” strategy is able to
improve the performance by selecting more tem-
plates in target languages that are less similar to
English. However, the improvements are not sig-
nificant as p-value > 0.05 by two-tailed t-tests. By
considering that XX-En BLEU scores are not avail-
able in most practical scenarios, we recommend to

use the uniform strategy for template selection.

5 Conclusions

In this paper we have proposed a prompt-learning
based framework named PCT for cross-lingual nat-
ural language inference. PCT enhances pre-trained
cross-lingual language models by augmenting data
from cross-lingual templates and by introducing
the consistency loss to regularize the answer proba-
bility distributions. Experimental results on large-
scale benchmarks XNLI and PAWS-X show that
PCT pushes existing models by a significant abso-
lute gain in accuracy under both the full-shot and
few-shot cross-lingual transfer settings. Our abla-
tion study and visualization analysis further con-
firm the contributions of different enhancements
introduced by PCT. Future work will study PCT
further under the TRANSLATE-TRAIN-ALL set-
ting with real-world data in different languages.
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A Cross-lingual Templates

Here we introduce the cross-lingual templates that
we used in our experiments. We used the same En-
glish template defined by (Zhao and Schiitze, 2021)
for XNLI and used the English template defined
by (Brown et al., 2020) for PAWS-X. The cross-
lingual templates are generated by translating the
English template to target languages using Google
translator. The cross-lingual templates for XNLI
are given in Figure 4. The cross-lingual templates
for PAWS-X are given in Figure 5. The slots [P]
and [H] are filled by the premise and the hypothesis,
respectively.

B Results with Standard Deviations

Here we report the complete experimental results
taken from five runs with standard deviations. The
means and the standard deviations are reported in
the row “avg.” and “s.d.”, respectively.

For XNLI under the full-shot cross-lingual trans-
fer setting, the experimental results are reported
in Table 7, including the results for all five runs
achieved by PCT-XLM-Rp,s5c, PCT-XLM-Rarge
and INFOXLM-Rp,sec.

For PAWS-X under the full-shot cross-lingual
transfer setting, the experimental results are re-
ported in Table 8, including the results for all
five runs achieved by PCT-XLM-R},5¢e, PCT-XLM-
Riarge and INFOXLM-Ry,ge.

For XNLI under the few-shot cross-lingual trans-
fer setting, the experimental results with K €
{16, 32, 64,128,256} shots per class are reported
in Table 9, including the results for all five runs
achieved by PCT-XLM-Ry,ge-
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Template

Language

<s>[P]</s></s>Question: [H]? Answer: <mask></s>

<s>[P]</s></s>Question: [H]? Réponse: <mask></s>

<s>[P]</s></s>Pregunta: [H]? Respuesta: <mask></s>

<s>[P]</s></s>Frage: [H]? Antwort: <mask></s>

<s>[P]</s></s>Epwtnon: [H]? Amdvinon: <mask></s>

<s>[P]</s></s>Bbnpoc: [H]? Otroeop: <mask></s>

<s>[P]</s></s>Bonpoc: [H]? OTBeT: <mask></s>

<s>[P]</s></s><mask> <5l ©:[H] :dlss < /5>

<s>[P]</s></s>Soru: [H]? Cevap: <mask></s>

<s>[P]</s></s>Cau hdi: [H]? Tra |&i: <mask></s>

<s>[P]</s></s>fom; [H]? dwou: <mask></s>

<s>[P]</s></s>[a)f: [H]? & Z: <mask></s>

<s>[P]</s></s>Y%T: [H]? 3R <mask></s>

<s>[P]</s></s>Swali: [H]? Jibu: <mask></s>

<s>[P]</s></s><mask> :<ls ©:[H] :dlsm < /s>

English (en)

French (fr)

Spanish (es)

German (de)

Greek (el)

Bulgarian (bg)

Russian (ru)

Arabic (ar)

Turkish (tr)

Vietnamese (vi)

Thai (th)

Chinese (zh)

Hindi (hi)

Swahili (sw)

Urdu (ur)

Figure 4: Cross-lingual templates for XNLI.
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Template Language

<s>[P]</s></s>Question: [H] paraphrase or not? Answer: <mask></s> English (en)
<s>[P]</s></s>Question: [H] paraphrase ou pas? Réponse: <mask></s> French (fr)

<s>[P]</s></s>Pregunta: [H] ¢ parafrasear o no? Respuesta: <mask></s> Spanish (es)
<s>[P]</s></s>Frage: [H] paraphrasieren oder nicht? Antwort: <mask></s> German (de)
<s>[P]</s></s>E[M]: [H] EWRZ 2 H & S H? BIE: <mask></s> Japanese (ja)
<s>[P]</s></s>ZE 2: [H] 2| O E =7 & <mask></s> Korean (ko)
<s>[P]</s></s>[A)f0: [HlR EHIA? BFF: <mask></s> Chinese (zh)

Figure 5: Cross-lingual templates for PAWS-X.

Models [ Runs [ en fr es de el bg ru tr ar vi th zh hi SW ur [ A
Train multilingual model on training data in English (Cross-lingual Transfer)

1 852 797 799 779 768 79.0 768 735 725 759 71.8 753 719 652 669 75.2
2 849 791 800 781 765 792 769 738 73.0 762 71.8 747 716 659 672 75.3
3 848 789 793 770 766 786 769 743 734 760 725 749 717 657 678 75.2
PCT-XLM-Ry,5¢ 4 848 796 796 777 767 787 767 743 727 758 720 751 718 669 67.0 75.3
5 8.0 795 798 776 766 789 77.0 742 727 759 720 745 717 657 678 75.3
avg. 849 794 797 717 766 789 769 740 729 760 720 749 717 659 673 75.3
s.d. 40.06 £1.35 £0.77 +1.55 £0.24 +0.46 +0.40 £0.29 +1.34 +£0.48 +1.07 +0.48 £0.24 +2.34 £1.55| +0.13
1 883 841 850 835 828 841 8l.6 80.6 805 806 786 807 79.0 730 750 81.2
2 884 842 847 840 833 845 822 808 804 809 783 803 791 738 751 81.3
3 88.1 842 851 837 831 844 819 812 809 807 788 803 784 73.6 756 81.3
4

5

PCT-XLM-Riarge 88.1 843 851 84.0 832 845 819 806 807 808 784 804 788 736 751 81.3
884 840 846 839 830 842 819 807 805 812 782 803 782 738 5.1 81.2
avg. 883 842 849 838 831 843 819 808 806 808 785 804 787 73.6 752 81.3
s.d. +0.15 £0.11 +0.23 £0.22 +0.19 £0.18 +0.21 £0.25 £0.20 +0.23 £0.24 £0.17 £0.39 +0.33 £0.24| =+0.08
883 846 856 846 838 8.1 825 81.6 814 819 799 815 799 754 58 82.1
88.7 845 851 847 836 841 821 813 809 817 796 814 792 7159 756 81.9
885 845 854 843 833 850 823 814 81.0 815 793 8I.1 796 757 754 81.9
88.8 848 851 845 837 846 822 813 812 813 795 813 791 759 756 81.9
88.6 843 857 850 834 845 822 816 809 8.0 794 81.6 795 752 756 82.0
avg. 88.6 845 854 846 836 847 823 814 8I1.1 817 795 814 795 756 756 82.0
s.d. +0.19 £0.18 £0.28 +0.26 £0.21 £+0.40 +0.15 £0.15 +0.22 £0.29 £+0.23 +0.19 £0.32 +0.31 £0.14| +£0.10

INFOXLM-Ryarge

L R R S

Table 7: Comparison results on XNLI under the full-shot cross-lingual transfer setting. Every value is the test
accuracy in percent. A\ is the average accuracy for 15 languages.

Models Runs en fr es de ja ko zh A
1 94.1 89.7 88.9 87.9 78.0 71.5 82.3 85.5

2 94.1 89.6 89.2 87.9 717 77.8 81.9 85.5

3 95.0 90.0 89.1 87.5 77.5 76.8 81.5 85.3

PCT-XLM-Rpase 4 94.7 90.0 88.9 88.6 76.9 76.9 80.9 85.3
5 94.6 89.6 89.6 88.0 71.7 713 82.2 85.6

avg. 94.5 89.8 89.1 88.0 71.6 713 81.8 85.4
s.d. +0.39 +0.20 +0.29 +0.40 +0.41 +0.42 +0.57 +0.12

1 95.8 922 90.7 90.1 82.2 82.3 83.7 88.1

2 96.1 922 91.0 90.6 82.9 81.7 84.6 88.4

3 95.3 92.5 91.2 90.5 82.6 82.2 84.5 88.4

PCT-XLM-Rjarge 3 95.8 92.1 91.4 90.4 81.3 81.2 83.8 88.0
5 95.1 91.8 91.6 91.0 81.9 82.3 84.5 88.3

avg. 95.6 92.2 91.2 90.5 82.2 81.9 84.2 88.3
s.d. +0.41 40.25 40.35 40.33 +0.62 +0.48 +0.43 +0.19

Table 8: Comparison results on PAWS-X under the full-shot cross-lingual transfer setting. Every value is the
test accuracy in percent. A is the average accuracy for 7 languages.
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Shots Models Runs en fr es de el bg ru tr ar vi th zh hi sSW ur A
1 472 40.6 404 367 450 41.1 415 447 435 461 447 451 447 402 422 42.9
2 454 454 403 354 456 39.6 426 419 427 41.1 418 435 442 395 419 42.1
3 469 467 449 40.0 47.1 429 43.6 438 443 463 446 452 464 411 434 445
K=16 PCT 4 469 467 449 40.0 471 429 43.6 438 443 463 446 452 464 411 434 445
5 46.5 441 422 373 460 421 429 444 446 461 451 460 455 40.1 429 437
avg. 46.5 443 415 369 457 408 424 437 43,6 447 439 448 448 40.1 425 43.1
s.d +0.68 £2.28 +2.11 £1.96 £0.97 +1.90 £1.00 +1.09 £0.88 £2.23 +1.34 £0.97 +1.19 £0.68 +0.65| +1.03
1 503 499 472 457 481 472 464 460 462 48.1 448 467 47.6 41.1 438 46.6
2 505 49.6 473 464 480 472 464 442 463 483 413 459 477 402 425 46.1
3 48.1 46.8 420 40.7 457 423 436 426 444 435 394 442 454 395 420 433
4

K=32 PCT 498 493 465 464 485 463 463 445 462 463 41.0 457 47.1 400 426 45.8
5 493 482 446 426 469 438 450 444 456 472 41.6 456 456 407 434 45.0
avg. 49.6 48.8 455 444 474 454 455 443 457 4677 41.6 456 467 403 429 45.4
s.d +0.96 £1.27 £2.25 +£2.58 +1.14 £2.21 £1.24 £1.21 +0.80 +1.95 £1.97 £0.90 £1.10 +0.62 +0.73| +1.28
1 505 499 496 48.6 494 499 480 462 472 489 473 4777 472 444 433 479
2 503 509 498 49.0 494 498 487 478 478 488 467 48.0 472 439 442 48.2
3 513 512 505 494 514 501 49.6 478 481 493 468 479 473 444 437 48.6
K=64 PCT 4 527 522 524 50.1 514 508 500 482 489 508 48.1 485 479 452 449 49.5
5 525 525 521 493 51.6 50.1 492 468 484 505 475 487 482 449 439 49.1
avg. 515 513 509 493 506 50.1 49.1 474 481 497 473 482 476 446 440 48.6
s.d +1.11 £1.05 +1.30 £0.55 £1.13 4+0.39 £0.78 +0.83 £0.64 +0.93 40.57 £0.42 +0.46 £0.50 +£0.60| +0.65
1 556 535 536 53.0 538 519 514 510 506 518 49.6 506 519 468 46.6 514
2 533 515 530 521 519 508 507 485 49.0 488 48.1 49.1 503 452 477 50.0
3 550 541 536 523 539 517 508 51.8 514 524 519 522 516 482 476 51.9
K=128 | PCT 4 547 532 539 530 534 524 518 514 507 527 507 524 518 471 479 52.3
5 562 542 547 538 540 529 539 518 504 526 49.6 519 51.8 475 495 52.3
avg. 55.0 533 538 528 534 519 517 509 504 517 500 512 515 470 479 51.5
s.d +1.10 £1.09 £0.62 +0.67 +0.87 +0.79 £1.30 £1.38 +0.88 +1.63 £1.42 £1.39 £0.67 +1.11 +1.05| +0.89
1 609 579 5777 557 577 56.1 543 547 545 576 555 566 546 514 515 558
2 60.8 58.1 586 568 579 573 558 545 547 577 549 560 541 505 528 56.0
3 59.6 587 588 557 577 572 547 539 548 579 556 560 548 512 522 559
K=256 | PCT 4 599 583 583 563 575 559 556 546 550 562 559 547 545 521 527 55.8

5 603 583 581 572 589 569 557 555 545 575 559 559 552 528 538 56.4
avg. 60.3 583 583 563 579 56.7 552 546 547 574 556 558 546 51.6 526 56.0
s.d +0.56 £0.30 +0.43 £0.67 £0.55 +0.64 £0.68 +0.57 £0.21 £0.68 +0.41 £0.69 +0.40 £0.88 +£0.85| +0.26

Table 9: Comparison results on XNLI under the few-shot cross-lingual transfer setting. Every value is the test
accuracy in percent. A\ is the average accuracy.
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