
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1592 - 1604

May 22-27, 2022 c©2022 Association for Computational Linguistics

SUMMN : A Multi-Stage Summarization Framework for Long Input
Dialogues and Documents

Yusen Zhang♣ Ansong Ni† Ziming Mao† Chen Henry Wu ‡
Chenguang Zhu♦ Budhaditya Deb♦ Ahmed H. Awadallah♦

Dragomir Radev† Rui Zhang♣
♣ Penn State University † Yale University

‡ Carnegie Mellon University ♦ Microsoft Research
{yfz5488,rmz5227}@psu.edu, {ansong.ni,dragomir.radev}@yale.edu

Abstract

Text summarization helps readers capture
salient information from documents, news, in-
terviews, and meetings. However, most state-
of-the-art pretrained language models (LM)
are unable to efficiently process long text
for many summarization tasks. In this pa-
per, we propose SUMMN , a simple, flexi-
ble, and effective multi-stage framework for
input texts that are longer than the maxi-
mum context length of typical pretrained LMs.
SUMMN first splits the data samples and gener-
ates a coarse summary in multiple stages and
then produces the final fine-grained summary
based on it. Our framework can process in-
put text of arbitrary length by adjusting the
number of stages, while keeping the LM in-
put size fixed. Moreover, it can deal with
both single-source documents and dialogues,
and it can be used on top of different back-
bone abstractive summarization models. To
the best of our knowledge, SUMMN is the
first multi-stage split-then-summarize frame-
work for long input summarization. Our ex-
periments demonstrate that SUMMN outper-
forms previous state-of-the-art methods by im-
proving ROUGE scores on three long meet-
ing summarization datasets AMI, ICSI, and
QMSum, two long TV series datasets from
SummScreen, and a long document summa-
rization dataset GovReport. Our data and code
are available at https://github.com/
psunlpgroup/Summ-N.

1 Introduction

Abstractive summarization helps readers capture
salient information from various sources such as
documents, news, interviews, and meetings. Pre-
vious work has primarily focused on short texts of
news (Gehrmann et al., 2018; Zhang et al., 2019)
and short conversations (Gliwa et al., 2019; Chen
and Yang, 2021). Recently proposed longer dia-
logue and document summarization tasks (Zhong

et al., 2021b; Huang et al., 2021; Chen et al., 2021;
Zhu et al., 2021a) pose challenges for current large
pretrained language models due to the time and
memory complexity of training, as well as limited
input lengths these models can consume.

A common method to handle long text re-
duces the input to a shorter one. This can
be accomplished by truncating inputs (Lewis
et al., 2020) or employing retrieve-then-summarize
pipelines (Zhong et al., 2021b). However, these
methods break the dependency of the context and
decrease the number of tokens that the model can
read, i.e., the receptive field of the model. The
cutting-off model depends on the lead bias of
the source text, while the retrieve-then-summarize
models heavily rely on the independence of re-
trieved units (turns or sentences) which are usually
scattered throughout the source text.

Another approach optimizes the attention mech-
anism in Transformers to accommodate longer in-
puts by reducing the impact of quadratic complex-
ity of the attention process using Locality-sensitive
hashing (LSH) attention (Kitaev et al., 2020) and
Sinkhorn attention (Tay et al., 2020). Additionally,
HMNet (Zhu et al., 2020) and HAT-BART (Rohde
et al., 2021) use hierarchical self-attention to ex-
tend the input limitation of typical self-attention
models. However, the simplified attention mecha-
nism weakens the power of pretrained Transformer
models, e.g., HMNet is not pretrained on external
large-scaled unsupervised datasets as BART did.

In this paper, we propose SUMMN , a multi-stage
framework for long dialogue and document summa-
rization. Figure 1 shows the structure of SUMMN .
First, it divides each source text into segments so
that each can be completely fed into the backbone
abstractive summarization model. Then, it matches
each of them with the subset of target text using
a ROUGE-based greedy algorithm. Next, each
stage generates a coarse summary for each segment
and concatenates them together as the input to the

1592

 https://github.com/psunlpgroup/Summ-N
 https://github.com/psunlpgroup/Summ-N

Input Segments

TargetTargetTargetTargetTarget

Match

Sum
m

arizer

Finetune Inference
Sum

m
arizer

Fine-grained Summary

Target Segments

Coarse Segments

Coarse Summary

Source

Target

Data Segmentation Coarse Summary Generation Fine-grained Summary Generation

Text and Summary to form a pair of sample Model to generate summaries

Original target

Source

Target

Split

 Coarse Stage Fine-grained Stage

Finetune Inference

Figure 1: Workflow of the proposed SUMMN framework. It contains N coarse stages and 1 fine-grained stage. At
each coarse stage, source and target text is segmented and paired using a ROUGE-based greedy algorithm, and
then a backbone summarization model is used to generate the summary for each segment. After multiple coarse
stages, the last fine-graded stage produces the final summary output.

next stage. After multiple stages of compression
and summarization, the final stage produces a fine-
grained summary. The process expands the model
context to the full reception field, meaning that the
proposed model can read the full input no matter
how long the input is. Additionally, retrieve-then-
summarize pipelines (Zhang et al., 2019) extract
sentences individually, leading to the loss of the
context information for understanding utterances.
By contrast, SUMMN only cuts the source text at
the end of each segment, so that the context of most
sentences are retained.

It does not assume lead bias because each part
of the source is fully used. In addition, in each
stage, it leverages a backbone abstractive summa-
rization model to recursively generate the sum-
maries. Therefore, it enjoys the full power of the
pretrained language models because the framework
preserves the intact structure of Transformers.

SUMMN is flexible to inputs with different
lengths by adjusting the number of stages. SUMMN

can change the number of coarse stages according
to the compression ratio between source and target,
the input limit of the backbone model, and the in-
put source length. We give the empirical formula
to decide the number of needed stages for every
tested dataset. Our experiments show that ROUGE
increases on all datasets when increasing the num-
ber of stages from one to the appropriate number.
Additionally, SUMMN is flexible because it can be
applied to different backbone summarization mod-
els. For example, we found that the ROUGE scores
increase sharply on the AMI dataset when replac-
ing the backbone BART model with T5 (Raffel

et al., 2020) and PEGASUS (Zhang et al., 2019).
We conduct extensive experiments on long-input

summarization datasets in multiple domains. The
results demonstrate that the proposed model signif-
icantly outperforms previous state-of-the-art meth-
ods according to automatic and human evalua-
tions on three long meeting summarization datasets
(AMI, ICSI, QMSum) and one long TV series
summarization dataset (SummScreen). It also
achieves state-of-the-art performance on a long doc-
ument summarization dataset (GovReport). These
datasets include document summarization as well
as both query-based and query-independent long
dialogue summarization tasks.

Our contributions are: (1) We propose SUMMN ,
a simple, flexible, and effective framework for long
dialogue and document summarization. To the best
of our knowledge, SUMMN is the first multi-stage
split-then-summarize framework to solve long text
summarization tasks. (2) We evaluate SUMMN on
both dialogue and document domains and improve
the baseline model by a large margin. (3) We an-
alyze and compare the proposed framework with
baselines and discuss its merits in detail.

2 Related Work

Long Document Summarization Long docu-
ment summarization has been studied in multi-
ple domains, such as news (Liu et al., 2021; Zhu
et al., 2021b), patterns (Trappey et al., 2009),
books (Kryściński et al., 2021; Wu et al., 2021), sci-
entific publications (Qazvinian and Radev, 2008;
Mao et al., 2021), and medical records (Cohan

1593

et al., 2018). Gidiotis and Tsoumakas (2020) pro-
posed a divide-and-conquer method by splitting the
input into multiple segments, summarizing them
separately, and combining the summary pieces.
Grail et al. (2021) proposed a hierarchical neural
model to process segmented input blocks. Com-
pared with SUMMN , these models only split the
input once, implying the lack of flexibility when
handling longer input.

The GovReport dataset was recently introduced
containing documents with more than 9000 words,
thus greatly challenging the capabilities of current
models such as PEGASUS (Zhang et al., 2019),
TLM (Pilault et al., 2020), and BIGBIRD (Zaheer
et al., 2020). To handle this dataset, Huang et al.
(2021) proposed head-wise positional strides to
reduce the cost of the encoder-decoder attention.
Similarly, models such as Longformer (Beltagy
et al., 2020) and Reformer (Kitaev et al., 2020)
adjust attention mechanisms in Transformers to
consume longer inputs. However, these models
sparsify the attention structure of the pretrained
model to fit the longer source text. By contrast,
SUMMN is able to maintain the full structure of
various pretrained models.

Long Dialogue Summarization Various models
have also been proposed to handle long dialogue
summarization. HMNet (Zhu et al., 2020) and
HAT-BART (Rohde et al., 2021) leverage a two-
level transformer-based model to obtain word level
and sentence level representations. DialLM (Zhong
et al., 2021a), Longformer-BART-arg (Fabbri et al.,
2021) use finetuning or data augmentation to in-
corporate the external knowledge to maintain the
accuracy of lengthy input. Different from these
models, SUMMN is a framework without modify-
ing the structure of the backbone attention model.

Multi-Stage Text Generation Multiple multi-
stage coarse-to-fine frameworks have been stud-
ied in many other text generation tasks, such as
dialogue state tracking (Chen et al., 2020), neural
story generation (Fan et al., 2018), and extractive
summarization (Xu and Lapata, 2020). In a summa-
rization task, a two-stage extract-and-summarize
pipeline is commonly used (Zhang et al., 2019;
Pilault et al., 2020; Zhao et al., 2020). However,
unlike that work, our framework aims at long input
summarization with fully abstractive intermediate
summaries, meaning that SUMMN can be viewed
as a summarize-then-summarize pipeline.

3 Method

Figure 1 shows the workflow of SUMMN . The
workflow includes two types of stages, N coarse
stages, and one fine-grained stage. Coarse stages
include the data segmentation and coarse summary
generation, while the fine-grained stage directly
generates the summary as the final result. Besides,
we have N + 1 separate models for each stage
and each was separately trained. Our experiments
show that the performance drops if different stages
share the parameters (Section 4.2). SUMMN can
adjust and compute the number of coarse stages N
according to the stats of dataset and model.

To formulate our task, we denote one sample of
the source text as D = {D1, D2, · · · , Dm}, where
Di indicates one sentence in a document or one
turn in a dialogue. For query-based summarization,
there is also a query Q. The goal is to generate a
summary T , given D and the optional Q.

3.1 Data Segmentation

In long text summarization, the number of tokens
in the source data usually exceeds the limit of the
backbone summarization models, thus reducing
the quality of the summary. To make sure that the
model can capture information about all source to-
kens, we apply a segmentation algorithm for long
input summarization datasets. First, we segment
the source text so that the data input to the back-
bone model does not exceed the length limit. Then,
we apply a greedy algorithm to find the best target
summary that matches the source segments.

Source Segmentation Assume that the number
of the maximum input tokens of the backbone
model is K. To completely input the source in-
formation, we cut the input D (between sentences)
into multiple segments, each of them containing
fewer than K tokens. Given the input D, we will
have n segments S = {S1, S2, · · · , Sn} where
Si ∈ D is a segment in D. For query-based sum-
marization tasks, we simply concatenate the query
to the beginning of the S, i.e. Si ← Q

⊕
Si. In

both cases, the number of tokens in each segment
is less than the hyper-parameter K.

Target Matching Segmenting the source text re-
sults in n source pieces Si. We match each Si

with a target segment Ti ∈ T to form the new
pair (Si, Ti) for the next step. We use a greedy
algorithm for target matching. We first split T
into separate sentences Ts = {Ts1 , Ts2 , · · · , Tsk}.

1594

Algorithm 1 Greedy Target Matching
Input: Si, Ts = {Ts1 , Ts2 , · · · , Tsk}
Output: (Si, Ti)
Ti ← Φ
loop
T ′
i ← Ti

for T ′
s ∈ Ts − Ti do

τ ′ ← ROUGE1(Si, T
′
i)

τ ← ROUGE1(Si, Ti

⊕
T ′
s)

if τ ′ < τ then
T ′
i ← Ti

⊕
T ′
s

end if
end for
if T ′

i = Ti then
Break the loop.

else
Ti ← T ′

i

end if
end loop
return (Si, Ti)

Then, each segment Si is matched with a subset
of Ts such that the ROUGE-1 score between the
subset and Si is maximized. However, it is not
feasible to find the optimal set due to the consid-
erable running time. We apply a simple greedy
approximation to find such a subset. From a null
set Ti, we iteratively add to the subset the sentence
with the highest ROUGE-1 gain between Ti and Si.
Algorithm 1 shows how we obtain the new training
pair (Si, Ti).

⊕
indicates the concatenation of sen-

tences while keeping them in the same order as in
the original text. We use ROUGE-1 as the match-
ing criterion because the higher ROUGE-1 score
usually implies higher scores on the other metrics
such as ROUGE-2 or ROUGE-L, while ROUGE-1
enjoys lower time complexity compared with other
ROUGE metrics.

This matching algorithm also ensures Ti 6= ∅ so
that each Si can be matched to at least one target
sentence. A sentence t ∈ Ts can be added to mul-
tiple subsets Ti because one sentence of summary
may need the information from multiple segments.

3.2 Coarse Summary Generation

In coarse summary generation, we train a summa-
rization model, that takes the segmented data as
input. We first collect the training samples (Si, Ti)
generated by data segmentation to form a new
dataset. This augments the source data to d1/K
times compared with the cut-off methods, where
d1 = |D1| indicates the averaged number of tokens
of original source text. Thus, data segmentation
helps the summarizer to better learn the task of the
current stage. Additionally, because we incorpo-

rate the full input using segmentation, it does not
rely on the leading bias in the cut-off method that
only considers the first segment S1. Afterward, we
use these data to train a neural summarizer. This
way, our model treats each part of the source text
as equally important.

Given a source segment Si and an optional query
Q, we obtain the coarse summary segments using
a backbone summarization model:

C l
i = SUMMl(Q,Si)

Where l ∈ [1, N] is the index of the current stage.
Then, the n coarse summaries corresponding to the
original source S = {S1, S2, · · · , Sn} are concate-
nated: C l = C l

1

⊕
C l
2

⊕
· · ·

⊕
C l
n. We use C l

as the new source text of next stage, which com-
presses the input source data Dl. i.e. Dl+1 = C l.
To pair with the Dl+1, the target to the next stage
is copied from the original dataset, i.e. T l+1 = T .

The proposed framework is applicable to dif-
ferent backbone models SUMMl(∗), such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). We pick BART as the backbone model
because it can best illustrate the benefits of our
framework (Section 4.2).

3.3 Estimation of the Number of Coarse
Stages N

The number of stages can be estimated by data stats
and model characteristics. In SUMMN , each coarse
stage compresses the input to a shorter length. Af-
ter N turns of coarse stages, the averaged length
of source text is below K, the dataset is then fed
into the fine-grained stage. Hence, the number of
coarse stages can be computed by the following
equation (details can be found in Appendix A):

N̂ = d logK − log d1
log c1 − logK

e

where d1 and c1 are the average length of source
text and coarse segments in stage 1. In Section
5.7 and Table 9, we demonstrate this estimation is
close to the empirical number of coarse stages.

The greedy algorithm in SUMMN for target
matching is critical to the performance. Consider
a duplication algorithm where each segment Si is
simply paired with the target T , i.e. Ti = T . Since
the target text is longer than the text segmented
by Algorithm 1, the generated summary of each
coarse stage will be longer as well, leading to a
lower compression speed and larger N . Besides,

1595

Dataset Type Domain Size Source length Target length Query N + 1

AMI Dialogue Meetings 137 6007.7 296.6 7 2
ICSI Dialogue Meetings 59 13317.3 488.5 7 3
QMSum Dialogue Meetings 1808 9069.8 69.6 3 2
SummScreen Dialogue TV shows 26851 6612.5 337.4 7 2
GovReport Document Reports 19466 9409.4 553.4 7 3

Table 1: The summarization datasets for evaluation. The source length and target length is the averaged number
across the dataset. N indicates the number of coarse stages we use.

the duplication of the target will confuse the model,
because some source segments will probably be
paired with the same target, causing the model to
generate duplicated content. Experiments (Table 7,
“- stage 2” versus “- stage 2 & tar. seg.”) show that
ROUGE scores declines a lot when greedy target
segment is replaced by the duplication algorithm .

3.4 Fine-Grained Summary Generation
When the input source of Dl is shorter than K,
we can proceed to the fine-grained stage. In this
stage, Dl is used to train a summarization model
from scratch to obtain the final summary. The fine-
grained stage works the same way as the vanilla
backbone model. In fact, SUMMN with N = 0 is
the backbone summarizer. In the fine-grained stage,
the model is directly trained on dataset (DN , T)
from the last coarse stage, and obtain the summary
as the final output of SUMMN :

F = SUMMN+1(Q,DN)

It is worth noting that, although source text may
be shorter than 2 segments, i.e. di ≤ K, we still
add them in all stages, so that each summarization
model can be trained on the full dataset.

4 Experiment Setup

We first list the datasets and metrics to evaluate the
model. Then, we introduce the backbone model
and baselines for comparisons. Finally, we present
some implementation details.

4.1 Datasets and Metrics
Table 1 shows data statistics for the datasets1.

AMI & ICSI (McCowan et al., 2005; Janin
et al., 2003) are meeting scripts generated by Auto-
matic Speech Recognition (ASR) systems. AMI is
collected from product design meetings in a com-
pany while ICSI is collected from academic group

1Both QMSum and SummScreen can be accessed through
SummerTime (Ni et al., 2021).

meetings. Because the transcript is produced by
ASR, there is a word error rate of 36% for AMI
and 37% for ICSI.

QMSum (Zhong et al., 2021b) is a query-based
meeting summarization dataset. It consists of meet-
ings from three domains, including AMI and ICSI,
and the committee meetings of the Welsh Parlia-
ment and the Parliament of Canada. Each query
and sample are written by experts.

SummScreen (Chen et al., 2021) consists of
community-contributed transcripts of television
show episodes from The TVMegaSite, Inc. (TMS)
and ForeverDream (FD). The summary of each
transcript is the recap from TMS, or a recap of the
FD shows from Wikipedia and TVMaze.

GovReport (Huang et al., 2021) is a large-scale
long document summarization dataset with 19,466
long reports published by the U.S. Government
Accountability Office on national policy issues.

We use ROUGE (Lin, 2004) as the automatic
evaluation metric.2 We split summary outputs into
sentences to calculate the ROUGE-L score. If not
specified, F1 scores are used in all results.

4.2 Backbone Model

We pick BART (Lewis et al., 2020) as our back-
bone summarization model because it performs
well on short text summarization but not as good on
longer texts, illustrating the benefits of our frame-
work. Compared with other pretrained parameters,
the BART-large model pretrained on the CNN/DM
dataset yields the best performance (Zhang et al.,
2021). So we use the BART-large-cnn parameter
as a better starting point.

It is worth noting that we use separate back-
bone models for each stage and each was separately
trained. We experimented with reusing the model
parameters in multiple stages but obtained a lower

2We use pyrouge, a Python wrapper for the ROUGE:
https://github.com/bheinzerling/pyrouge

1596

AMI ICSI QMSum-All QMSum-Gold
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PGNet 42.60 14.01 22.62* 35.89 6.92 15.67* 28.74 5.98 25.13 31.52 8.69 27.63
TopicSeg 51.53 12.23 25.47* - - - - - - - - -
HMNET 52.36 18.63 24.00* 45.97 10.14 18.54* 32.29 8.67 28.17 36.06 11.36 31.27
TextRank 35.19 6.13 16.70* 30.72 4.69 12.97* 16.27 2.69 15.41 - - -
HAT-BART 52.27 20.15 50.57 43.98 10.83 41.36 - - - - - -
DDAMS 53.15 22.32 25.67* 40.41 11.02 19.18* - - - - - -

SUMMN 53.44 20.30 51.39 45.57 11.49 43.32 34.03 9.28 29.48 40.20 15.32 35.62

Table 2: ROUGE scores on three meeting summarizing tasks, AMI, ICSI, and QMSum. QMSum-ALL uses inputs
with all turns while MSum-Gold uses inputs with only the gold turns. * denote the ROUGE-L scores without
sentence split.

score, e.g. the ROUGE-1 score of stage 2 on the
QMSum dataset decreases around two points if we
use the best parameters of stage 1 summarizer as
the starting point of training stage 2 summarizer.
This is because the tasks of the different stages
differ significantly. For instance, the input to the
first stage of dialogue summarization is the dia-
logue turn while the input to the latter stages is the
document.

4.3 Baselines

We compare the proposed framework with vari-
ous baselines. PGNet (See et al., 2017) uses a
pointer mechanism to copy the token from the
training sample. TopicSeg (Li et al., 2019) is a
multi-modal model jointly learning the segmenta-
tion and summarization. HMNet (Zhu et al., 2020)
uses a hierarchical attention structure and cross-
domain pre-training for meeting summarization.
TextRank (Mihalcea and Tarau, 2004) is a graph-
based ranking model for text processing. HAT-
BART (Rohde et al., 2021) is a new hierarchical
attention transformer-based architecture that out-
performs standard Transformers. DDAMS (Feng
et al., 2021) uses a relational graph to model the in-
teraction between utterances by modeling different
discourse relations.

For the SummScreen dataset, we use the neural
and hybrid model scores reported by Chen et al.
(2021). We rename these two baselines as Long-
former+ATT and NN+BM25+Neural to clarify
the difference between other baselines.

The baseline scores we report on GovReport are
from the original paper (Huang et al., 2021). BART
Variant indicates self-attention variants with full
attention. BART HEPOS indicates encoder vari-
ants with head-wise positional strides (HEPOS)

encoder-decoder attention.

4.4 Implementation Details

We fit all models into a single RTX A6000 GPU
with a 48 GiB memory. We adopt the fairseq3 im-
plementation for BART. The learning rate is set to
2e-5 and the beam width is set to 2 for coarse stages
and 10 for fine-grained stages. The maximum num-
ber of tokens in each batch is set to 2048. The
maximum number of tokens in each source text is
set to 1024 because we tried to extend the positional
embeddings to 2048 or longer but obtained worse
performance. We stop the coarse stage and start the
fine-grained stage when the averaged source length
is shorter than 2048 rather than 1024 to obtain a
better performance (Section 5.7). For the output
of each intermediate stage, we use <s> and </s> to
separate each generated target segments C l

i .

5 Results and Analysis

We discuss the evaluation results and effects of
each component of SUMMN in this section.

5.1 Overall Results

Meeting Summarization Table 2 shows the
ROUGE scores on AMI, ICSI, and QMSum. Com-
pared with the baseline models, SUMMN achieves
state-of-the-art results on almost all metrics. Specif-
ically, SUMMN improves SOTA on ICSI by 0.83,
and 1.96 ROUGE-2/L scores, improves SOTA on
QMSum-Gold by 4.14, 3.96, and 4.35 ROUGE-
1/2/L scores. These results demonstrate the effec-
tiveness of SUMMN on long dialogue summariza-
tion tasks.

3https://github.com/pytorch/fairseq

1597

SummScreen-FD SummScreen-TMS
R1 R2 R-L R1 R2 R-L

Longformer+ATT 25.90 4.20 23.80 42.90 11.90 41.60
NN+BM25+Neural 25.30 3.90 23.10 38.80 10.20 36.90

SUMMN 32.48 5.85 27.55 44.64 11.87 42.53

Table 3: ROUGE scores on the SummScreen datasets
including ForeverDreaming (SummScreen-FD) and
TV MegaSite, Inc. (SummScreen-TMS).

R-1 R-2 R-L

BART Variants
Full (1024) 52.83 20.50 50.14
Stride (4096) 54.29 20.80 51.35
LIN. (3072) 44.84 13.87 41.94
LSH (4096) 54.75 21.36 51.27
Sinkhorn (5120) 55.45 21.45 52.48

BART HEPOS
LSH (7168) 55.00 21.13 51.67
Sinkhorn (10240) 56.86 22.62 53.82

SUMMN 56.77 23.25 53.90

Table 4: ROUGE scores on GovReport. For each base-
line model, the number in parentheses is the maximum
input length.

TV Series Summarization Table 3 shows
ROUGE scores on SummScreen. SUMMN outper-
forms on almost all metrics on two SummScreen
datasets. Specifically, we improve 6.58, 1.65, and
3.75 ROUGE-1/2/L scores on the SummScreen-
FD dataset. This result demonstrates the generaliz-
ability of SUMMN over various domains including
meetings and TV series.

Document Summarization Table 4 shows
ROUGE scores on GoveReport. SUMMN achieves
state-of-the-art performance on ROUGE-2 and
ROUGE-L, and compatible results on ROUGE-1.
The results show that SUMMN is applicable to
both long dialogue and document summarization
tasks.

5.2 Effects of Number of Stages

We also notice that the performance increases con-
sistently when the number of stages goes up until
the predefined number of stages. Figure 2 shows
the ROUGE-1 scores of different tasks across
stages. Stage 1 indicates the model with only one
coarse stage and no fine-grained stage. In this
model, We directly use the first segment of the
coarse summary as the output, i.e. C1

1 of each sam-
ple. Stage i (i > 1) model contains i − 1 coarse
stages and one fine-grained stage, the generated

25

30

35

40

45

50

55

60

R
O

U
G

-1
 S

c
o

re

Datasets

Stage 1

Stage 2

Stage 3

Figure 2: ROUGE-1 scores of various datasets at dif-
ferent stages. ICSI and GovReport have 3 stages, while
the others have 2 stages. In all datasets, ROUGE-1
score increases with the increasing number of stages.

summary is from fine-grained summarization mod-
els, i.e. F .

Although stage 2 of SUMMN on the ICSI dataset
has already outperformed the baselines, the scores
can be further improved by adding one more coarse
stage. In fact, on all datasets, increasing the number
of stages leads to a performance gain. This gain
can be explained as the following: if the output of
the current stage is longer than K tokens, adding
one more coarse stage will help since the model
will receive more information from the source text
compared with simply truncating them. On the
contrary, if the input is smaller than K, there is no
need to add more stages, because there is only one
segment.

5.3 Improvements over Backbone Models

SUMMN also boosts the performance of a back-
bone model by a large margin. As shown in Ta-
ble 5, it improves the BART-large model by 6.87,
3.89, 6.78 ROUGE-1/2/L on AMI. This indicates
the capability of SUMMN to boost the performance
of a weak learner on long summarization tasks. In
particular, when the backbone model is well pre-
trained on short input texts and performs well on
short summarization tasks, SUMMN could greatly
increase the capability of the backbone model to
process and read long source texts. Also, the back-
bone of SUMMN can be easily replaced by some
other models, and models do not necessarily have
to be identical at every stage. For example, one
can try different learners such as T5 as the back-
bone model and replace the model in stage 1 with
a dialogue-to-document model.

1598

R1 R-2 R-L

AMI Backbone 46.57 16.41 44.61
SUMMN 53.44 20.30 51.39

ICSI Backbone 39.91 9.98 38.17
SUMMN 45.57 11.49 43.32

QMSum-All Backbone 29.20 6.37 25.49
SUMMN 34.03 9.28 29.48

QMSum-Gold Backbone 32.18 8.48 28.56
SUMMN 40.20 15.32 35.62

Table 5: Improvements of SUMMN over backbone
BART models on AMI, ICSI, and QMSum datasets.

R-1 R-2 R-L Input

BART-base Backbone 41.54 13.80 38.75 1024
SUMMN 46.60 18.80 45.23 1024

T5-large Backbone 47.81 16.06 45.77 512
SUMMN 51.85 19.40 49.94 512

PEGASUS- Backbone 46.37 16.21 44.75 1024
cnn_dailymail SUMMN 50.15 19.07 48.28 1024

Table 6: ROUGE scores of different backbone models
on AMI. For all backbone models with various maxi-
mum input lengths, ROUGE scores increase with the
help of proposed framework. Input indicates the maxi-
mum number of tokens the model can take.

5.4 Generalizability over Backbone Models

To demonstrate our framework can generalize to
different backbone summarization models, we re-
place the BART-large-cnn model in previous ex-
periments with other neural summarization mod-
els including T5 (Raffel et al., 2020) and PEGA-
SUS (Zhang et al., 2019) using Hugging Face. Ta-
ble 6 shows the ROUGE scores of three different
models that are trained and evaluated on AMI. In
all models, SUMMN improves the performance of
backbone models by a large margin. For instance,
although BART-base is a weaker summarizer com-
pared with the BART-large model, the framework
is still able to improve the ROUGE-1 score by 5.06.

5.5 Ablations

Table 7 shows the ablation study results of SUMMN

on the AMI test set. Removing stage 2 (using the
first segment of the coarse summary C1

1 as the gen-
erated summary) leads to a 5.23 ROUGE-1 score
drop. Without data segmentation, the ROUGE-1
score decreases by 6.61 using the same fine-grained
stage. Removing both stage 2 and target match-
ing (use duplication algorithm instead) further de-
creases the performance. It even hurts the perfor-

R-1 R-2 R-L

SUMMN 53.44 20.30 51.39
- stage 2 48.21 18.59 46.46
- data seg. 46.83 15.91 45.00
- stage 2 & tar. seg. 46.24 16.03 44.45
only BART 46.57 16.41 44.61

Table 7: Ablations on the test set of AMI. “- data seg.”
indicates removing data segmentation (the same as cut-
off at limitation), “- tar. seg.” indicates source segmen-
tation paired with duplicated targets.

AMI ICSI
Read. Conc. Cove. Read. Conc. Cove.

HMNet 3.93 4.05 4.15 3.21 3.33 3.84
SUMMN 4.45 4.13 4.23 4.12 3.55 4.06

Table 8: Human evaluation scores. Read. indicates
Readability, Conc. indicates Conciseness, and Cove.
indicates Coverage.

mance of the original BART model because the
duplication of targets will introduce some biases
towards the common part of the targets.

5.6 Human Evaluation

We conduct a human evaluation to assess the fol-
lowing: Readability takes into account word and
grammatical error rate to evaluate how fluent the
summary language is; Conciseness measures how
well the summary discards the redundant informa-
tion; Coverage measures how well the summary
covers each part of the dialogue.

We compare the results of SUMMN and HMNet
because HMNet is a baseline model with the good
capability to read whole input. For each meeting in
AMI and ICSI dataset, we ask 3 different annotators
with English expertise to label the summaries. Each
annotator was asked to read the meeting transcript,
gold summaries, and generated summaries using
the SummVis (Vig et al., 2021) toolkit. They were
asked to rate each summary from 1 to 5 (higher is
better) for each metric. We also shuffle the sum-
maries of two models to reduce the bias.

Table 8 shows that SUMMN achieves higher
scores in Readability, Conciseness, and Coverage
than HMNet in both AMI and ICSI dataset. Specifi-
cally, the Readability of SUMMN greatly surpasses
the baseline by around 0.5/1 point on AMI/ICSI
dataset. This is because BART is well-pretrained
and is able to generate more readable text and
SUMMN successfully maintains this capability.

1599

Avg. |Di| Avg. |Ci| Comp. R N̂val N

Stage 1 7996.01 377.02 - - 1.41 2
Stage 2 3582.47 373.29 0.45 0.55 1
Stage 3 1517.02 492.89 0.42 -0.41 0

Table 9: Comparison of the empirical number of coarse
stage N and the corresponding estimation N̂val on the
GovReport test set. Avg. |Di| and Avg. |Ci| are av-
eraged number of tokens in source text and coarse seg-
ments of stage i (Section 3.3). Comp. R is the com-
pression rate R of the stage.

5.7 Intermediate Result Analysis

To gain more understanding of the multi-stage
mechanism of SUMMN , we analyze the number
of coarse stages and the compression rate through
statistics of intermediate stages.

Early Stopping of the Coarse Stage Although
the ideal input of the final fine-grained stage should
be shorter than K, the experiment results show that
compressing input from 2K to 1K tokens usually
hurts the performance of the model. This is prob-
ably because generating too many short segments
which are hard to summarize confuses the model.

Thus, we increase the length of input to the final
fine-grained stage from K to 2K to prevent noises
in the training set. The modified formula to esti-
mate the number of coarse stages N̂ is shown as
follows (details in Appendix A).

N̂val =
1 + logK − log d1
log c1 − logK

N̂ = dN̂vale

Number of Coarse Stages To verify that our es-
timation N̂ is close to the empirical number of
coarse stages N , we use GovReport to compare
the two as shown in Table 9. We choose this
dataset because it contains the most number of
samples among all five datasets, with completely
three coarse stages as well.

Table 9 shows the empirical/estimated number
of coarse stages. To clearly show the N̂ value,
we display the float number N̂val as the estimated
number, and N as the empirical number of “re-
maining coarse stages” (Table 1). As can be seen,
N = N̂ = dN̂vale holds for all stages, meaning
that the estimated N̂ is capable of estimating the
correct N value. It is worth noting that, for stage
2 and stage 3, using this formula can also estimate
“how many additional coarse stage do we need”.

Transformers SUMMN

Time O(n2) O(nK/(1−R))
Gen. Tokens O(n) O(n/(1−R))

Table 10: Time complexity of inference and the number
of tokens generated during inference (Gen. Tokens) by
comparing Transformers and SUMMN . n is the number
of tokens in the source text. K is the maximum input
length of the backbone model of SUMMN . R is the
averaged compression rate.

Compression Rate We analyze the change of
compression rate across different stages. In
SUMMN , compression rate Ri is defined as the
averaged source length of stage i divided by source
length of stage i − 1. As shown in Table 9, both
compression rates in stage 2 and stage 3 of GovRe-
port are around 0.4, this shows that the compression
rate of SUMMN across different stages are stable,
meaning that the number of segments will decrease
to around 40% of the previous stage steadily.

5.8 Time Complexity
Table 10 shows the time cost of inferring one sam-
ple using vanilla transformer versus SUMMN . Al-
though the SUMMN needs to generate more tokens
due to multi-stage pipeline, SUMMN reduces the
inference time from quadratic to lower, i.e., from
O(n2) to O(Cn), C = K/(1 − R). Regarding
training the model, SUMMN also need to infer O(n)
additional tokens on the train/dev/test sets (details
in Appendix B).

6 Conclusion

In this paper, we propose SUMMN , a simple, flexi-
ble, and effective framework for long dialogue and
document summarization. It consists of multiple
coarse stages and one fine-grained stage to itera-
tively compress the long source input. It enjoys the
full power of backbone models while ensuring the
full receptive field of the summarization model. We
evaluate the model on various datasets and improve
the baselines by a large margin.

Acknowledgement

The authors would like to thank Tao Yu, Ming
Zhong, Yixin Liu, and Asli Celikyilmaz for their
valuable discussions. We also would like to thank
the anonymous reviewers for their helpful com-
ments. This work is supported in part by a grant
from Microsoft Research.

1600

References
Iz Beltagy, Matthew E. Peters, and Arman Cohan.

2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Jiaao Chen and Diyi Yang. 2021. Structure-aware ab-
stractive conversation summarization via discourse
and action graphs. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1380–1391, Online. As-
sociation for Computational Linguistics.

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin
Gimpel. 2021. Summscreen: A dataset for ab-
stractive screenplay summarization. arXiv preprint
arXiv:2104.07091.

Zhi Chen, Lu Chen, Zihan Xu, Yanbin Zhao, Su Zhu,
and Kai Yu. 2020. Credit: Coarse-to-fine se-
quence generation for dialogue state tracking. arXiv
preprint arXiv:2009.10435.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Alexander Fabbri, Faiaz Rahman, Imad Rizvi, Borui
Wang, Haoran Li, Yashar Mehdad, and Dragomir
Radev. 2021. ConvoSumm: Conversation summa-
rization benchmark and improved abstractive sum-
marization with argument mining. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6866–6880, Online.
Association for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Xiachong Feng, Xiaocheng Feng, Bing Qin, and Xin-
wei Geng. 2021. Dialogue discourse-aware graph
model and data augmentation for meeting summa-
rization. In Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 3808–3814. ijcai.org.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,

pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of long documents. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 28:3029–
3040.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and
Aleksander Wawer. 2019. SAMSum corpus: A
human-annotated dialogue dataset for abstractive
summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 70–79,
Hong Kong, China. Association for Computational
Linguistics.

Quentin Grail, Julien Perez, and Eric Gaussier. 2021.
Globalizing BERT-based transformer architectures
for long document summarization. In Proceedings
of the 16th Conference of the European Chapter
of the Association for Computational Linguistics:
Main Volume, pages 1792–1810, Online. Associa-
tion for Computational Linguistics.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1419–1436, On-
line. Association for Computational Linguistics.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The icsi meeting corpus. In 2003 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings.(ICASSP’03).,
volume 1, pages I–I. IEEE.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2021.
Booksum: A collection of datasets for long-
form narrative summarization. arXiv preprint
arXiv:2105.08209.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J.
Radke. 2019. Keep meeting summaries on topic:

1601

https://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/2021.naacl-main.109
https://doi.org/10.18653/v1/2021.naacl-main.109
https://doi.org/10.18653/v1/2021.naacl-main.109
https://arxiv.org/abs/2104.07091
https://arxiv.org/abs/2104.07091
https://arxiv.org/abs/2009.10435
https://arxiv.org/abs/2009.10435
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/2021.acl-long.535
https://doi.org/10.18653/v1/2021.acl-long.535
https://doi.org/10.18653/v1/2021.acl-long.535
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.24963/ijcai.2021/524
https://doi.org/10.24963/ijcai.2021/524
https://doi.org/10.24963/ijcai.2021/524
https://doi.org/10.18653/v1/D18-1443
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://aclanthology.org/2021.eacl-main.154
https://aclanthology.org/2021.eacl-main.154
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://openreview.net/forum?id=rkgNKkHtvB
https://arxiv.org/abs/2105.08209
https://arxiv.org/abs/2105.08209
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1210

Abstractive multi-modal meeting summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2190–2196, Florence, Italy. Association for Compu-
tational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu, Chenguang Zhu, and Michael Zeng. 2021.
End-to-end segmentation-based news summariza-
tion. arXiv preprint arXiv:2110.07850.

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen
Zhang, Rui Zhang, Tao Yu, Budhaditya Deb, Chen-
guang Zhu, Ahmed H Awadallah, and Dragomir
Radev. 2021. Dyle: Dynamic latent extraction
for abstractive long-input summarization. arXiv
preprint arXiv:2110.08168.

Iain McCowan, Jean Carletta, Wessel Kraaij, Simone
Ashby, S Bourban, M Flynn, M Guillemot, Thomas
Hain, J Kadlec, Vasilis Karaiskos, et al. 2005. The
ami meeting corpus. In Proceedings of the 5th In-
ternational Conference on Methods and Techniques
in Behavioral Research, volume 88, page 100. Cite-
seer.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.

Ansong Ni, Zhangir Azerbayev, Mutethia Mutuma,
Troy Feng, Yusen Zhang, Tao Yu, Ahmed Hassan
Awadallah, and Dragomir Radev. 2021. Summer-
Time: Text summarization toolkit for non-experts.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 329–338, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Jonathan Pilault, Raymond Li, Sandeep Subramanian,
and Chris Pal. 2020. On extractive and abstractive
neural document summarization with transformer
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9308–9319, Online. As-
sociation for Computational Linguistics.

Vahed Qazvinian and Dragomir R. Radev. 2008. Sci-
entific paper summarization using citation summary
networks. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling
2008), pages 689–696, Manchester, UK. Coling
2008 Organizing Committee.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring

the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Tobias Rohde, Xiaoxia Wu, and Yinhan Liu. 2021. Hi-
erarchical learning for generation with long source
sequences. arXiv preprint arXiv:2104.07545.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and
Da-Cheng Juan. 2020. Sparse sinkhorn attention.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pages 9438–9447. PMLR.

Amy JC Trappey, Charles V Trappey, and Chun-Yi Wu.
2009. Automatic patent document summarization
for collaborative knowledge systems and services.
Journal of Systems Science and Systems Engineer-
ing, 18(1):71–94.

Jesse Vig, Wojciech Kryscinski, Karan Goel, and
Nazneen Rajani. 2021. SummVis: Interactive visual
analysis of models, data, and evaluation for text sum-
marization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 150–158, Online. Association for Computa-
tional Linguistics.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nissan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Yumo Xu and Mirella Lapata. 2020. Coarse-to-fine
query focused multi-document summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3632–3645, Online. Association for Computa-
tional Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. In NeurIPS.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.

Yusen Zhang, Ansong Ni, Tao Yu, Rui Zhang, Chen-
guang Zhu, Budhaditya Deb, Asli Celikyilmaz,
Ahmed Hassan Awadallah, and Dragomir Radev.
2021. An exploratory study on long dialogue sum-
marization: What works and what’s next. arXiv
preprint arXiv:2109.04609.

1602

https://doi.org/10.18653/v1/P19-1210
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2110.07850
https://arxiv.org/abs/2110.07850
https://arxiv.org/abs/2110.08168
https://arxiv.org/abs/2110.08168
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.18653/v1/2021.emnlp-demo.37
https://doi.org/10.18653/v1/2021.emnlp-demo.37
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://doi.org/10.18653/v1/2020.emnlp-main.748
https://aclanthology.org/C08-1087
https://aclanthology.org/C08-1087
https://aclanthology.org/C08-1087
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2104.07545
https://arxiv.org/abs/2104.07545
https://arxiv.org/abs/2104.07545
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://proceedings.mlr.press/v119/tay20a.html
https://doi.org/10.18653/v1/2021.acl-demo.18
https://doi.org/10.18653/v1/2021.acl-demo.18
https://doi.org/10.18653/v1/2021.acl-demo.18
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2109.10862
https://doi.org/10.18653/v1/2020.emnlp-main.296
https://doi.org/10.18653/v1/2020.emnlp-main.296
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
https://arxiv.org/abs/2109.04609
https://arxiv.org/abs/2109.04609

Yao Zhao, Mohammad Saleh, and Peter J Liu.
2020. Seal: Segment-wise extractive-abstractive
long-form text summarization. arXiv preprint
arXiv:2006.10213.

Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2021a. Dialoglm: Pre-trained
model for long dialogue understanding and summa-
rization. arXiv preprint arXiv:2109.02492.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021b. QMSum: A new benchmark for
query-based multi-domain meeting summarization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5905–5921, Online. Association for Compu-
tational Linguistics.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021a. MediaSum: A large-scale media interview
dataset for dialogue summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5927–5934,
Online. Association for Computational Linguistics.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xue-
dong Huang. 2020. A hierarchical network for ab-
stractive meeting summarization with cross-domain
pretraining. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 194–
203, Online. Association for Computational Linguis-
tics.

Chenguang Zhu, Ziyi Yang, Robert Gmyr, Michael
Zeng, and Xuedong Huang. 2021b. Leveraging lead
bias for zero-shot abstractive news summarization.
In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1462–1471.

A Computing the Number of Stages

With regard to text length, the source text of each
stage needs to be compressed gradually to ensure
that the summary with proper length can be gener-
ated in the final stage. Also, the compression level
determines the required number of stages, which is
a significant indicator of time cost.

Suppose one sample of the source of stage i con-
tains di = |Di| words, while the source of next
stage Di+1 contains di+1 = |Di+1| words. Also
because the input of next stage is the coarse sum-
mary of current stage, Di+1 = Ci, thus di+1 =
|Di+1| = |Ci|. The maximum input length of
the model is K, ci =

∑n
j=0 |Ci

j |/n indicates the
averaged number of tokens in the segmented pre-
dictions. di+1 can be expressed by the length of

coarse summary which is the number of segment
di
K times the length of coarse segments ci.

In each stage, we have:

di+1 =
di
K
× ci

By iterating this equation for N time, the number
of needed coarse stages N for a dataset can be
decided in this way:

d1 ×
N∏
i=1

ci
K
≤ K

Empirically, ci are similar in different stages ,
thus we replace the production of ci with c1 to the
N , i.e.

cN1 ≈
N∏
i=1

ci

Thus, the estimation of N value can be calcu-
lated as follows:

d1 ×
cN1
KN

≤ K

N̂ = d logK − log d1
log c1 − logK

e

We also call ci/K the compression rate of stage
i, denoted as Ri. For target matching, the com-
pression rate of duplication segmentation is 1 and
greedy segmentation is less than 0.5. So that target
segmentation algorithm helps reduce number of
coarse stages.

After using the early stopping of coarse stage,
the estimation formula changes as follows:

d1 ×
cN1
KN

≤ 2K

N̂ = d1 + logK − log d1
log c1 − logK

e

B Time Complexity

Suppose the length of the input is n, by segmenting
the source text into n/K segments, the time cost
of forwarding of one segment is K2, thus the total
time cost of stage 1 is n/K × K2 = nK. Then,
in the next stage, the length of the source text is
reduced to nR, thus the time complexity of stage 2
is nKR. We can list the total time cost by adding
them together:

T (n) =
∞∑
i=0

nKRi =
nK

1−R

1603

https://arxiv.org/abs/2006.10213
https://arxiv.org/abs/2006.10213
https://arxiv.org/abs/2109.02492
https://arxiv.org/abs/2109.02492
https://arxiv.org/abs/2109.02492
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.474
https://doi.org/10.18653/v1/2021.naacl-main.474
https://doi.org/10.18653/v1/2020.findings-emnlp.19
https://doi.org/10.18653/v1/2020.findings-emnlp.19
https://doi.org/10.18653/v1/2020.findings-emnlp.19

ICSI

SUMMN

The project manager opens the meeting by recapping the events of the previous meeting. The marketing expert presents the results of market
research , which shows that users want a fancy-looking remote control that is easy to use and has a fancy look and feel. The user interface
designer presents the user interface concept for the remote , which is based on the idea that a remote should be simple and user-friendly.
The industrial designer presents about the internal components of a remote control. The group discusses using kinetic energy to power the
device , using a simple battery for the LCD screen , and using an advanced chip for the advanced chip. The project manager closes the meeting
, telling the team members what their tasks will be for the next meeting. · · · The Marketing Expert will research how to produce a remote that
is technologically innovative. The User Interface Designer will look at how to make a remote out of wood or plastic with either a wooden
or plastic cover. The Group will not work with teletext. There was a lack of information on the cost of components and materials.

Gold

The project manager opened the meeting and recapped the decisions made in the previous meeting. The marketing expert discussed his personal
preferences for the design of the remote and presented the results of trend-watching reports , which indicated that there is a need for products
which are fancy , innovative , easy to use , in dark colors , in recognizable shapes , and in a familiar material like wood. The user interface
designer discussed the option to include speech recognition and which functions to include on the remote. The industrial designer discussed
which options he preferred for the remote in terms of energy sources , casing , case supplements , buttons , and chips. The team then discussed
and made decisions regarding energy sources , speech recognition , LCD screens , chips , case materials and colors, case shape and orientation ,
and button orientation.· · · The case covers will be available in wood or plastic. The case will be single curved. Whether to use kinetic energy or
a conventional battery with a docking station which recharges the remote. Whether to implement an LCD screen on the remote. Choosing
between an LCD screen or speech recognition. Using wood for the case.

Table 11: Sample output summary SUMMN on the ICSI dataset. Tokens marked in grey indicate the out-of-
boundary contents of truncation models. Brown tokens are some topic words (manually selected) emerged in the
gold summary. Tokens marked in red indicate the concepts of out-of-boundary text.

Similarly, in training phrase, stage 1 generates
O(n) tokens while stage 2 generates O(nR) tokens
for each sample in train/dev/test set. We can list
the total generated tokens by adding them together:

T (n) =
∞∑
i=0

nRi =
n

1−R

Thus the time cost of forwarding reduces. For
instance, the inference time of SummScreen-TMS
dataset reduces to 1024/(1 − 0.27)/6420.64 =
21.8%, and GovReport dataset reduces to
1024/(1 − 0.43)/7890.46 = 22.8% of original
time cost, compared with O(n2) transformers. This
shows the efficiency of SUMMN . On the other hand,
since the training phrase needs to generate the tar-
get for each sample in the train/dev/test set, the
training time of SUMMN also includes the addi-
tional generation of O(n

1−R) tokens for each sam-
ple in the dataset.

C Case Study

Table 11 shows a concrete sample summary gen-
erated by SUMMN . It captures the topics of the
source text and smoothly follows the outline of the
gold summary. Also, SUMMN is able to evenly
generate the information of the whole summary,
including the last part of source text which is trun-
cated in the standard BART-large models.

1604

