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Abstract
Personalized language models are designed and
trained to capture language patterns specific
to individual users. This makes them more
accurate at predicting what a user will write.
However, when a new user joins a platform and
not enough text is available, it is harder to build
effective personalized language models. We
propose a solution for this problem, using a
model trained on users that are similar to a new
user. In this paper, we explore strategies for
finding the similarity between new users and
existing ones and methods for using the data
from existing users who are a good match. We
further explore the trade-off between available
data for new users and how well their language
can be modeled.

1 Introduction

Recent work has suggested that there are several
benefits to personalized models in natural language
processing (NLP) over one-size-fits-all solutions:
they are more accurate for individual users; they
help us understand communities better; and they
focus the attention of our evaluations on the end-
user (Flek, 2020). Generation tasks in particular
benefit from a personalized approach, for example,
Dudy et al. (2021) argue that user intention is more
often difficult to recover from the context alone.

We study personalization in language modeling,
a core task in NLP. Direct applications of language
models (LM) include predictive text, authorship
attribution, and dialog systems used to model the
style of an individual or profession (e.g., thera-
pist, counselor). LMs are increasingly used as the
backbone of models for a range of tasks in NLP,
increasing the potential impact of personalization
even further (Brown et al., 2020).

The standard non-personalized approach is to
use pretrained models trained on a large volume

*Authors contributed equally and work was performed
while at the University of Michigan.

of data written by many people. This approach
does not take into account the differences between
individuals and their language patterns. Given the
same context, different people may act or write dif-
ferently, but these general models cannot produce
that type of variation. Approaches like fine-tuning
can be used to tailor a pretrained model to an indi-
vidual, but perform well only when enough data is
available, which is often not the case.

Previous work on personalized and demographic
word embeddings has seen successful application
in downstream tasks. Garimella et al. (2017) look
at location and gender and how they affect asso-
ciations with words like “health” and many other
stimulus words like “stack”– does it make you think
of books or pancakes? Welch et al. (2020) discuss
other associations, for instance, “embodying” an
idea may more often refer to a religious or eco-
nomic concept depending on your beliefs. Simi-
larly, “wicked” may mean “evil” or may function
as an intensifier depending on where you live (Bam-
man et al., 2014). These exemplify how person-
alized representations can help make distinctions
in meaning, however, static representations have
limitations. For example, Hofmann et al. (2021)
find that in some contexts “testing” refers to seeing
if a device works and “sanitation” refers to a pest
control issue, while in another context both refer to
conditions of the COVID-19 pandemic. Personal-
ized LMs, or language models built to better predict
what an individual will say, could better address
these cases, as LMs learn dynamic encodings of
words.

In this paper, we consider approaches to fine-
tuning and interpolation that are novel in that they
leverage data from similar users to boost person-
alized LM performance. We consider the case of
users with a small number of available tokens and
propose ways to (1) find similar users in our corpus
and (2) leverage data from similar users to build a
personalized LM for a new user. We explore the
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trade-offs between the amount of available data
from existing users, the number of existing users
and new users, and how our similarity metrics and
methods scale. We then show an analysis to explore
what types of words our method predicts more ac-
curately and are thus more important to consider in
personalization methods.

2 Related Work

Personalized Language Modeling. King and
Cook (2020) examined methods for creating per-
sonalized LMs and their work is most similar to
ours. They consider interpolating, fine-tuning,
and priming LMs as methods of personalization,
though they use these methods with a large generic
model. In contrast, our work shows that perfor-
mance can be improved by leveraging data from
similar users. They also analyzed model adapta-
tion for models trained on users with similar de-
mographics, inspired by Lynn et al. (2017), who
showed that these demographic factors could help
model a variety of tasks, and found that personal-
ized models perform better than those adapted from
similar demographics. Shao et al. (2020) have also
explored models for personalization but focused on
handling OOV tokens.

Wu et al. (2020) proposed a framework to learn
user embeddings from Reddit posts. Their user
embeddings were built on the sentence embed-
dings generated by a BERT model. By using the
learned user embeddings to predict gender, detect
depression and classify MBTI personality, they con-
cluded that their embeddings incorporate intrinsic
attributes of users. In our work, user embeddings
are learned in a different approach, and we focus
on how to use similarity calculated from user em-
beddings to build better LMs.

Authorship Attribution. One of the tasks we
consider as a means of computing similarity is au-
thorship attribution, i.e., identifying the author of a
document. Early work on this task used lexical fea-
tures like word frequencies and word n-grams (Kop-
pel et al., 2009; Stamatatos, 2009). As in Ge et al.
(2016), we employ neural networks to model simi-
larity between users and predict authorship.

Learning from Limited Data. Antonello et al.
(2021) explored training a model to predict what
data will be most informative for fine-tuning and
select individual data points to improve language
modeling. The similarity metrics that we derive
are used to select data for fine-tuning in one of our

methods of leveraging similar user data, however
we consider indivisible sets of data grouped by
author.

The cold start problem is a well-known problem
in recommendation systems. A great amount of
previous work addressed how to recommend items
to new users, about whom the system has little or no
history, often with a focus on matrix factorization
methods (Zhou et al., 2011). Work from Huang
et al. (2016) approached language modeling as a
cold-start problem, in that they had no writing from
a user, though they had a social network, from
which they interpolated LMs from users linked in
their social graph.

Language Models. We use a recently developed
LM that has received widespread attention (Mer-
ity et al., 2018b). The LSTM-based model com-
bines a number of regularization and optimization
techniques explored in recent literature, including
averaged SGD, embedding dropout, and recurrent
dropout. Subsequent work has developed variations
of the model with improved perplexity, but these
take at least twice as much time to train (Gong
et al., 2018), making them less practical for the
user-specific experiments we consider.

Another direction of research has shown impres-
sive results using extremely large models (Radford
et al., 2019; Devlin et al., 2019). Using these as a
basis for experiments could be an interesting direc-
tion, but fine-tuning models in low data settings is
known to be difficult and highly variable (Dodge
et al., 2020). Similar transformer models have been
used for controlled generation. Zellers et al. (2019)
developed a model for news generation that con-
ditioned on meta-data including domain, date, au-
thors, and headline. No ablation is performed, and
though it would be interesting to compare to a trans-
former method that conditions on authors alone,
we opted for a model that is faster and cheaper
to train (Grover-Mega from Zellers et al. (2019)
was trained for two weeks and cost around 25k
USD). Additionally, when fine-tuning models for
new users, little data is available. Contextualized
embedding models often require a large amount of
data to train effectively, though this type of com-
parison would be an interesting future direction to
explore. Variations of the LSTM have consistently
achieved state-of-the-art performance without mas-
sive compute resources and thus we chose this ar-
chitecture for our experiments (Merity et al., 2018a;
Melis et al., 2019; Merity, 2019; Li et al., 2020).
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Rule Example

(1) it contains more than 20 tokens but the average token length
is less than 3

" i " " " " w " " i " " l " " l " " " " n " " e " " v " " e " " r " "
" " g " " i " " v " " e "

(2) it contains a long token whose length is greater than 30 COOLCOOLCOOLCOOLCOOLCOOLCOOLCOOL...
(There is usually duplication inside this kind of post)

(3) it contains less than 8 tokens among which more than 3 are
URLs

URL URL URL URL

(4) it contains more than 3 math related symbols, such as “|",
“+" and “="

before humanity , maybe 2 +2 = 5 . no , before humanity
2 +2 = 4 did not exist .

(5) it contains symbols like “{", “}" and “( )" with only white
spaces in the parentheses

we specialize in ( ) ( ) ( ) ( ) ( ) ( ) ( )

(6) it contains less than 5 tokens and the last token is "*" (This kind of post is usually a spelling correction to a
previous post)

(7) there are less than 4 unique tokens in every sequence of 8
adjacent tokens

w , w , w , w , would n’t it be better if we just bend over
and follow their rules ?

(8) it contains hashtags, indicated by: [ ] ( / / # [ ** if i were a rich man ... ** ] ( / / #ggj )
(9) it is a duplicate of another post in the user’s data
(10) more than 60% of the characters are non-alphabetical. =+=+= 1st =+=+= 2nd =+=+= End

Table 1: Examples of rules for filtering posts as described in Section 3.1.

3 Dataset

We examine a corpus of publicly available Red-
dit comments and select users active on Reddit be-
tween the years of 2007-2015 who have at least 60k
tokens of text.1 We refer to the existing users with
at least 250k tokens of text as anchor users. These
are users that are leveraged through interpolation
or fine-tuning in order to improve performance on
new users. Reddit posts are mostly in English.

We experiment with two settings: In the small
anchor setting, there are 100 anchor users, with
a 200k, 25k, 25k split for training, validation, and
test, and 50 new users, with 2k tokens for training,
and 25k for each of validation and test. In the large
anchor setting, there are 10k anchor users and 100
new users, each having 2k tokens for training and
validation and 20k for test.

Preprocessing Reddit data can be noisy, contain-
ing URLs, structured content (e.g., tables, lists),
Subreddit-specific emoticons, generated, or deleted
content. We first extract all posts for each user
in our dataset. During this process we remove
noisy posts, where a post is considered “noisy” if
it matches one of ten rules. These rules and ex-
amples of each are shown in Table 1. After this
filtering step, we remove markup for emojis and
hyperlinks from the remaining posts (keeping the
posts themselves). We take these steps to ensure
that we capture language used by the authors, rather

1Posts are retrieved from https://www.reddit.
com/r/datasets/comments/3bxlg7/i_have_
every_publicly_available_reddit_comment/
and we exclude known bots and do not include posts in the
/r/counting subreddit in our dataset.

than reposts, collections of links, ASCII tables and
art, equations, or code. Tokens that occur fewer
than 5 times are replaced with ⟨UNK⟩, which re-
sults in a vocab size of 55k for the small anchor set
and 167k for the larger one.

4 Experiments

Our method for constructing personalized LMs
consists of a similarity metric and a method for
leveraging similar user data to train a personal-
ized LM. The similarity metric measures which
anchor users are most similar to a new user. That
is, given a set of users (anchors), a new user
(n), and a similarity function (sim), we compute
z = sim(n, anchors); z ⊂ anchors to get a set
of similar users z. We explore three similarity met-
rics and two methods of applying them to the con-
struction of personalized models. Figure 1 shows
how user data is used for each step.

4.1 Calculating User Similarity

We explore three methods for measuring the sim-
ilarity between users. Two of them, authorship
confusion and user embeddings, are derived from
classifiers trained for other tasks, while the third,
perplexity-based similarity, is obtained from the
performance of LMs on the new user. The user
embedding method results in a vector space where
we can use cosine similarity to measure the dis-
tance between individuals. The perplexity directly
gives a distance between each pair and the author-
ship confusion vectors can be treated as a vector of
continuous values where each value represents the
similarity to an anchor user.
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Figure 1: This diagram shows how data, models, and metrics are used in this paper. There are two main sections, a
rectangle on the left showing how the three similarity metrics are computed, and a rectangle on the right showing
our two methods of leveraging similar user data to create personalized models. The solid lines indicate the flow
of anchor user data, while a dashed line indicates data from a new user. Anchor user data is used to create the
authorship attribution model (AA), the individual user LMs for the perplexity-based metric (denoted as a set with
the first as LMA1), and the user embeddings (UE). The three metrics can be used to filter anchor user data to find
similar users. With these users, we fine-tune a baseline LM (without UE, denoted LM-UE), which is then further
fine-tuned with new user data for the weighted fine-tuning method (WFT LM). When interpolating, the individual
anchor user LMs are reweighted, and combined with the predictions of an LM fine-tuned on new user data (FT LM).

Authorship Attribution Confusion (AA). Simi-
larity can be measured from the confusion matrix of
an authorship attribution model. This model takes a
post as input and encodes it with an LSTM (Hochre-
iter and Schmidhuber, 1997). The final state is
passed to a feed-forward layer and then a softmax
to get a distribution over authors. We denote this
model A, and A(U) as the class distribution out-
put by the model for a given utterance set. For a
new user, we take their set of utterances, Un and
pass them to our model A(Un) which will give us
a confusion vector of length K, one value for each
author.

We train this model on the data from anchor
users.2 Embeddings are initialized with 200d
GloVe vectors pretrained on 6 billion tokens from
randomly sampled Reddit posts (Pennington et al.,
2014). For K = 100 anchors the test accuracy
is 42.88% and K = 10, 000 the test accuracy is
2.42%. These accuracies are reasonably high given
the difficulty of the task.3 The classifier does not

2See Appendix A for hyperparameters
3Note that when K = 10, 000 the majority class is 0.01%.

have to be high performing given our application
to computing a user similarity metric.

We apply this model to each post in the training
data from new users. The scores produced by the
model for each new post indicate which of the an-
chor users has the most similar writing. The more
frequently posts from a new user are predicted as
coming from a specific anchor user, the more simi-
lar this anchor user is to the new user.

User Embeddings (UE). We first train an LM
with a user embedding layer on the data from an-
chor users. The model is adapted from Merity et al.
(2018b) with an added user embedding layer. This
token embedding layer is initialized with our pre-
trained GloVe vectors and frozen during training.
The output of the LSTM layer is concatenated to
the user embedding at each time step based on the
author of the token at that time step.4 Note that this
is then passed through another feed-forward layer
before being used for prediction. Our optimizer
starts with SGD and will switch to ASGD if there

4See Appendix B for hyperparameters
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is no improvement in validation loss in the past 5
epochs (Polyak and Juditsky, 1992). We removed
continuous cache pointers (Grave et al., 2016) to
speed up training. For K = 100, the validation
perplexity converges to 59.06 and test perplexity
is 58.86. When training with K = 10, 000 the
validation perplexity converges to 88.71 with test
perplexity 88.54.

The embeddings of anchor users can be obtained
from the user embedding layer in the trained model.
To learn the embeddings of new users, we freeze
all parameters of the trained model except the user
embedding layer. We train the model on the data
from each new user separately with the same train-
ing strategy. It takes 2 minutes to learn the em-
bedding of each new user. The average test per-
plexity is 66.67 when K = 100 and 90.48 when
K = 10, 000. For each pair of new user and an-
chor user, we use the cosine similarity between two
embeddings as the similarity.

Perplexity-Based (PPLB). Given N trained
LMs, one for each user, we can then use the per-
plexity of one LM on another user’s data as a mea-
sure of distance. We could compare the word-level
distributions, though this would be very compu-
tationally expensive. In our experiments, we use
the probability of the correct words only, or the
perplexity of each model on each new user’s data.

We take the large LM trained on all anchor users,
as described in the user embedding section and fine-
tune it for each anchor user. We then measure the
perplexity of each model on the data of each new
user. For this matrix of new×anchor perplexities,
we turn each row, representing a new user, into a
similarity vector by computing 1− c−min(row)

max(row) for
each cell, c. This step is expensive, taking close
to 24 hours for K = 100 and intractable given our
hardware constraints in the K = 10, 000 setting.

5 Leveraging Similar Users

Our three similarity methods provide a way to iden-
tify anchor users with the most relevant data for a
new user. In this section, we describe two methods
to learn from that data to construct a personalized
model.

5.1 Weighted Sample Fine-tuning
Users who speak in a similar style or about similar
content may be harder to distinguish from each
other and should then be more similar. For a given
similarity metric, we compute similar users and

use data from these users to fine-tune an LM before
fine-tuning for the new user.

We compare to two baselines, (1) a model trained
on all anchor users with no fine-tuning and (2) a
model trained on all anchor users that is fine-tuned
on the new user’s data, as is done in standard fine-
tuning. Our method of weighted sample fine-tuning
has two steps. The first step is to fine-tune the
model trained on all anchor users on a new set of
similar users, as determined by our chosen simi-
larity metric. Then we fine-tune as in the standard
case, by tuning on the new user’s data.

5.2 Interpolation Model

Our interpolation model is built from individual
LMs constructed for each anchor user. It takes the
predictions of each anchor user model and weights
their predictions by that anchor’s similarity to the
new user. No model updates are done in this step,
which makes it immediately applicable, without
requiring further training, even if the aggregation
of output from all anchor models is more resource
intensive.

We also want to incorporate the predictions of
the model fine-tuned on the new user data with
the predictions of models trained on similar anchor
users. We define a set of similar anchor users, σ,
each of which has a similarity to the new user,
n. We vary s for each similarity function. The
weight to give the new user fine-tuned model is η,
and we interpolate as follows for a given resulting
probability pr, of a word, w:

pr(w|·) = ηpn(w|·)+(1−η)
∑
i∈σ

s(σi, n)pσi(w|·)

The similarities are adjusted to the range (0, 1) and
normalized to sum to one.

6 Results

We divide our results into separate subsections for
each of the anchor sets. On the small anchor set
we were able to perform more exploration of the
weighted fine-tuning method, as it does not scale
as well to the large anchor set.

We present results using standard perplexity mea-
surements as a function of the probability of a cor-
rect prediction of a token. We also present results
with accuracy at N, where a prediction is counted
as correct if the correct token occurs within the top
N most probable words given by the model.
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#Sim. ∆ Perplexity ∆ Accuracy@1
Method Users UE AA PPLB UE AA PPLB

Weighted Fine-tuning 5 0.276 1.728 0.627 0.159 0.155 0.148
Interpolation 100 -2.055 -2.415 -1.992 0.249 0.277 0.223
Interpolation 50 -2.163 -2.415 -2.043 0.260 0.277 0.204
Interpolation 25 -2.242 -2.415 -2.022 0.248 0.277 0.232
Interpolation 10 -2.286 -2.435 -2.183 0.235 0.260 0.249

Table 2: Difference in perplexity for our interpolated model and weighted fine-tuning results on the small anchor
set. The baseline metrics are subtracted from our model, meaning that more negative perplexity and more positive
accuracy are better. The baseline Merity et al. (2018a) perplexity average is 64.3 for a model that uses standard
fine-tuning and 67.6 without fine-tuning. Bold indicates best performance.
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Figure 2: Change in perplexity for varying number of
similar users considered in weighted fine-tuning for the
three similarity metrics.

6.1 Small Anchor Set

In this section, we compare our weighted sam-
ple fine-tuning and interpolation approaches to the
more standard fine-tuning, where a large pretrained
model is fine-tuned only on the new user’s data.
With no fine-tuning our LM achieves a perplexity
of 67.6 and when fine-tuning on the new user only,
this perplexity drops to 64.3. For weighted fine-
tuning, we attempt to fine-tune the large pretrained
model on 100 anchors using our two step method,
first fine-tuning on a million tokens from most sim-
ilar users, and then fine-tuning on new user data.
Through tuning the number of similar users, we
found 5 worked best. For the interpolation model,
we found more similar users improved accuracy,
though perplexity was slightly higher for ten sim-
ilar users. Our interpolation model combines pre-
dictions from similar anchor user LMs. We have an
LM fine-tuned to each of our anchor users and for
a given new user we predict words by weighting
the predictions of the models representing the most
similar users.

Results in Table 2 show that our weighted sample
fine-tuning is not able to outperform the baseline

for any of our three similarity metrics. Perplexity
and accuracy results are reported averaged over
the test set users. We also tried fine-tuning with
random user’s data and found that this performance
was better than no fine-tuning but worse than fine-
tuning on new user data only, showing that there
is no added benefit from simply continuing to fine-
tune on all data.

For the interpolation model, we tune η (see Sec-
tion 5.2) on a held-out set and use a value of 0.7.
The results show that the authorship attribution sim-
ilarity performs best on both metrics. We find that
as the number of similar users increases it has little
effect past around ten similar users, as the similarity
weights decrease and have a smaller impact.

Retraining with Similar User Data: It appears
that having similar user data does not help the
weighted fine-tuning model. To further investi-
gate this we looked at settings where the amount
of training data is fixed, but the source is either
random, or a sample of similar user’s data. For
each new user, we build six datasets: a random
dataset and five datasets consisting of data from
top-k similar anchor users for this new user where
k is in {10, 20, 30, 40, 50}. Each of these datasets
has 2m tokens. The random dataset is comprised of
20k tokens from each anchor user. For the dataset
built from the top-k similar users, we want the num-
ber of tokens selected from each anchor user to be
proportional to the similarity between the new user
and each anchor user. To do this, we normalize
the three similarities by subtracting the minimum
and dividing by the maximum such that they are
between zero and one.

For a given set of k users and similarity metric,
we sort all anchor users in descending order by
their similarity to the new user and choose the top
k anchor users. For the rank 1 anchor user a1, we
choose the following number of tokens from the
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#Sim. Users ∆ Perplexity Std.Dev.

Random 10 0.176 0.367
10 -0.354 0.659
20 -0.534 0.977
30 -0.673 1.080
40 -0.714 1.040
50 -0.803 1.127

100 -0.941 1.351
150 -0.986 1.560
200 -1.069 1.549

Table 3: Difference in perplexity for fine-tuning varying
number of similar users on the large anchor set, first
fine-tuning on similar users, and second on the new
user’s data, as compared to Merity et al. (2018a) fine-
tuned on new user data only with perplexity 89.7. Each
similar user has 2k tokens and each new user has 2k.

training data, where s(·, ·) is the similarity between
a pair of users:

na1 = 2000k ∗ s(newuser, a1)∑k
i=1 s(newuser, ai)

If na1 > 200k, we choose na1 = 200k. For the
rank x anchor user ax, we choose

nax = (2000k−
x−1∑
j=1

naj )∗
s(newuser, ax)∑k
i=x s(newuser, ai)

tokens from their training data. If nax > 200k, we
choose nax = 200k. We repeat this procedure until
the rank k anchor user. The ratio of similarities
in this equation enforces that the amount of data
we select from each of the top-k similar users is
proportional to their similarity.

We then train a separate model on each dataset.
The architecture of the model is the same as what
is described in Section 4.1 except that it does not
have a user embedding layer. We then fine-tune the
trained models on the training data of the new user.

For a chosen similarity metric and number k, we
average the test perplexity of the fine-tuned models
for all new users and subtract from it the average
test perplexity of the fine-tuned models trained on
random datasets, whose average perplexity is 111.0.
The results are shown in Figure 2 with shaded areas
indicating standard deviation. In the figure, the
lower a point is, the better the datasets built using
the corresponding similarity metric and number k
is for training an LM for new users, which we infer
is because the weighted sample datasets are closer
to the data from new users.

We see that in terms of similarity metrics, the
user embedding is the best while perplexity-based

is the worst. As k increases, the performance first
increases then decreases. The best performance
is achieved when using the similarities calculated
with user embeddings and using top 20 or 30 simi-
lar anchor users. After that, including more users
has little effect, as their similarity weights continue
to decrease. The main takeaway from this experi-
ment is that although similar user data helps more
than random data, the benefit does not transfer to
the larger fine-tuning scenario. This area may be
worth further exploring for fine-tuning strategies
or for training data selection in applications where
new models must be trained.

6.2 Large Anchor Set

In a set of only one hundred anchor users, it may be
the case that existing users are not similar enough
to the new user to benefit from our approach. To
test this idea we ran experiments using the larger
set of 10k anchor users and 100 new users.

Taking our most promising user embedding simi-
larity metric from the weighted sample fine-tuning,
we tested this method’s performance varying the
number of similar users. Our results in Table 3
show a reduction in perplexity of 0.94 at 100 sim-
ilar users and over one point at 200 users. There
is a logarithmic improvement with the number of
similar users considered, as we would expect more
dissimilar users to be less informative. The results
in this table suggest that the anchor set must be di-
verse enough to contain similar users to new users,
in order to benefit from this method.

We also try the interpolation model with a larger
set of anchor users. Our base model is trained on
10k anchor users and 2k tokens from each anchor.
Note that we are controlling for the total points
from anchor users, using 100 times fewer points
per user and 100 times more users. Scaling up
these experiments to more points and users is com-
putationally expensive but may be worth exploring
in future work. We fine-tune this model to each
similar anchor user for weighting predictions. On
a held-out set we tune η and find that in this setting
performance starts to drop after around 10 similar
users. It is computationally expensive to run each
of the 10k models on each new user. The perplex-
ity similarity metric requires that all of these are
run in order to determine similarity and thus is not
scalable to the large anchor user setting. The user
embedding metric scales better because similarity
can be determined by tuning an existing LM on
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#Sim. 2k per Anchor ∆ 6k per Anchor ∆
Users PPL Acc @1 Acc @3 Acc @5 Acc @10 PPL Acc @1 Acc @3 Acc @5 Acc @10

10 -0.692 0.097 0.111 0.100 0.058 -11.726 0.497 0.697 0.723 0.718
5 -0.615 0.091 0.103 0.090 0.049 -11.463 0.491 0.656 0.694 0.705
4 -0.590 0.088 0.091 0.079 0.045 -11.287 0.486 0.650 0.677 0.684
3 -0.553 0.084 0.087 0.072 0.039 -11.001 0.457 0.622 0.657 0.654
2 -0.415 0.084 0.060 0.052 0.033 -10.604 0.439 0.588 0.602 0.617
1 -0.006 0.047 0.016 0.002 -0.002 -8.866 0.282 0.423 0.485 0.516

Table 4: Comparison of our interpolated user embedding similarity model on the large anchor set to a standard
fine-tuned Merity et al. (2018a) baseline measured in perplexity and accuracy @N. We show results for 2k and 6k
tokens per anchor user, showing improved performance when more data per anchor is available. Bold indicates best
performance.

Figure 3: Heat maps showing normalized similarity for each metric on our 100 author anchor set.

Metric 1 Metric 2 Pearson’s r Spearman’s ρ

UE AA 0.360 0.362
UE PPL 0.280 0.316
PPL AA 0.073 0.025

Table 5: Spearman and Pearson correlation coeffi-
cients for each pair of similarity metrics (User Embed-
dings (UE), Authorship Attribution (AA), and Perplex-
ity (PPL)) computed for each of our 100 anchor users
similarity to each new user.

new user data. For ten similar users we require
1,000 times fewer computations than we would to
weight all 10k users. We found that authorship at-
tribution performed much worse in this setting, as
the confusion matrix becomes very sparse.

The results for our best similarity metric, user
embeddings, are shown in Table 4. On the left
we see performance for our model on the larger
set containing 2k tokens per anchor user. For this
analysis of our best, scalable model, we include
accuracy @N, a metric denoting the percentage of
times the correct word was in the top-N most prob-
able choices. This is comparable to Table 3, where
we used the same amount of data for the weighted
sample fine-tuning approach. On the right we see
performance when the amount of data per anchor
user is tripled. The baseline and fine-tuned models
all benefit from this additional data, however we
find that the difference in perplexity is much larger,
as having additional data will allow the models to

learn more accurate similarity metrics. We also
find that when tuning η it tends toward 0.6 when
there are 2k tokens per anchor user but 0.3 when
there are 6k. As the amount of data from the anchor
users increases, the optimal interpolation weights
shift to weight the anchor user models more heavily
than the model fine-tuned on the new user. How
the tuning of η could be done on a per-user basis,
rather than globally, is an interesting open question.

7 Analysis

7.1 Differences in Similarity Functions

We looked at the differences between our three sim-
ilarity functions by computing the correlation coef-
ficients for Spearman’s ρ and Pearson’s r in Table
5. Interestingly, the perplexity and authorship attri-
bution metrics correlate much more strongly with
the user embedding metric than with each other. It
is possible that the user embedding metric performs
best in our experiments because it contains more of
the useful information from both of the other met-
rics. Additional heat maps for each metric are in
Figure 3. In general, they show that the three met-
rics seem to capture different information about the
relationships between users. The user embedding
metric leads to more evenly distributed similarities,
while the other two metrics have outlier anchor
users that show stronger correlation with a subset
of the new users.
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fuels, qaeda, zealand, inte, al., antonio, facto, neutrality, kong, differ, olds, custody, cruise, obliga-
tion, arts, beck, guise, scrolls, vegas, mph, dame, conclusions, laden, pedestal, throne, ck, charm,
occasions, disorders, correctness, disposal, capita, hominem, floyd, thrones, sarcastic, ghz, explorer,
comprehension, standpoint, ambulance, noting, diego, accusations, cares, forth, enforcement, amp,
nukem, convicted

Table 6: Top 50 words for which our best model outperforms the baseline based on the frequency of word correctly
predicted normalized by the word’s total frequency.

7.2 Personalized Words

We take the highest performing model using user
embedding similarity trained on our large anchor
user set and compare it to our baseline model to
look at which words are more accurately predicted.
By taking the number of times each word is cor-
rectly predicted by the best model when the base-
line was wrong and dividing by the total number
of occurrences of that word in our language model-
ing data, we can find words that have the highest
normalized frequency of being improved by our
model.

The top 50 words for which we see improvement
are shown in Table 6. We see the second word of
many two-word proper nouns in this set. Many
names can start with “San” or “Las” and so we see
“vegas”, “diego”, and “antonio”, in this list. Simi-
larly, “new” precedes “zealand” and other location
names. The top word is “fuels”, which occurs of-
ten in the data in conversation about “fossil fuels”,
though there are also many others that mention
other kinds of fuels, or use “fuels” as a verb, as
in “it fuels outrage”. We also see that units such
as “mph” or “ghz” are more accurately predicted.
The units that one chooses may be more common
depending on where one lives, or in the case of
“ghz” it may depend more on the subject matter that
a user is familiar with or tends to talk about. Other
proper nouns such as “game of thrones”, or “hong
kong” vs. “donkey kong”, contain common words,
which individually may be hard to predict, but with
knowledge of an individual’s preferences could be
predicted more accurately.

8 Ethical Considerations

Work on personalized LMs could be used for
surveillance by detecting language from individ-
uals or groups (Stamatatos, 2009). We recommend
against such applications, as they threaten intel-
lectual freedom and risk discrimination (Richards,
2013). There may be a risk in storing private data

necessary to construct these models, as data may
not be properly secured or used. Furthermore, a
personalized model could reinforce incorrect lan-
guage usage, which may be an issue for individ-
uals learning to speak a new language, making it
more difficult to learn. Learning personal language
patterns in a given context and suggesting these
patterns in other contexts may lead to potentially
incorrect or offensive results and we recommend
that if this type of personalization is deemed appro-
priate, users are made aware of how their data is
being used and potential consequences.

9 Conclusions

In this paper, we addressed the issue of language
modeling in a low data setting where a new user
may not have enough data to train a personalized
LM and presented a novel approach that lever-
ages data from similar users. We considered three
similarity metrics and two methods of leveraging
data from similar anchor users to improve the per-
formance of language modeling over a standard
fine-tuning baseline, and showed how our results
vary with the amount of data available for anchor
users and the number of available anchor users.
We found that the most easily scalable and high-
est performing method was to use user embedding
similarity and to interpolate similar user fine-tuned
models. Additionally, we provided an analysis of
the kind of words that our personalized models
are able to more accurately predict and further dis-
cussed limitations of our methods.
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A Hyperparameters for Authorship
Attribution Model

• Bidirectional LSTM layers=3

• LSTM hidden dim=400

• output dropout=0.5

• fully-connected layer dim=800×K

• Adam optimizer

• cross-entropy loss

• learning rate=1e-3

• batch size=64

• early stopping if no improvement over 10
epochs

B Hyperparameters for User Embedding
Model

• scalar dropout=0.1

• embedding dropout=0.2

• LSTM layers=3

• LSTM hidden dim=1,150

• recurrent dropout=0.2

• user embedding dim=50 (tried 20,50,100 but
50 worked best)

• cross-entropy loss

• early stopping if no improvement over 20
epochs

• sequence length=70

• batch size=20

• learning rate=3

• parameter clipping=0.25

C Running Times

Authorship attribution models are trained on an
NVIDIA GeForce RTX-2080Ti GPU and take 2.5
hours for K = 100 anchors and 4 hours for K =
10, 000 anchors.

Training a new language model for weighted
fine-tuning as described in Section 6.1 takes about
2.5 hours to train a model on a dataset on an
NVIDIA Tesla V100 GPU. Fine-tuning the trained
models on the training data of the new user takes
about one minute on average.

The user embedding models are trained on an
NVIDIA GeForce RTX-2080Ti GPU. For K =
100 anchors, it took 132 hours. When training with
K = 10, 000, we reduced the hidden LSTM size
to 500, which reduced training time to 112 hours.
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