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Abstract
We describe a method to jointly pre-train
speech and text in an encoder-decoder mod-
eling framework for speech translation and
recognition. The proposed method incor-
porates four self-supervised and supervised
subtasks for cross modality learning. A
self-supervised speech subtask leverages un-
labelled speech data, and a (self-)supervised
text to text subtask makes use of abundant text
training data. Two auxiliary supervised speech
tasks are included to unify speech and text
modeling space. Our contribution lies in in-
tegrating linguistic information from the text
corpus into the speech pre-training. Detailed
analysis reveals learning interference among
subtasks. Two pre-training configurations
for speech translation and recognition, respec-
tively, are presented to alleviate subtask inter-
ference. Our experiments show the proposed
method can effectively fuse speech and text in-
formation into one model. It achieves between
1.7 and 2.3 BLEU improvement above the
state of the art on the MUST-C speech transla-
tion dataset and comparable WERs to wav2vec
2.0 on the LIBRISPEECH speech recognition
task. 1

1 Introduction

Pre-training can learn universal feature represen-
tations from a large training corpus and is benefi-
cial for downstream tasks with limited amounts
of training data (Peters et al., 2018; van den
Oord et al., 2018; Chung et al., 2018; Zoph et al.,
2020). With the advancement of computational
power and self-supervised pre-training approaches,
large volumes of unlabeled data may now be used
in pre-training. Methods, such as BERT (Devlin
et al., 2019), BART (Lewis et al., 2020b) and
wav2vec2.0 (Baevski et al., 2020b), have emerged
as the backbone of many speech and natural lan-
guage processing tasks.

1https://github.com/pytorch/fairseq/tree/main/
examples/speech text joint to text.

The aforementioned pre-training methods focus
on learning feature representation either from text
or speech. Many speech applications combine in-
formation learnt from both speech and text corpora
to achieve state of the art results. In speech process-
ing, transcribed speech training data is generally
very scarce for many languages. It is difficult to
build robust linguistic knowledge representation
solely based on labeled speech training data. Jia
et al. (2019); Chen et al. (2021) propose to gen-
erate synthetic data from text to augment speech
training corpus. Li et al. (2021) demonstrate that
models initialized with pre-trained wav2vec2.0 and
mBART (Liu et al., 2020) modules are competi-
tive for the multilingual speech to text translation
task. Chuang et al. (2020) propose to concatenate
the acoustic model and BERT model for speech
Q&A. Chung et al. (2021b) align speech utterance
representation to the corresponding text sentence
representation, in which both representations are
generated from unsupervised pre-trained models,
for speech understanding.

In this study, we are interested in pre-training
for speech to text tasks using the Attention based
Encoder-Decoder (AED) framework. In particu-
lar, we seek to answer the question whether the
integration of data from different modalities is ben-
eficial for representation learning. To answer this
question, we propose Speech and Text joint Pre-
Training (STPT), a multi-task learning framework
to combine different modalities, i.e., speech and
text, in the pre-training stage. A self-supervised
speech subtask and a (self-)supervised text to text
subtask dominate the pre-training computation to
leverage large amounts of unlabelled speech data
and abundant text training corpus. Two auxiliary
supervised speech subtasks are used to unify dif-
ferent modalities in the same modeling space. The
proposed method fuses information from the text
and speech training corpus into a single model, and
it effectively improves the performance of down-
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stream tasks, such as speech to text translation (ST)
and automatic speech recognition (ASR). Our con-
tributions are summarized as follows:

1. We propose a multi-task learning framework
to learn four speech and text subtasks in one
model and successfully integrate linguistic in-
formation from the text corpus into the speech
pre-training.

2. We conduct detailed analyses on the proposed
pre-training method, which reveal the interfer-
ence among different subtasks.

3. Two joint pre-training configurations are pro-
posed to alleviate learning interference for
ASR and ST respectively.

4. State-of-the-art results are achieved on the
downstream tasks. We obtain at least 1.7
BLEU improvement compared with the best
MUST-C ST system reported and comparable
WERs as wav2vec 2.0 in the LIBRISPEECH

ASR task.

2 Related work

Pre-training: Self-supervised pre-training is usu-
ally optimized with two different criteria: con-
trastive loss (van den Oord et al., 2018; Chung and
Glass, 2020; Baevski et al., 2020b) and masked
prediction loss (Devlin et al., 2019). Contrastive
loss focuses on distinguishing the positive samples
from the negative ones given the reference sam-
ple and it has achieved great success for speech
recognition (Baevski et al., 2020b). Masked predic-
tion loss has been first studied for natural language
processing tasks (Devlin et al., 2019; Lewis et al.,
2020b) with subsequent application to speech pro-
cessing (Baevski et al., 2020a; Hsu et al., 2021).
Chung et al. (2021a) combine contrastive loss and
masked prediction loss, which shows good perfor-
mance for the downstream ASR task. The opti-
mization of our self-supervised speech task is more
related to the masked prediction loss. Instead of
predicting the hard discretized label for the masked
frames, which is error prone, we use KL divergence
to minimize the distribution difference between the
same feature frames with and without masking.
Please refer to subsection 3.2 for more details.
Self-training (or iterative pseudo labelling):
self-training is another widely used approach to
take advantage of unlabelled speech data to im-
prove the ASR performance (Kahn et al., 2020; Xu

et al., 2020; Pino et al., 2020; Zhang et al., 2020;
Wang et al., 2021a; Xiao et al., 2021; Wang et al.,
2021b). A seed model, which usually is trained
with a small amount of supervised speech train-
ing data, is employed to generate pseudo labels
for the unlabelled speech data. The speech data
with pseudo labels is augmented into the training
dataset to build another model, which is expected
to outperform the seed model due to more train-
ing data exposure. Similar to self-training, we also
use small amounts of supervised data to unify the
speech and text modeling space. However, the
self-supervised speech training in this work avoids
making hard predictions and uses KL divergence to
maximize the mutual information between masked
span and observed feature frames.
Multi-task learning: Due to data scarcity, multi-
task learning is widely adopted to leverage parallel
text training data for ST (Weiss et al., 2017; Anasta-
sopoulos and Chiang, 2018; Tang et al., 2021b; Ye
et al., 2021). Those methods primarily use super-
vised speech data sets during multi-task learning,
whereas our method can leverage large amounts of
unlabeled speech data during the pre-training stage,
which has the potential to improve performance
even further.

A concurrent work from Ao et al. (2021) also
proposes to jointly pre-train speech and text for
ASR and text to speech application, which is fully
unsupervised. Our method focuses on taking advan-
tage of the supervised speech data, which could be
the same data used for fine-tuning, to improve the
joint speech text pre-training. Our results demon-
strate the efficacy of supervised speech data in pre-
training. Another concurrent work is from Bapna
et al. (2021), which focuses on speech encoder
pre-training using both speech and text data. Our
method emphasizes the encoder-decoder frame-
work and training both encoder and decoder in the
pre-training stage.

3 Method

ASR and ST are the two main downstream tasks for
the proposed pre-training method. Figure 1 depicts
our joint pre-training framework, which consists of
four subtasks:

1. (Self-)supervised Text to Text subtask (T2T)

2. Self-supervised Speech Learning subtask
(SSL)
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(a) Fully shared encoder (FSE) for ASR pre-training. (b) Partially shared encoder (PSE) for ST pre-training.

Figure 1: Speech text joint pre-training framework. The purple, green, steelblue and blue lines depict the data flow
in encoders for the Text to Text (T2T), Self-supervised Speech Learning (SSL), supervised Speech to Phoneme
classification (S2P) and supervised AED based Speech to Text (S2T) subtasks respectively. The black lines show
data flow in the decoder model for the T2T and S2T subtasks. The dotted lines indicate the phoneme embedding
is applied in the SSL and S2P subtasks.

3. Supervised Speech to Phoneme classification
subtask (S2P)

4. Supervised AED based Speech to Text sub-
task, which is the same as the downstream
task, i.e., ST or ASR (S2T)

The choice of the T2T subtask depends on the
downstream task. For ASR, the T2T subtask is a
denoising autoencoder task (BART) (Lewis et al.,
2020a) while ST utilizes a text based neural ma-
chine translation task. The SSL subtask is a self-
supervised speech learning task to leverage large
amounts of unlabelled speech data optimized by
the masked prediction loss. The last two supervised
speech tasks (S2P and S2T) unify two modalities,
i.e., speech and text, into one modeling space.

In this study, we find that the subtasks for the
ASR pre-training are complementary, while sub-
task interference is observed in the ST pre-training
at some encoder layers. We propose two different
configurations: fully shared encoder (FSE) (Fig-
ure 1(a)) for the ASR pre-training, and partially
shared encoder (PSE) (Figure 1(b)) for the ST
pre-training. The FSE configuration aims to en-
courage information sharing between different sub-
tasks while the PSE configuration tries to minimize
the information sharing between encoder only sub-
tasks, i.e., SSL and S2P, and sequence to sequence
AED tasks, i.e., subtask T2T and S2T. More sub-
task interference analysis is presented in subsec-
tion 5.2. We describe the details of each subtask in
the following subsections.

3.1 (Self-)supervised text to text subtask

In the sequence to sequence ASR and ST tasks,
the decoder is a text generator conditioned on the
encoder outputs. Large amounts of training sam-
ples are required to cover different linguistic as-
pects of the target language. Abundant text is an
ideal supplement to the limited supervised speech
data corpus. Assume the target text sequence is
Y = (y1, y2, · · · , yN ), its corresponding corrupted
version, X = NOISE(Y ) = (x1, x2, · · · , xM ),
can be created by masking or replacing token spans
in Y (Lewis et al., 2020a) for the ASR pre-training.
If the downstream task is ST, X is the correspond-
ing source token sequence. The task is optimized
by maximizing cross entropy

LT2T = −
N∑
i

log p(yi|y1:i−1, X) (1)

In this subtask, we also convert the input text
into the corresponding pronunciation form, i.e.,
phoneme sequence, as it would be easier to align
the encoder outputs from speech and text (Tang
et al., 2021b). The purple and black lines in Fig-
ure 1 describe the data flow in the T2T subtask.

3.2 Self-supervised speech subtask

The SSL subtask aims to leverage vast amounts of
unlabelled speech data and learn general speech
representations. The model configuration follows
wav2vec2.0 (Baevski et al., 2020b) where the
speech model includes a feature extractor and a
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context encoder. The context encoder corresponds
to the speech encoder in Figure 1(b) in the ST
pre-training. If ASR is the downstream task, the
context encoder includes one extra shared encoder
as shown in Figure 1(a). We use different frame-
works for the ST and ASR pre-training to reduce
interference among subtasks. The detailed subtask
interference is discussed in subsection 5.2.

We propose a masked KL divergence loss to
optimize the SSL subtask. It consists of two-
pass computation. Given the speech input S =
(s1, s2, · · · , sT ), the feature extractor and context
encoder outputs are Z = (z1, z2, · · · , zT ′) and
O = (o1, o2, · · · , oT ′) respectively, where the
speech input is down-sampled by the feature ex-
tractor and T > T ′. In the first pass, the out-
put O is compared with the phoneme embedding
E = (e1, e2, · · · , eI), which is from the T2T sub-
task described in subsection 3.1. I is the phoneme
vocabulary size. The predicted phoneme distribu-
tion p(oj |ei) is defined as

p(oj |ei) =
exp(oj

ᵀ · ei)∑
i′ exp(o

ᵀ
j · ei′)

(2)

In the second pass, speech feature spans Ẑ ⊂ Z
are selected and corrupted as wav2vec2.0 (Baevski
et al., 2020b). Ô is the corresponding context en-
coder output from Ẑ. We train the model to infer
the corrupted p(ôj |ei) being similar as p(oj |ei) by
minimizing KL divergence.

LSSL = −
∑
ôj∈Ô

∑
i

p(oj |ei) log
p(ôj |ei)
p(oj |ei)

(3)

Compared with the masked prediction loss, in-
stead of predicting the hard discretized label for
the masked frames, we use the soft label prediction,
i.e., predicted phoneme distribution from the first
pass, to learn speech representation and avoid the
hard prediction errors.

3.3 Supervised speech to phoneme
classification

The S2P subtask is employed to unify the self-
supervised trained speech and text models. It
shares the same model as in the SSL subtask. In
this subtask, a transcribed ASR data set is used
and the goal of this task is to predict the frame
level phoneme labels. A HMM-GMM model is
trained with the same transcribed dataset using
Kaldi (Povey et al., 2011) to generate the frame-
level labels with forced-alignment.

The phoneme classification task is optimized
with the cross entropy loss,

LS2P = −
∑
oj∈O

log p(oj |ea(j)) (4)

where a(j) is the phoneme label associated with
the context encoder output oj . The data flow in
the S2P subtask is depicted with steelblue lines in
Figure 1.

3.4 Supervised AED based speech to text
subtask

Besides the S2P subtask mentioned in the previous
subsection, we include the potential downstream
AED based task, i.e. ASR or ST, as another aux-
iliary subtask during the pre-training stage. In
many speech translation datasets, such as MuST-
C (Gangi et al., 2019) or CoVoST (Wang et al.,
2020), we have both speech transcription and trans-
lation labels. The speech transcription is used in
the S2P subtask while the S2T subtask can make
use of the corresponding translation labels. We
hope this auxiliary task would make the transition
from pre-training to fine-tuning smooth and result
in better performance in downstream tasks. The
components involved during optimization are con-
nected with blue lines in encoder and black lines
in decoder as shown in Figure 1. They are trained
with cross entropy criterion,

LS2T = −
∑
t

log p(yi|yi−1, O) (5)

where O is the input speech and Y = (y1, · · · , yN )
is the target labels.

The overall pre-training loss is defined as the
combination of four losses discussed above

L = LT2T + αLSSL + βLS2P + γLS2T (6)

where α, β and γ are task weights for the SSL, S2P
and S2T subtasks respectively.

During the pre-training, the shared encoder in-
puts come from two sources, either from speech
encoder outputs in the S2T subtask or phoneme
embeddings in the T2T subtask. The shared en-
coder inputs might be in different numerical scales.
In order to stabilize the multi-task training, a Lay-
erNorm (Ba et al., 2016) is applied to the shared
encoder inputs and places those inputs in the same
numerical scale as shown in Figure 1.
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4 Experimental setting

In the pre-training, we first train modules with the
T2T subtask until they are converged. It helps to
stabilize the training and achieve a better result.
Then the entire model is jointly optimized with
all subtasks mentioned in section 3. Finally, the
pre-trained model is fine-tuned on the downstream
tasks. In the fine-tuning stage, we keep optimizing
the model with the T2T and S2T subtasks. Two
encoder-only subtasks (SSL and S2P) are dropped,
since the model has learnt good speech representa-
tion from the unlabeled speech data in pre-training.

Two downstream tasks, ASR and ST, are ex-
amined. The ASR system is evaluated on four
LIBRISPEECH (Panayotov et al., 2015) evaluation
sets: dev-clean, dev-other, test-clean and test-other.
WER is reported in the experiments. ST mod-
els are evaluated on two translation directions:
English-Spanish (EN-ES) and English-French (EN-
FR). Case-sensitive detokenized SACREBLEU (Post,
2018) is reported on the tst-COMMON testset from
MUST-C (Gangi et al., 2019).

For both ASR and ST pre-training, 60k hours
of unlabelled English speech data from Libri-
light (Kahn et al., 2020) is used to build the self-
supervised speech task if not specifically men-
tioned. We employ the same labelled data for the
supervised learning in pre-training and fine-tuning,
i.e., LIBRISPEECH training data for ASR and
MUST-C for ST. For ASR pre-training, the LIB-
RISPEECH language model (LM) training dataset
is used to build the monolingual BART model. For
ST pre-training, we take the parallel training corpus
from WMT. More details about the training data
could be found in Appendix A.

4.1 Model configuration

The model takes raw speech audio as input. The
feature encoder contains seven blocks and the tem-
poral convolutions in each block have 512 chan-
nels with strides (5,2,2,2,2,2,2) and kernel widths
(10,3,3,3,3,2,2). The speech encoder, shared en-
coder and shared decoder are all with 6 transformer
layers, model dimension 768, inner dimension
(FFN) 3,072 and 8 attention heads. We adopt Pre-
LN in the transformer block as Xiong et al. (2020).
The total number of parameters is 169 million.

The task weight for each subtask is set by the
number of mini-batches used during training. In
the pre-training, the ratio of mini-batch numbers
for each subtasks are 1.0, 7.0, 0.5 and 0.5 for the

T2T, SSL, S2P and S2T subtasks respectively.
We mask 30% tokens in the T2T BART subtask

in ASR pre-training, and no masking is applied for
the T2T NMT subtask in the ST pre-training. 7%
of the feature frames in the SSL subtask and 3%
of the feature frames in the two supervised speech
subtasks are randomly selected as the mask span
starting time-step. The mask span length is 10.
The masking percentage is selected via grid search
((20, 30) for text masking, (6, 6.5, 7) and (2, 3) for
speech masking). Additional experimental details
such as optimization hyper-parameters are included
in Appendix B.

5 Experimental results

5.1 Main results

We present the LIBRISPEECH recognition results
in Table 1. Recognition results without/with an
decoding LM are reported. The WERs obtained
with LM are displayed within “()”. The second
column shows the dataset used as unlabeled data
in pre-training. “LS-960” stands for LIBRISPEECH

training dataset and “LV-60k” is the 60,000 hours
Librilight dataset. The decoding LM is built with
the LIBRISPEECH text training corpus , which is
the text corpus used by the T2T subtask in the ASR
pre-training and fine-tuning.

The first part of the table shows results from the
wav2vec 2.0 base model, which is a CTC based
ASR system. Second part of the table presents re-
sults from two AED based ASR systems, and we
mainly compare the proposed method with those
two AED systems. LAS is a LSTM based system
trained with the LIBRISPEECH data only. Trans-
former (Tang et al., 2021b) is based on multi-task
learning and jointly trained with a text task.

The results from STPT models are presented
in the third part of the table. The fourth row
shows results from a model that uses 960 hours
LIBRISPEECH training data as the unlabelled pre-
training data while the model in the fifth row is pre-
trained with the 60k hours Librilight data. STPT
outperforms all previous reported AED-based sys-
tems. On average, there is a 1.2 absolute WER
reduction obtained compared to the jointly trained
transformer model (Tang et al., 2021b). STPT also
reduces 2.2 WER compared with the CTC based
wav2vec model if no external LM is applied and
achieves comparable WERs when it is decoded
with a LM. One interesting observation is the de-
coding LM is not very helpful for the STPT model,
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Data set Unlabeled Dev Test ave.data clean other clean other
wav2vec 2.0 (Baevski et al., 2020b) LS-960 3.2 (1.8) 8.9 (4.7) 3.4 (2.1) 8.5 (4.8) 6.0 (3.4)
LAS (Park et al., 2019) - - - 2.8 (2.5) 6.8 (5.8) -
Transformer (Tang et al., 2021b) - 2.8 7.0 3.1 7.2 5.0
STPT LS-960 2.1 (1.9) 5.4 (5.2) 2.3 (2.2) 5.6 (5.3) 3.8 (3.6)
STPT LV-60k 2.0 (2.1) 4.4 (4.2) 2.1 (2.1) 4.6 (4.5) 3.3 (3.2)

Table 1: WER results on Librispeech. “()” indicates the WER is measured with an external LM.

Data corpus EN-ES EN-FR
Inaguma et al. (2020) 28.0 32.7
Tang et al. (2021a) 31.0 37.4
Zheng et al. (2021) 30.8 -
Ye et al. (2021) 30.8 38.0
STPT 33.1 39.7

Table 2: BLEU results of two language pairs on the
MuST-C tst-COMMON.

that only 0.2 WER reduction is observed when a
decoding LM is applied. Other systems, on the
other hand, show a considerable WER reduction
when the LM is applied during decoding. It indi-
cates that our multi-task learning in the pre-training
and fine-tuning stages can effectively fuse linguis-
tic information in the text data corpus into the ASR
model. LM might not be required if it is trained on
the same text corpus. We also report results from
model pre-trained with 60k hours Librilight data
at the fifth row. Compared with the LS-960 STPT
model, Librilight data helps to reduce the WER
in two difficult “other” datasets. In the following
experiments, we will use Librilight as unlabelled
data in pre-training.

In Table 2, we present the speech translation re-
sults on the MuST-C datasets. Row one to four
are the latest results from literature. Row one
shows the results by training a speech to text trans-
lation task alone. Row two and three present re-
sults from two multi-task systems with speech and
text jointly trained together. Row four is the best
system reported, which is initialized with the pre-
trained wav2vec 2.0 and machine translation model,
then fine-tuned with the joint speech and text train-
ing. Our method achieves 2.3 and 1.7 more BLEU
scores for EN-ES and EN-FR translation directions
compared with the best system (Ye et al., 2021).

5.2 Impact of model structure

Interference among subtasks may impede the
progress of multi-task learning and lead to inferior
results. In this study, we examine the task interfer-

ence via comparing the gradient similarity between
pair subtasks. We choose the pre-trained models
using the FSE configuration discussed in section 3
and accumulate gradients from one of four jointly
trained subtasks. We prepare 20 batches of training
samples for each subtask, and retrieve the accu-
mulated gradients by sending these batches to the
models. Then we calculate the pairwise cosine sim-
ilarity between gradients from any two subtasks.

The pairwise subtask gradient similarity from
the shared encoder are presented in Figure 2. The
Figure 2(a) demonstrates the gradient similarity
in ASR pre-training. In most layers, the gradient
similarities are small. No serious gradient inter-
ference is observed. The Figure 2(b) depicts the
gradient similarity from the ST pre-training. Com-
pared with the ASR pre-training, the S2T and T2T
subtasks are replaced by speech translation and
text based neural machine translation subtasks in
pre-training. The interference between different
subtasks is significant as large positive and nega-
tive gradient similarities are observed in the third
and fifth layers in Figure 2.

Similarly, we compare task gradients in the
speech encoder and no obvious task interference
is observed within the speech encoder for both
ASR and ST pre-training. Detailed analysis on
the speech encoder is included in the Appendix C.

In order to alleviate the task interference, the
PSE configuration is proposed for the ST pre-
training. Table 3 presents the performance com-
parison between two configurations on both ASR
and ST pre-training. On the left part of the table,
we list the ASR results using 100 hours labelled
speech data (train-clean-100) in pre-training and
fine-tuning. While the right part of the table shows
the BLEU evaluated on the MUST-C dataset. As
we expected, the FSE configuration encourages
information sharing among tasks and it achieves
lower WER for the ASR task. It indicates subtasks
in the ASR pre-training are complementary to each
other. On the other hand, the PSE configuration
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(a) Gradient similarity for the ASR pre-training.
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(b) Gradient similarity for the ST pre-training.

Figure 2: Gradient similarity for different subtasks on the shared text encoder.

Config. Librispeech (WER ↓) MuST-C (BLEU ↑)
dev clean dev other EN-ES EN-FR

FSE 3.2 6.8 31.4 38.3
PSE 3.1 8.3 33.1 39.7

Table 3: Comparison of two pre-training configurations
for ASR and ST.

minimizes the information sharing between AED
subtasks and encoder only subtasks, and it leads to
higher BLEU for the ST task.

5.3 Impact of training data

The supervised speech data connects the text and
speech modeling and unifies the representation
from different modalities. An interesting question
we want to investigate is how much supervised
data is enough to learn a good cross modality repre-
sentation. In this experiment, we choose different
amounts of labelled data for ASR pre-training and
fine-tuning, varied from 960 hours (the full dataset),
100 hours (train-clean-100) and 10 hours as (Kahn
et al., 2020), to answer this question.

In Table 4, the first column shows the amounts
of supervised speech data available during the pre-
training and the second column presents the amount
of labelled data used in the fine-tuning stage. In
pre-training, the same supervised speech data is
used in the S2P and S2T subtasks.

The first observation is that more supervised
speech data in the pre-training stage is always help-
ful to get smaller WER. For example, if the models
are fine-tuned with the full LIBRISPEECH train-
ing dataset, the average WER are 3.3 (row one),
3.6 (row two) and 4.0 (row four) for experiments
with 960, 100 and 10 hours labelled data in the
pre-training stage. The second observation is that

PT (h) FT (h) Dev Test
clean other clean other

960 960 2.0 4.4 2.1 4.6

100 960 2.3 4.9 2.2 5.1
100 3.2 6.8 3.5 7.2

10
960 2.7 5.3 2.8 5.3
100 3.8 7.8 4.0 7.7
10 19.9 27.5 22.0 28.8

Table 4: Impact of the amounts of supervised data.
“PT” and “FT” stand for pre-training and fine-tuning
respectively.

we are still able to obtain good speech representa-
tions even with small amounts of labelled data. In
row four, the model is pre-trained with 10 hours
labelled data, then fine-tuned with 960 hours su-
pervised speech data. It can achieve an average
4.0 WER, which is better than the results of the
AED systems in Table 1. However, we also no-
tice the performance degrades quickly if only small
amounts of labelled speech data are available. The
average WER is increased to 24.6 (row six) when
only 10 hours of supervised speech data is em-
ployed in both pre-training and fine-tuning.

Another question we are interested is the gen-
eralizability of the pre-trained model. There are
two data partitions in LIBRISPEECH: “clean” and
“other”. The “clean” partition is supposed to be
“higher recording quality and with accents closer to
US English” while the “other” partition is difficult
speakers with high WER (Panayotov et al., 2015).
We create four data partitions for pre-training and
fine-tuning to simulate the mismatched training
conditions. “train-clean-100” is used as the pre-
training “clean” data set (“PT C”) and the first
30,000 utterance from “train-clean-360” as the fine-
tuning “clean” dataset (“FT C”). The first 30,000 ut-
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FT C FT O
clean other clean other

PT C 3.0 6.7 3.2 5.9
PT O 3.0 5.9 3.2 5.8

Table 5: WER comparison under mismatched pre-
training and fine-tuning conditions. “C” and “O” rep-
resent the “clean” and “other” labelled data; “PT” and
“FT” stand for pre-training and fine-tuning. WERs
obtained under mismatched conditions are shown as
italic.

terances and the following 30,000 utterances from
“train-other” are used as the pre-training (“PT O”)
and fine-tuning “other” (“FT O”) datasets. Each
dataset includes approximately 100 hours speech
data. In Table 5, models are trained under 4 dif-
ferent combinations with different supervised pre-
training and fine-tuning data sets. We report aver-
age WER on the ”dev-clean” and “test-clean” test
sets as “clean”, and average WER on the“dev-other”
and “test-other” as “other” to reduce the result vari-
ation. From Table 5, we have following observa-
tions. 1) a model achieves the best results on the
matched condition. The model “PT C + FT C”
achieves the lowest WER on the “clean” set while
“PT O + FT O” achieves the best results on the
“other” set. 2) training and test on totally differ-
ent conditions could increase WER significantly.
The model “PT C + FT C” increases 0.9 WER on
the “other” set compared with the “PT O + FT O”
model. 3) mismatched pre-training and fine-tuning
might slightly increase the WER, 0.1 to 0.2 in this
experiment.

5.4 Masked KL divergence loss v.s.
contrastive loss

In the SSL subtask, we optimize the model to re-
duce the KL divergence loss between input without
masking and with masking as described in subsec-
tion 3.2. It is a variant of the masked prediction
loss (Baevski et al., 2020a) and no target labels
are required in our implementation. Contrastive
loss is another widely used method for the self-
supervised speech learning (Baevski et al., 2020b).
We compare the both criteria in Table 6. The num-
ber of distractors in the contrastive loss is 100 as
(Baevski et al., 2020b). Both ASR and ST re-
sults are reported in Table 6, where the masked
KL divergence loss achieves about 0.6 lower WER
in the Librispeech dev sets and 0.7 ∼ 1.4 more
BLEU scores in the MuST-C tst-COMMON sets.

Loss Librispeech (WER ↓) MuST-C (BLEU ↑)
dev clean dev other EN-ES EN-FR

Cont. 2.6 5.0 31.7 39.0
KL 2.0 4.4 33.1 39.7

Table 6: Comparison of the masked KL divergence
loss and contrastive loss for the SSL subtask. “Cont.”
stands for the contrastive loss.

It demonstrates the effectiveness of the proposed
masked KL divergence loss for the SSL subtask.

5.5 Ablation study

In Table 7, we present an ablation study by remov-
ing different steps/tasks in the pre-training stage.

In order to make the pre-training more stable,
the model training adopts a three-stage optimiza-
tion strategy: 1) pre-training the T2T subtask to
have a good initialization on the phoneme embed-
dings 2) joint pre-training with four subtasks to
leverage large amounts of unlabelled speech data
and abundant text data and 3) fine-tuning the model
on the downstream task for best performance. In
the second row, we skip the T2T pre-training step
and initialize the model randomly for the joint pre-
training. 0.5 WER increase is observed in average
on two LIBRISPEECH dev sets. It also has more im-
pact on the EN-ES translation direction where 1.2
BLEU score is lost without proper initialization.

In the third row, we present the results without
the S2T subtask. For both ASR and ST, signifi-
cant performance degradation is observed, with an
average 1.1 WER increase for two ASR tests and
1.8 BLEU decrease for two ST directions. We also
try removing the S2P subtask while still keeping
the S2T subtask. The training doesn’t converge.
The SSL subtask is with very small or zero cost
since all predictions collapse into one or two target
phonemes. Also, little progress has been made for
the S2T subtask even though it is co-trained with
the SSL and T2T subtasks.

In the last row, the model is trained without pre-
training, i.e., only the T2T and S2T subtasks are
optimized. Compared with the STPT results, there
is about 1.4 WER increase for two LIBRISPEECH

test sets and 3.4 BLEU decrease for the two ST
directions on average.

6 Conclusion

In this work, we present a method to jointly pre-
train speech and text in one model for speech trans-
lation and recognition under the AED framework.

1495



Config. Librispeech (WER ↓) MuST-C (BLEU ↑)
dev clean dev other EN-ES EN-FR

STPT 2.0 4.4 33.1 39.7
- T2T PT 2.4 5.0 31.9 39.2
- AED task 2.9 5.6 31.3 38.0
- Joint PT 2.8 6.4 30.6 35.4

Table 7: Ablation study for STPT.“PT” stands for “pre-
training”.

It includes four self-supervised and supervised sub-
tasks from two different input modalities, hence the
proposed method can leverage large amounts of un-
labelled speech data and abundant text data in the
pre-training stage. We conduct detailed analysis
on the interference among different subtasks and
propose two model configurations for the ASR and
ST pre-training respectively to alleviate the subtask
interference. Our experimental results show STPT
can effectively fuse information within text and
speech training data into one model. We achieves
between 1.7 and 2.3 BLEU improvement over the
state of the art on the MUST-C EN-FR and EN-ES
speech translation tasks, and comparable WERs as
wav2vec 2.0 in the LIBRISPEECH ASR task.
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8 Broader Impact

We highlight the potential that this work has pos-
itive impact in the society: augmenting speech
processing tasks with text corpus, and improving
speech related applications. At the same time, this
work may have some negative consequences if the
text data is not handled in a proper way. Before
using the text data to train a speech system, one
should evaluate fairness in the collected data, and
make sure not to train on offensive or any type of
inappropriate data.
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A Pre-training data setting

T2T: For ASR pre-training, the language
model (LM) training dataset 2 for LIB-
RISPEECH (Panayotov et al., 2015) is used
to build the monolingual BART model. It has
about 800 million words. For ST pre-training, we
take the parallel training corpus from WMT. We
examine our methods on two translation directions
in MUST-C: English-Spanish (EN-ES), which
uses WMT13 training corpus, and English-French
(EN-FR), which takes the WMT14 training data.
There are 370 million and 1 billion English words
in the EN-ES and EN-FR parallel training datasets
respectively.

We use “g2p en” Python package (Lee and Kim,
2018) to convert the training text into the corre-
sponding phoneme representation, which is based
on the CMU English dictionary. We further ex-
tend the phoneme set by distinguishing the first
phoneme in the word with an additional “ ” mark
appended, which is similar to the notation in the
SentencePiece process. The input phoneme vocab-
ulary size is 134.
SSL: For both ASR and ST pre-training, 60k
hours of unlabelled English speech data from Libri-
light (Kahn et al., 2020) is used to build the self-
supervised speech task if not specifically men-
tioned. We set the maximum utterance duration
to 37.5 seconds and minimum duration to 4 sec-
onds. We randomly sample audio segments with
maximum duration if utterances are longer than the
maximum duration. No voice activity detection is
applied.
S2P: We use the transcribed LIBRISPEECH dataset
for ASR pre-training. In ST pre-training, the
MUST-C training dataset is used, where the corre-
sponding English transcription is used as the train-
ing target labels after it is converted into phoneme
representation. The phoneme level segmentation is
obtained via force-alignment, which is conducted
using HMM/GMM trained from the same speech
data with the Kaldi toolkit (Povey et al., 2011).
S2T: We use the same labelled data in the S2P
subtask for the S2T subtask, i.e., LIBRISPEECH

training data for the ASR pre-training and MUST-
C data for the ST pre-training. Instead of using
phoneme representation, the target labels are en-
coded with SentencePiece (Kudo and Richardson,
2018). For both ASR and ST tasks, the vocabu-
lary is an Unigram model with size 10k and full

2https://www.openslr.org/11/
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Figure 3: Gradient similarity for different subtasks on the speech encoder.

character coverage on the training text data.

B Optimization setting

The models are optimized with Adam (Kingma
and Ba, 2014) for both pre-training and fine-tuning.
The final results are evaluated using an averaged
model from checkpoints of the last 10 epochs.
T2T subtask pre-training The T2T model is pre-
trained with learning rate 0.01 using Adam opti-
mization. The maximum tokens per mini-batch is
2048 with 8 V100 GPU cards. The model is up-
dated 400,000 until fully converged.
Pre-training with all subtasks The model then
keeps optimizing with all four subtasks: T2T, SSL,
S2P and S2T, with learning rate 0.001. The model
is trained using 16 A100 GPU cards with update fre-
quency 12. The maximum token number per batch
for the T2T subtask is 2048 while the maximum
sample number is 750,000 (46s) for the speech in-
put in three speech subtasks. The maximum update
number is 800,000 and 200,000 for the ASR pre-
training and the ST pre-training respectively.
Fine-tuning The model is fine-tuned on the down-
stream task with learning rate 0.0003 and 8 V100
GPU cards. The update frequency set to 3. The
maximum update numbers are dependent on the
amounts of supervised speech data available. We
choose 100,000 for the ASR task with 960 hours
training data and 20,000 for 100 or 10 hours train-
ing data. For the ST task, the maximum update
number is set to 50,000.

C Gradient similarity of the speech
encoder

Three subtasks: SSL, S2P, and S2T, share the
speech encoder during the joint pre-training. Sim-
ilar pairwise gradient similarity analysis is con-

ducted on these three subtasks at the speech en-
coder, as shown in Figure 3. The gradient similarity
analysis for the ASR pre-training is presented in
the left subfigure while the ST-pretraining is listed
in the right. In both cases, the gradient similarities
for different subtask pairs are small, i.e., absolute
values of the gradient similarities are all below 0.2.
It indicates the task interference between different
subtasks are not significant.
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