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Abstract

Semantic parsers map natural language utter-
ances into meaning representations (e.g. pro-
grams). Such models are typically bottlenecked
by the paucity of training data due to the labo-
rious annotation efforts. Recent studies have
performed zero-shot learning by synthesizing
training examples of canonical utterances and
programs from a grammar, and further para-
phrasing these utterances to improve linguistic
diversity. However, such synthetic examples
cannot fully capture patterns in real data. In
this paper we analyze zero-shot parsers through
the lenses of the language and logical gaps
(Herzig and Berant, 2019), which quantify the
discrepancy of language and programmatic pat-
terns between the synthetic canonical examples
and real-world user-issued ones. We propose
bridging these gaps using improved grammars,
stronger paraphrasers, and efficient learning
methods using canonical examples that most
likely reflect real user intents. Our model
achieves strong results on the SCHOLAR and
GEO benchmarks with zero labeled data.!

1 Introduction

Semantic parsers translate natural language (NL)
utterances into formal meaning representations.
In particular, task-oriented semantic parsers map
user-issued utterances (e.g. Find papers in ACL)
into machine-executable programs (e.g. a database
query), play a key role in providing natural lan-
guage interfaces to applications like conversational
virtual assistants (Gupta et al., 2018; Andreas et al.,
2020), robot instruction following (Artzi and Zettle-
moyer, 2013; Fried et al., 2018), as well as querying
databases (Li and Jagadish, 2014; Yu et al., 2018)
or generating Python code (Yin and Neubig, 2017).

Learning semantic parsers typically requires
parallel data of utterances annotated with pro-
grams, which requires significant expertise and
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cost (Berant et al., 2013). Thus, the field has
explored alternative approaches using supervi-
sions cheaper to acquire, such as the execution
results (Clarke et al., 2010) or unlabeled utter-
ances (Poon, 2013). In particular, the seminal
OVERNIGHT approach (Wang et al., 2015) synthe-
sizes parallel data by using a synchronous grammar
to align programs and their canonical NL expres-
sions (e.g. Filter(paper,venue=) < papers
in | ?|and acl<+ACL), then generating examples
of compositional utterances (e.g. Papers in ACL)
with programs (e.g. Filter (paper,venue=acl)).
The synthesized utterances are paraphrased by an-
notators, a much easier task than writing programs.

Recently, Xu et al. (2020b) build upon
OVERNIGHT and develop a zero-shot semantic
parser replacing the manual paraphrasing process
with an automatic paraphrase generator (§2). While
promising, there are still several open challenges.
First, such systems are not truly zero-shot — they
still require labeled validation data (e.g. to select
the best checkpoint at training). Next, to ensure the
quality and broad-coverage of synthetic canonical
examples, existing models rely on heavily curated
grammars (e.g. with 800 production rules), which
are cumbersome to maintain. More importantly, as
suggested by Herzig and Berant (2019) who study
OVERNIGHT models using manual paraphrases,
such systems trained on synthetic samples suffer
from fundamental mismatches between the distribu-
tions of the automatically generated examples and
the natural ones issued by real users. Specifically,
there are two types of gaps. First, there is a logical
gap between the synthetic and real programs, as
real utterances (e.g. Paper coauthored by Peter and
Jane) may exhibit logic patterns outside of the do-
main of those covered by the grammar (e.g. Paper
by Jane). The second is the language gap between
the synthetic and real utterances, as paraphrased
utterances (e.g. u) in Fig. 1) still follow similar
linguistic patterns as the canonical ones they are
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paraphrased from (e.g. w1), while user-issued utter-
ances are more linguistically diverse (e.g. u2).

In this paper we analyze zero-shot parsers
through the lenses of language and logical gaps,
and propose methods to close those gaps (§3).
Specifically, we attempt to bridge the language gap
using stronger paraphrasers and more expressive
grammars tailored to the domain-specific idiomatic
language patterns. We replace the large grammars
of previous work with a highly compact grammar
with only 46 domain-general production rules, plus
a small set of domain-specific productions to cap-
ture idiomatic language patterns (e.g. uo in Fig. 1,
§3.1.1). We demonstrate that models equipped
with such a smaller but more expressive grammar
catered to the domain could generate utterances
with more idiomatic and diverse language styles.

On the other hand, closing the logical gap is
non-trivial, since canonical examples are generated
by exhaustively enumerating all possible programs
from the grammar up to a certain depth, and increas-
ing the threshold to cover more complex real-world
examples will lead to exponentially more canoni-
cal samples, the usage of which is computationally
intractable. To tackle the exponentially exploding
sample space, we propose an efficient sampling
approach by retaining canonical samples that most
likely appear in real data (§3.1.2). Specifically, we
approximate the likelihood of canonical examples
using the probabilities of their utterances measured
by pre-trained language models (LMs). This en-
ables us to improve logical coverage of programs
while maintaining a tractable number of highly-
probable examples as training data.

By bridging the language and logical gaps, our
system achieves strong results on two datasets fea-
turing realistic utterances (SCHOLAR and GEO).
Despite the fact that our model uses zero anno-
tated data for training and validation, it outper-
forms other supervised methods like OVERNIGHT
and GRANNO (Herzig and Berant, 2019) requiring
manual annotation. Analysis shows that current
models are far from perfect, suggesting logical gap
still remains an issue, while stronger paraphrasers
are needed to further close the language gap.

2 Zero-shot Semantic Parsing via Data
Synthesis

Problem Definition Semantic parsers translate
a user-issued NL utterance u into a machine-
executable program z (Fig. 1). We consider a zero-
shot learning setting without access to parallel data

in the target domain. Instead, the system is trained
on a collection of machine-synthesized examples.

Overview Our system is inspired by the exist-
ing zero-shot semantic parser AUTOQA (Xu et al.,
2020b). Fig. 1 illustrates our framework. Intu-
itively, we automatically create training examples
with canonical utterances from a grammar, which
are then paraphrased to increase diversity in lan-
guage style. Specifically, there are two stages.
First, a set of seed canonical examples (Fig. 1b) are
generated from a synchronous grammar, which
defines compositional rules of NL expressions to
form utterances (Fig. 1a). Next, in the iterative
training stage, a paraphrase generation model
rewrites the canonical utterances to more natural
and linguistically diverse alternatives (Fig. 1c). The
paraphrased examples are then used to train a se-
mantic parser. To mitigate noisy paraphrases, a
filtering model, which is the parser trained on pre-
vious iterations, rejects paraphrases that are poten-
tially incorrect. This step of paraphrasing and train-
ing could proceed for multiple iterations, with the
parser trained on a dataset with growing diversity
of language styles.>

Synchronous Grammar Seed canonical exam-
ples are generated from a synchronous context free
grammar (SCFG). Fig. 1a lists simplified produc-
tion rules in the grammar. Intuitively, productions
specify how utterances are composed from lower-
level language constructs and domain lexicons. For
instance, given a database entity alan_turing
with a property citations, us in Fig. 1 could
be generated using ;. Productions could be ap-
plied recursively to derive more compositional ut-
terances (e.g. u2 using 79, 74 and rg). Our SCFG
is based on Herzig and Berant (2019), consisting of
domain-general rules of generic logical operations
(e.g. superlative, r3) and domain-specific lexi-
cons of entity types and relations. Different from
Xu et al. (2020b) which uses a complex grammar
with 800 rules, we use a compact grammar with
only 46 generic rules plus a handful of idiomatic
productions (§3.1.1) to capture domain-specific lan-
guage patterns (e.g. “most recent” in ug, c.f., uy).
Given the grammar, examples are enumerated ex-
haustively up to a threshold of number of rule ap-
plications, yielding a large set of seed canonical

“This process is similar to expert iteration in reinforcement
learning (Anthony et al., 2017), where a model is iteratively
re-trained on newly discovered action trajectories.
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r1: Get property of an entity
$EntSet —> $property of

r,: Entity type (e.g., paper) and relative clause
$EntSet —> $EntType ( $PrepNP | $compi. )
15: Conjunctives

$EntSet > $EntSet

$Entity
r,: Prepositional Phrase (e.g., in deep learning)

$PrepNP > $prep  $Entity and $PrepNP

r3: Complementary (e.g., that has the largest citation count) 1 Idiomatic superlative expressions

$Compl. +—> that has the largest ¢property $EntSet —> $SuperlativeAdj

$EntSet  (3) Grammar

u} Paper in deep learning and the biggest year of publication

u
L' Paper that has the largest What is the biggest year for publishing deep learning?

publication year and in deep learning ) Recent research on deep learning

U2 Most recent research in deep learning Y , .

uy, What's the latest deep learning
research?

W2 Most recent paper in deep learning What is the latest deep learning study?

Z9 superlative(
filter(paper, topic=DL),
key=year)

What’s new in deep learning?

What'’s the latest study on
deep learning?

The citations of Alan Turing

Alan Turing’s citations

u3 Citation count of Alan Turing

How many citations did Alan Turing get?

How many citations does Alan Turing have?

(b) Canonical Data Generation

(c) Iterative Paraphrasing and Training

Figure 1: Illustration of the learning process of our zero-shot semantic parser with real model outputs. (a) Synchronous grammar
with production rules. (b) Canonical examples of utterances with programs (only z2 is shown) are generated from the grammar
(colored spans show productions used). Programs are shown in simplified, illustrative form. Refer to Appendix B for real
examples. Unnatural utterances like w; can be discarded, as in §3.1.2 (¢) At each iteration, canonical examples are paraphrased
to increase diversity in language style, and a semantic parser is trained on the paraphrased examples. Potentially noisy or vague

paraphrases are filtered (marked as
examples D¢, (Fig. 1b) for paraphrasing.’

Paraphrase Generation and Filtering The para-
phrase generation model rewrites a canonical ut-
terance u to more natural and diverse alternatives
u’. v/ is then paired with u’s program to create a
new example. We finetune a BART model on the
dataset by Krishna et al. (2020), which is a subset
of the PARANMT corpus (Wieting and Gimpel,
2018) that contain lexically and syntactically di-
verse paraphrases. The model therefore learns to
produce paraphrases with diverse linguistic pat-
terns, which is essential for closing the language
gap when paraphrasing from canonical utterances.
To further improve the syntactic diversity of para-
phrases from imperative utterances (e.g. w2, Fig. 1),
we apply forced decoding such that half of the gen-
erated paraphrases start with questions with WH-
prefixes (e.g. us in Fig. 1). Refer to Appendix A
for details. Still, some paraphrases are noisy or po-
tentially vague (€3 in Fig. 1c). We follow Xu et al.
(2020b) and use the parser trained on previous iter-

3SCFGs could not generate utterances with context-
dependent rhetorical patterns such as anaphora. Our model
could still handle simple domain-specific context-dependent
patterns (e.g. Paper by A and B, where A and B are different
authors) by first generating all the canonical samples and then
filtering those that violate the constraints.

) using the parser trained on previous iterations.

ations as the filtering model, and reject paraphrases
for which the parser cannot predict their programs.

3 Bridging the Gaps between Canonical
and Natural Data

Language and Logical Gaps The synthesis ap-
proach in §2 will yield a large set of paraphrased
canonical data (denoted as Dp,;). However, as
noted by Herzig and Berant (2019) (hereafter
HB19), the synthetic examples cannot capture all
the language and programmatic patterns of real-
world natural examples from users (denoted as
Dpar). There are two mismatches between Dy,
and Dy, First, there is a logical gap between real
programs in Dy, and the synthetic ones in Dy,
which are exhaustively composed up to a certain
compositional depth and therefore cannot capture
more complex programs in Dp,. Next, there is
a language gap between paraphrased canonical
utterances and real-world user-issued ones. Real
utterances (e.g. us in Fig. 1, which is from Dy,
but can be modeled as a canonical sample later in
§3.1.1) enjoy more lexical and syntactic diversity,
while the auto-paraphrased ones (e.g. u)) are typi-
cally biased towards the clunky language style of
their canonical source (e.g. ;). While we could
increase diversity via iterative rounds of paraphras-
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ing (e.g. ug — ul, — ul), the paraphraser could
still fail on canonical utterances that are not natural
English sentences at all, like u;.

3.1 Bridging Language and Logical Gaps
We introduce improvements to the system to close
the language (§3.1.1) and logical (§3.1.2) gaps.

3.1.1 Idiomatic Productions

To close language gaps, we augment the gram-
mar with productions capturing domain-specific
idiomatic language styles. Such productions com-
press the clunky canonical expressions (e.g. u; in
Fig. 1) to more succinct and natural alternatives
(e.g. ua), inspired by prior studies on how human
experts revise canonical utterances (Wang et al.,
2015), as well as by studying samples in real data.
Specifically, we focus on two language patterns:

Non-compositional expressions for multi-hop re-
lations Compositional canonical utterances typ-
ically feature chained multi-hop relations that are
joined together (e.g. Author that writes paper
whose topic is NLP), which can be compressed
using more succinct phrases to denote the rela-
tion chain, where the intermediary pivoting entities
(e.g. paper) are omitted (e.g. Author that works on
NLP). The pattern is referred to as sub-lexical com-
positionality in Wang et al. (2015) and used by an-
notators to compress verbose canonical utterances,
while we model them using grammar rules. Refer
to Appendix B for more details.

Idiomatic Comparatives and Superlatives The
general grammar in Fig. la uses canonical con-
structs for comparative (e.g. smaller than) and su-
perlative (e.g. largest) utterances (e.g. w1), which
is not ideal for entity types with special units
(e.g. time, length). We therefore create productions
specifying idiomatic comparative and superlative
expressions (e.g. paper published before 2014, and
us9 in Fig. 1). Sometimes, answering a superlative
utterance requires reasoning with other pivoting
entities. For instance, the relation in “venue that
X publish mostly in” between authors and venues
implicitly involves counting the papers that X pub-
lishes. For such cases, we create “macro” produc-
tions, with the NL phrase mapped to a program that
captures the computation involving the pivoting en-
tity (Appendix B).

Discussion Our SCFG uses idiomatic produc-
tions that capture domain-specific language ex-
pressions, together with simple domain-general
rules (Herzig and Berant, 2019) to combine those

idiomatic constructs to form compositional utter-
ances. As we show in §4, both the base and id-
iomatic grammar sets are relatively compact, and
we resort to strong paraphrasers to further “natural-
ize” synthetic utterances and bridge the language
gap. In line with Su and Yan (2017) and Marzoev
et al. (2020), we remark that such functionality-
driven grammar engineering to cover representa-
tive patterns in real data using a small set of curated
production rules is more efficient and cost-effective
than example-driven annotation in classical super-
vised learning of semantic parsers, which requires
labeling a sufficient number of parallel samples to
effectively train a data-hungry neural model over
a variety of underlying meanings and surface lan-
guage styles.

Our approach is also orthogonal with the prior
work Xu et al. (2020b), which uses large curated
general-purpose grammars to attempt to model En-
glish syntax, while using weak domain-specific
rules that are much easier to specify than our SCFG,
but might not be as effective to capture idiomatic
language patterns in the domain. On the other hand,
grammar engineering can be potentially costly. Ide-
ally, one could study representative samples from
real data and come up with a small set of idiomatic
productions in the above categories that are expres-
sive enough for domains like GEO and SCHOLAR
(§4). Still, the exact the amount of effort this pro-
cess takes remains difficult to estimate. We present
more discussion in §5.

3.1.2 Naturalness-driven Data Selection

To cover real programs in Dy, with complex struc-
tures while tackling the exponential sample space,
we propose an efficient approach to sub-sample
a small set of examples from this space as seed
canonical data D,, (Fig. 1b) for paraphrasing. Our
core idea is to only retain a set of examples (u, z)
that most likely reflect the intents of real users.
We use the probability ppm(u) measured by a lan-
guage model to approximate the “naturalness” of
canonical examples.* Specifically, given all canon-
ical examples allowed by the grammar, we form
buckets based on their derivation depth d. For each
bucket Dﬁ‘jﬁ, we compute ppv(w) for its examples,
and group the examples using program templates
as the key (e.g. w1 and usg in Fig. 1 are grouped
together). For each group, we find the example
(u*, z) with the highest ppp(u*), and discard
other examples (u, z) if In ppm(w*) —Inppmv(u)>

“We use the GPT-2 XL model (Radford et al., 2019).
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0 (0 = 5.0), removing unlikely utterances from the
group (e.g. w1).> Finally, we rank all groups in
Dé‘jﬂ based on ppp(w*), and retain examples in the
top-K groups. This method offers trade-off be-
tween program coverage and efficiency and, more
surprisingly, we show that using only 0.2% ~1%
top-ranked examples also results in significantly
better final accuracy (§4).

3.2 Generating Validation Data

Zero-shot learning is non-trivial without a high-
quality validation set, as the model might overfit on
the (paraphrased) canonical data, which is subject
to language and logical mismatch. While existing
methods (Xu et al., 2020b) circumvent the issue
using real validation data, in this work we create
validation sets from paraphrased examples, making
our method truly labeled data-free. Specifically,
we consider a two-stage procedure. First, we run
the iterative paraphrasing algorithm (§2) without
validation, and then sample (u, z) from its output
with a probability p(u, z) «x prm(u)® (o = 0.4),
ensuring the resulting sampled set ]D>IV,§1r is represen-
tative. Second, we restart training using ]D;g} for
validation to find the best checkpoint. The para-
phrase filtering model is also initialized with the
parser trained in the first stage, which has higher
precision and accepts more valid paraphrases. This
is similar to iterative training of weakly-supervised
semantic parsers (Dasigi et al., 2019), where the
model searches for candidate programs for unla-
beled utterances in multiple stages of learning.

4 Experiments

We evaluate our zero-shot parser on two datasets.
SCHOLAR (Iyer et al., 2017) is a corpus of user-
issued queries to an academic database (Fig. 1).
We use the version from HB19 with programs rep-
resented in A-calculus logical forms. The sizes
of the train/test splits are 577/211. Entities in
utterances and programs (e.g. Parsing paper in
ACL) are canonicalized to slots (e.g. keyphraseO,
venue0), and are recovered before executing the
programs. We found in the dataset by HB19, slots
are paired with with random entities for execution
(e.g. keyphrase0—Optics). Therefore reference
programs are likely to execute to empty results,
making metrics like answer accuracy more prone
to false-positives. We fix all such examples in the
dataset, as well as those with execution errors.

5§ chosen in pilot studies, similar to Zhang et al. (2019).

System Supervision SCHOLAR  GEO

Supervised’  Labeled Examples 79.7 +2.2 81.9 +5.3
'OVERNIGHT' Manual Paraphrases ~ 41.0 3.5 55.8 +6.4.
Real Utterances, Manual 68.3 +1.6 69.4 +1.9
Paraphrase Detection

Our System  —

GRANNOT

75.5 +1.6 74.1 +2.3

Table 1: Averaged denotation accuracy and standard deviation
on TEST sets. Results are averaged with five random restarts.
TModels originally from Herzig and Berant (2019) and run
with five random restarts. Results from our model are tested
v.s. GRANNO using permutation test with p < 0.05.

GEO (Zelle and Mooney, 1996) is a classi-
cal dataset with queries about U.S. geography
(e.g. Which rivers run through states bordering
California?). Its database contains basic geograph-
ical entities like cities, states, and rivers. We also
use the release from HB19, of size 596/278.

Models and Configuration Our neural seman-
tic parser uses a BERTg,s encoder (Devlin et al.,
2019) and an LSTM decoder with copy mechanism.
The paraphraser is a BART a5 model (Lewis et al.,
2020). We use the same set of hyper-parameters for
both datasets. Specifically, we synthesize canonical
examples from the SCFG with a maximal program
depth of 6, and collect the top-K (K = 2,000)
GPT-scored sample groups for each depth as the
seed canonical data D,, (§3.1.2), with two rounds
of iterative paraphrasing and training (§2). The
beam size for the paraphraser is 20. We create vali-
dation sets of size 2, 000 following §3.2. Refer to
Appendix C for more details. Note that our model
only uses the natural examples in both datasets for
evaluation purposes, and the training and validation
splits are not used during learning.

Measuring Language and Logical Gaps We
measure the language mismatch between utterances
in the paraphrased canonical (Dp,;) and natural
(Dpat) data using perplexities of natural utterances
in Dy given by a GPT-2 LM fine-tuned on Dy,
For logical gap, we follow HB19 and compute the
coverage of natural programs z € Dpy in Dpy;.

Metric We report denotation accuracy on the
execution results of predicted programs.®We ran all
experiments with five random restarts and report
the mean and standard deviation.

4.1 Results

In experiments, we first compare our model with
existing approaches using labeled data. Next, we
analyze how our proposed methods close the lan-

®We use SEMPRE (Berant et al., 2013) to execute A-calculus
logical forms in parallel.
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guage and logical gaps. Tab. 1 reports test accu-
racies of various systems on the test sets, as well
as their form of supervision. Specifically, the su-
pervised parser uses a standard parallel corpus
Dpat of real utterances annotated with programs.
OVERNIGHT uses paraphrased synthetic exam-
ples Dy, like our model, but with manually writ-
ten paraphrases. GRANNO uses unlabeled real
utterances Un,e € Dya, and manual paraphrase de-
tection to pair un, with the canonical examples
Decan. Our model outperforms existing approaches
without using any labeled data, while GRANNO,
the currently most cost-effective approach, still
spends $155 in manual annotation (besides col-
lecting real utterances) on the two datasets (Herzig
and Berant (2019), HB19). This demonstrates that
our zero-shot parser is a data-efficient and cost-
effective paradigm to train semantic parsers for
emerging domains. Still, our system falls behind
supervised models trained on natural corpora Dy,
due to language and logical gaps between Dy, and
Dyae- Next, we explore whether our proposed meth-
ods are effective at narrowing the gaps and improv-
ing accuracy. Since the validation splits of the two
datasets are small (< 100), we evaluate on the full
training/validation splits (around 600 examples) to
get more reliable results.

More expressive grammars narrow language
and logical gaps We capture domain-specific
language patterns using idiomatic productions to
close language mismatch (§3.1.1). Tables 2 and 3
list the results when we gradually augment the
grammar with different categories of idiomatic
productions. More expressive grammars help
close the language gap, as indicated by the de-
creasing perplexities. This is especially impor-
tant for SCHOLAR, which has diverse NL expres-
sions hard to infer from plain canonical utterances.
For instance, it could be non-trivial to paraphrase
canonical utterances with multi-hop (e.g. Author
that cites paper by X) or superlative relations
(e.g. Topic of the most number of ACL paper) to
more idiomatic alternatives (e.g. “Author that cites
X, and “The most popular topic for ACL paper”),
while directly including such patterns in the gram-
mar (+Multihop Rel. and +Superlative) is help-
ful. We also remark that the number of idiomatic
productions we created is fairly compact (See Ap-
pendix B for a complete list).” We are able to

"The base grammar is adapted from HB 19, which defines
entity types, example entities and (synonyms of) relations in

Grammar Size Acc. PPL Logical Cov.
]D)can ]D)par
Base 46 66.3 +3.7 23.0 80.6 75.8

+Multihop Rel.® 11 67.0 +1.1 22.0 87.7 812
+Comparison 2 673 +24 21.7 865 80.2
+Superlative 13 77.8 +2.2 20.9 90.6 86.1

—Multihop Rel. 2 75.8 +3.4 20.8 839 8l1.1

Table 2: Ablation of grammar categories on SCHOLAR.

Grammar Size Acc. PPL Logical Cov.
Dcan Dpar
Base 68 64.5+46 82 844 797

~+Multihop Rel. 4 679 +40 8.1 83.6 79.7
+Superlative 9 728 +28 8.0 84.1 794
—Multihop Rel. 4 66.5 +3.7 8.2 84.1 80.0

Table 3: Ablation study of grammar categories on GEO.

improve the accuracy by 11% absolute with 26
rules on SCHOLAR, while achieving 8% gain using
only 13 idiomatic productions on the simpler GEO
domain with fewer entity types and relations.

Additionally, more expressive grammars also im-
prove logical coverage. The last columns (Logical
Cov.) of Tables 2 and 3 report the percentage of
real programs that are covered by the seed canon-
ical data before (D¢yn) and after (D) iterative
paraphrasing. Intuitively, a single idiomatic pro-
duction often captures compositional computations
like multi-hop queries, allowing the grammar to
generate more compositional programs under the
same threshold on the derivation depth. Notably,
with all the full grammar on SCHOLAR, the number
of exhaustively generated examples with a depth
of 6 is tripled (530K +— 1, 700K).

Moreover, recall that the seed canonical dataset
Dean contains examples with highly-likely utter-
ances under the LM (§3.1.2). Therefore, exam-
ples created by idiomatic productions are more
likely to be included in D¢,,. However, this could
also be counter-productive, as such examples could
dominate Dg,y, "crowding out" other useful exam-
ples with lower LM scores. This likely explains
the slightly decreased logical coverage on GEO
(Tab. 3), as more than 30% samples in the LM fil-
tered D¢,y include idiomatic multi-hop relations
directly connecting geographic entities with their
countries (e.g. “City in US”), while such examples
only account for ~ 8% of real data. While the
over-representation issue might not negatively im-
pact accuracy, we leave generating more balanced
synthetic data as important future work.
each domain.

8This category only considers merging relation chains, and
does not include superlative rules involving multiple relations.
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TRAIN Size Logical Coverage

K ‘Dcanl ‘Dpar| Acc PPL Dean Dpar
~ 500 1.6K 45K 74.0+3.7 22.0 794 76.0 (14.5)
5 1,000 31K 80K 759+1.7 214 88.0 82.0 (9.9
g 2,000 55K 130K 77.8+22 209 90.6 86.1 (7.5
3 4,000 92K 202K 784 +1.7 20.7 91.9 87.4 (4.9)
8,000 17K 331K 75.5+21 21.5 92.0 88.2(2.9)
500 14K 30K 61.6+54 84 703 644 (4.2
o 1,000 26K 55K 685=x77 82 805 749 9.0
("5'1 2,000 54K 113K 728 +2.8 8.0 84.1 794 (5.2)
4,000 11K 183K 67.5+63 82 849 78.3@3.1)
8,000 16K 243K 67.9 +45 8.2 854 78.02.1)

Table 4: Results on SCHOLAR and GEO with varying amount
of canonical examples in the seed training data.

Finally, we note that the logical coverage drops
after paraphrasing (Dcaq v.s. Dp,, in Tables 2 and 3).
This is because for some samples in D,,, the para-
phrase filtering model rejects all their paraphrases.
We provide further analysis later in §5.

Do smaller logical gaps entail better perfor-
mance? Asin §3.1.2, to make learning tractable
in face of the exponential space of canonical sam-
ples, the seed canonical data Dy, used in itera-
tive paraphrasing only consists of top-/ highest-
scoring examples under GPT-2 for each program
depth. However, using a smaller cutoff threshold
K might sacrifice logical coverage, as fewer exam-
ples are in D¢,,. To investigate this trade-off, we
report results with varying K in Tab. 12. Notably,
with K = 1,000 and around 3K seed canonical
data D,y (before iterative paraphrasing), D¢,y al-
ready covers 88% and 80% natural programs on
SCHOLAR and GEO, resp. This small portion of
samples only account for 0.2% (1%) of the full set
of 1.7M+ (0.27M) canonical examples exhaus-
tively generated from the grammar on SCHOLAR
(GEO). This demonstrates our data selection ap-
proach is effective in maintaining learning effi-
ciency while closing the logical gap.

More interestingly, while larger K further closes
the logical gap, the accuracy might not improve ac-
cordingly. This is possibly because while the cov-
erage of real programs increases, the percentage of
such programs in paraphrased canonical data Dp,,
(numbers in parentheses) actually drops. Out of the
remaining 90%-+ samples in Dy, not covered in
Dpat, many have unnatural intents that real users are
unlikely to issue (e.g. “Number of titles of papers
with the smallest citations”, or “Mountain whose el-
evation is the length of Colorado River”). Such un-
likely samples are potentially harmful to the model,
causing worse language mismatch, as suggested
by the increasing perplexity when K = §,000.

Model SCHOLAR GEO
Full Model (Tab. 4, K=2000) 77.8 +2.2 72.8 +2.8
Baselines for Selecting Canonical Samples

L No GPT-2 scoring (Random) 69.7 +9.0  65.5 +4.7

L No balancing program depths ~ 63.0 +2.0  46.5 +7.1
Baseline for Creating Validation Data

- Random split of Dcan 74.1 +15  69.7 +3.3

Table 5: Comparing our model with baseline approaches for
selecting canonical samples and generating validation data.

Paraphraser SCHOLAR GEO

P Tok. Fil 7| Acc.t Tok. il 7| Acc.t
Ours 703 071 77.85 692 078 728
Xuetal. 2020b) 724 094 699 , 745 095 62.3

Table 6: Systems with different paraphrasers. We report end-
to-end denotation accuracy, as well as I and Kendall’s 7 rank
coefficient between utterances and their paraphrases.

Similar to HB19, we observe around one-third of
samples in D¢,y and Dy, are unlikely. As we later
discuss in §5, such unlikely utterances often have
noisier paraphrases, which hurts the quality of Dp;,.

Comparing Data Selection Methods Next, we
compare our proposed canonical data selection ap-
proach using GPT-2 with several baselines (Tab. 5
Upper Half). First, randomly choosing examples
from each level of program depth instead of using
the top-K GPT-scored ones results is less effective
with higher variance. Further simplifying the pro-
cedure without constraining on equal sample size
across program depths leads to significantly worse
results, due to the scarcity of likely examples with
simpler programs in the resulting sample set.

Impact of Validation Data We generate valida-
tion data from samples of the paraphrased data in
an initial run (§3.2). Tab. 5 (Lower Half) compares
this strategy with a baseline approach, which ran-
domly splits the seed canonical examples in D,y
into training and validation sets, and runs the it-
erative paraphrasing algorithm on the two sets in
parallel, with paraphrases from both sets filtered by
the filtering model. This approach underperforms,
since some canonical samples with program pat-
terns in the natural data Dy, can be partitioned into
the validation split, and not used for training.

Impact of Paraphrasers We rely on strong para-
phrasers to generate diverse utterances to close the
language gap. Tab. 6 compares the system using
our paraphraser and the one in Xu et al. (2020b).
Both are based on BART, while ours is fine-tuned
to encourage lexically and syntactically diverse out-
puts (Appendix A). We measure lexical diversity
using token-level I between the original and para-
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Example 1 (Uncommon Concept)
w1 Venue of paper by author and published in yearg
u, authoro’s paper, published in yearo €
'U,/LQ Where the paper was published by authorg in yearg?
w3 Where the paper was published in yearo by authoro?
“uy, Where did authorg publish in yearo? ~ (Wrong Answer)
Example 2 (Novel Language Pattern)
w2 Author of paper published in venueq and in yearg
ub 1 Author of papers published in venuey in yearo @
ub o Who wrote a paper for venueg in yearg
u’ 5 Who wrote the venueg paper in yearo
Upy venueg yearg authors (Correct)
Example 3 (Unnatural Canonical Utterance)
w3z Author of paper by authorg
uj 1 Author of the paper written by author, @
uj o Author of authorg’s paper @
uy 5 Who wrote the paper authoro wrote?
‘upy Co-authors of authoro (Wrong Answer)
Example 4 (Unlikely Example)
uyq Paper in yearg and whose author is not the most cited author
uﬁm A paper published in yearg that isn’t the most cited author
uiu What’s not the most cited author in yearg
uﬁw In yeary, he was not the most cited author

Table 7: Case Study on SCHOLAR. We show the seed canoni-

cal utterance w;, the paraphrases uéy ;j» and the relevant natural

examples u;,,. @ and € denote the correctness of para-
phrases. denotes false negatives of the filtering model
(correct paraphrases that are filtered), ¢+ denotes false pos-
itives (incorrect paraphrases that are accepted). Entities are
canonicalized with indexed

phrased utterances (u, u’) (Rajpurkar et al., 2016;
Krishna et al., 2020). For syntactic divergence,
we use Kendall’s 7 (Lapata, 2006) to compute the
ordinal correlation of u and u’. Our paraphraser
outputs more diverse paraphrases (e.g. What is the
biggest state in US?) from the source (e.g. State in
US and that has the largest area), as indicated by
lower token-level overlaps and ordinal coefficients,
comparing to the existing paraphraser (e.g. The
state in US with the largest surface area). Still, our
paraphraser is not perfect, as discussed next.

5 Limitations and Discussion

Our parser still lags behind the fully supervised
model (Tab. 1). To understand the remaining bottle-
necks, we show representative examples in Tab. 7.

Low Recall of Filter Model First, the recall of
the paraphrase filtering model is low. The filtering
model uses the parser trained on the paraphrased
data generated in previous iterations. Since this
model is less accurate, it can incorrectly reject valid
paraphrases u’ (€3 in Tab. 7), especially when u/
uses a different sentence type (e.g. questions) than
the source (e.g. statements). Empirically, we found
the recall of the filtering model at the first iteration
of the second-stage training (§3.2) is only around
60%. This creates logical gaps, as paraphrases of
examples in the seed canonical data Dy, could be
rejected by the conservative filtering model, leaving

no samples with the same programs in Dp,;.

Imperfect Paraphraser The imperfect para-
phraser could generate semantically incorrect pre-
dictions (e.g. u/171), especially when the source
canonical utterance contains uncommon or poly-
semic concepts (e.g. venue in w, ), which tend to be
ignored or interpreted as other entities (e.g. sites).
Besides rare concepts, the paraphraser could also
fail to rewrite canonical utterances using more id-
iomatic syntax, like changing the mentioning of
a conference using prepositional phrases (us) to
compound nouns (uy,, in Example 2). While the
model might still correctly answer wy,,, wr,,’s per-
plexity is high, suggesting language mismatch.
Unnatural Canonical Utterances While we
have attempted to close the language gap by gen-
erating more idiomatic canonical utterances, some
of them are still not natural enough for the para-
phraser to rewrite. This is especially problematic
for relations not covered by our idiomatic produc-
tions, such as the co-authorship relation in Example
3. While this issue could be mitigated using addi-
tional production rules, grammar engineering could
still remain challenging, as elaborated later.

Unlikely Examples Besides the unnatural canon-
ical utterances with clunky surface expressions
but are still logically plausible, D.,, also contains
around 30% unlikely examples with both unnatural
utterances and convoluted meanings that almost
certainly will not appear in real data (e.g. ©4). Sim-
ilar to unnatural utterances, their paraphrases are
also much noisier (e.g. ) ,), with only around
30% paraphrasing accuracy, compared to 70% for
the likely ones. The filtering model is also less
effective on unlikely examples (false positives ).
These noisy samples will eventually hurt perfor-
mance of the parser. We leave modeling utterance
naturalness as important future work.

Cost of Grammar Engineering Our approach
relies on an expressive SCFG to bridge the lan-
guage and logical gaps between synthetic and real
data. While we have attempted to standardize the
process of grammar construction by designing id-
iomatic productions following a set of represen-
tative grammar categories, grammar engineering
still remains a non-trivial task. One need to have
a good sense of the idiomatic language patterns
that would frequently appear in real-world data,
which requires performing user study or access to
sampled data. Encoding those language patterns
as production rules could also take a reasonable
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amount of time, depending on various factors, such
as the complexity of the target domain and the
proficiency of the user in the grammar formalism
(A-calculus) used by our system.

Still, we remark that most of the curated pro-
ductions have simple syntactic constructs (a single
verb, preposition, or adjective phrase, more in Ap-
pendix B.2.2), and we are able to significantly im-
prove the performance over the base grammar (Ta-
bles 2 and 3) using a relatively compact idiomatic
grammar (10 ~ 30 rules on two datasets). Addi-
tionally, considering that the size of those idiomatic
rules is orders of magnitude smaller than the size
of the annotated parallel examples in the original
datasets (around 800), it is safe to assume that for
users familiar with the grammar formalism, curat-
ing such a small set of grammar rules for domains
similar to SCHOLAR and GEO is more efficient than
labeling parallel samples in the original datasets.
For the latter task the user would have to consider
other factors, such as the coverage of composi-
tional logical form patterns and language expres-
sions, while our system automatically synthesizes
compositional samples with diverse language style
by composing (idiomatic) productions and iterative
paraphrasing. Moreover, the paraphrased canoni-
cal examples synthesized from a compact curated
grammar could also be used to bootstrap the collec-
tion of high-quality parallel data. Finally, creation
of grammar rules could potentially be simplified
by defining them using natural language instead
of logical forms, reminiscent of studies on natural-
izing programs using canonical language (Wang
et al., 2017; Shin et al., 2021; Herzig et al., 2021).

6 Related Work

To mitigate the paucity of labeled data, the field has
explored various supervision signals. Specifically,
weakly-supervised methods leverage the denota-
tions of utterances as indirect supervision (Clarke
et al., 2010; Krishnamurthy and Mitchell, 2012),
with programs modeled as latent variables (Berant
et al., 2013; Pasupat and Liang, 2015). Optimiza-
tion is challenging due to the noisy binary reward
of execution correctness (Agarwal et al., 2019),
calling for better learning objectives (Guu et al.,
2017; Wang et al., 2021a) or efficient search algo-
rithms for latent programs (Krishnamurthy et al.,
2017; Liang et al., 2017, 2018; Muhlgay et al.,
2019). Next, semi-supervised models leverage
extra unlabeled utterances, using techniques like
self-training (Konstas et al., 2017) or generative

models (Kocisky et al., 2016; Yin et al., 2018). As
a step further, unsupervised methods only use un-
labeled utterances (Cao et al., 2019), and leverage
linguistic scaffolds (e.g. dependency trees) to in-
fer programs with similar structures (Poon, 2013).
Like our model, such methods use lexicons to cap-
ture alignments between NL phrases and logical
predicates (Goldwasser et al., 2011), while our
method does not require real utterances. Finally,
methods based on OVERNIGHT (Wang et al., 2015)
synthesize parallel corpora from SCFGs (Cheng
et al., 2019; Xu et al., 2020a) or neural sequence
models (Guo et al., 2018), and attempt to bridge
the gaps between canonical and real utterances via
paraphrase detection (Herzig and Berant, 2019) and
generation (Su and Yan, 2017; Shin et al., 2021; Wu
et al., 2021), or representation learning (Marzoev
et al., 2020).

7 Conclusion and Future Work

In this paper, we propose a zero-shot semantic
parser that closes the language and logical gaps
between synthetic and real data. on SCHOLAR and
GEO, our system outperforms other annotation-
efficient approaches with zero labeled data.

There are several import avenues for future work.
First, dedicated approaches to generate syntacti-
cally diverse paraphrases using latent variable mod-
els, such as Hosking and Lapata (2021) and Hosk-
ing et al. (2022), could potentially improve per-
formance. Additionally, systematic comparison
with AUTOQA could help elucidate the impact of
grammar quality to zero-shot semantic parsing, al-
though this was not covered in this study due to
complexities in porting A-calculus logical forms
to the specialized formalism in AUTOQA. Next,
careful human studies to understand the amount
of efforts required for grammar engineering would
provide more insights on the practicality of our
approach. Finally, generalizing our approach to
domains with more complex schemas (e.g. ATIS)
is an important direction, which traditionally relies
on careful feature engineering to reduce the amount
of annotated data (Poon, 2013).
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On The Ingredients of an Effective Zero-shot Semantic Parser
Supplementary Materials

A Paraphraser

Central to our approach is a paraphrase generation model p(u — w'), which paraphrases a canonical
utterance u to an alternative sentence u’ that is possibly more natural and linguistically diverse. To
improve the diversity of generated paraphrases, we paraphrase w to multiple candidate rewrites {u'} using
beam search. We tested multiple strategies (e.g. nucleus sampling) to improve diversity of paraphrases via
ensuring quality, and found beam search yields the best end-to-end performance.

To generate high-quality paraphrases for open-domain utterances, we parameterize p(u — u’) using

generative pre-trained LMs (B ARTLarge).9 The LM is fine-tuned on a corpus of 70K high-quality para-
phrases sub-sampled from PARANMT (Wieting and Gimpel, 2018) released by Krishna et al. (2020),
where samples are carefully constructed to ensure the lexical and syntactical diversity of target paraphrases.
To further improve the syntactic diversity of paraphrases from statement-style inputs (e.g. us, Fig. 1), we
apply force decoding with WH-prefixes (e.g. What, When, How many, based on the answer type) to half
hypotheses in the beam to generate question paraphrases (e.g. paraphrases prefixed with “How many” for
ug in Fig. 1).
Filtering Paraphrases While our paraphraser is strong, it is still far from perfect, especially when tasked
with paraphrasing utterances found in arbitrary down-stream domains. For example, two ambiguous
utterances “Author that cites A” and “Author cited by A” could get the same paraphrase “Who cites A?”.
Such noisy paraphrases will bring noise to learning and hurt performance. To filter potentially incorrect
outputs, we follow Xu et al. (2020b) and use the parser trained on the paraphrased data generated in the
preceding iteration (or the seed canonical data at the beginning of training) to parse each paraphrased
utterance, and only retain those for which the parser could successfully predict its program. Admittedly
such a stringent criterion will sacrifice recall, but empirically we found it works well. We present more
analysis in the case study in §4.

B Synchronous Grammar

Our synchronous grammar is adapted from Herzig and Berant (2019) and Wang et al. (2015), which speci-
fies alignments between NL expressions and logical form constituents in A-calculus s-expressions.'? The
grammar consists of a set of domain-general production rules (Appendix B.1), plus domain-specific rules
specifying domain lexicons (Appendix B.2.1) and idiomatic productions (Appendix B.2.2). Specifically,
domain-general productions define (1) generic logical operations like count and superlative (e.g. 73,
Fig. 1), and (2) compositional rules to construct utterances following English syntax (e.g. r1, Fig. 1).
Domain-specific rules, on the other hand, are typically used to define task-dependent lexicons like types
(e.g. author), entities (e.g. alan_turing), and relations (e.g. citations) in the database. This work
also introduces idiomatic productions to specific common NL expression catered to a domain, as outlined
in §3.1.1 and detailed later.

B.1 Domain-General Grammar

Tab. 8 lists example domain-general productions in our SCFG. Fig. 2 shows the derivation that applies
those productions to generate an example utterance and program. Each production has a syntactic body,
specifying how lower-level syntactic constructs are composed to form more compositional utterances,
as well as a semantic function, which defines how programs of child nodes are composed to generate a
new program. For instance, the production 73 in Tab. 8 generates a noun phrase from a unary noun phrase
UnaryNP (e.g. paper) and a complementary phrase CP (e.g. in deep learning) by concatenating the child
nodes UnaryNP and CP (e.g. paper in deep learning). On the program side, the programs of two child
nodes on Fig. 2 are:

"We use the official implementation in fairseq, https://github.com/pytorch/fairseq.
'We use the implementation in Sempre, https://github.com/percyliang/sempre
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$NP

call listValue (
$SuperlativeAdj $NP ca%l superlative
call filter
most recent $NP+CP (
call getProperty
$UnaryNP $cp (call singleton fb:en.paper)
(string ! type)

$TypeNP 3 )
SRS (string paper.keyphrase)
paper (string =)
$Prep $NP fb:en.keyphrase.deep_learning
)
in $Entity (string max)

(string paper.publication_year)

deep learning

Most recent paper in deep learning

Figure 2: (a) The derivation tree (production rule applications) to generate the example utterance and its program. (b) The
program defined in s-expression.

# Get all entities whose type is paper
$UnaryNP: call getProperty (call singleton fb:en.paper) (string !type)

# A lambda function that returns entities in x whose relation paper.keyphrase is deep_learning
$CP: lambda x (call

filter (x)

(string paper.keyphrase)

(string =)
(fb:en.keyphrase.deep_learning))

where the program of UnaryNP is an entity set of papers, and the program of NP is a lambda function with
a variable x, which filters the entity set. The semantic function of r3 specifies how these two programs
should be composed to form the program of their parent node NP+CP, which performs /3 reduction,
assigning the entity set returned by UnaryNP to the variable x:

# Get all papers whose keyphrase is deep learning
$NP+CP: (call
filter (
call getProperty (call singleton fb:en.paper) (string !type)
)
(string paper.keyphrase)
(string =)
(fb:en.keyphrase.deep_learning))

B.2 Domain-specific Grammar
B.2.1 Lexicons and Base Productions

The domain-specific grammar uses a set of base productions to define the task-dependent lexicon, which
specifies the mapping between database elements and their natural language expressions. There are three
types of elements in the database of a domain: entity types (e.g. author), entities (e.g. alan_turing)
and relations (e.g. author.paper), each associated with a base production rule to map them into NL
phrases (e.g. “author”, “Alan Turing”, and “writes”). A DB element (e.g. the entity type keyphrase)
could also have multiple base productions describing their synonyms (e.g. “keyphrase” and “topic”). The
base lexicon in our system is adapted from GRANNO (Herzig and Berant, 2019)!!.

"https://github.com/jonathanherzig/semantic-parsing—-annotation/tree/master/
grammars
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Id Productions (Syntactic Body and Semantic Function) Description

r1  NP—SuperlativeAdj NP e.g. most recent

lambda rel, sub (

. . lambda function to get the subject sub with
call superlative (var sub) (string max) (var rel))

the largest relation rel

ro  NP—NP+CP A noun phrase head NP and a com-
plementary phrase body CP (e.g. paper
in deep learning)

IdentityFn An identity function returning child program
r3  NP+CP—UnaryNP CP e.g. paper in deep learning
Lambda Beta Reduction: f(var x) Perform beta reduction, applying the func-

tion from CP (e.g. in deep learning) to the
value of UnaryNP (e.g. paper)

r4  UnaryNP—TypeNP CP Entity types, e.g. paper

IdentityFn
rs CP—FilterCP L
IdentityFn
r¢ FilterCP—Prep NP e.g. in deep learning

lambda rel, obj, sub (

Create a lambda function, which filters en-
call filter (var sub) (var rel) (string =) (var obj))

tities in a list sub such that its relation rel
(e.g. topic) equals obj (e.g. deep learning)

rs5 NP—Entity
IdentityFn

Entity noun phrases e.g. deep learning

Table 8: Example domain-general productions rules in the SCFG

B.2.2 Idiomatic Productions

Here we describe the two categories of idiomatic productions. Readers are referred to Tables 9 and 11 for
the list of productions used in SCHOLAR and GEO.

Multi-hop Relations We create idiomatic productions for non-compositional NL phrases of multi-hop
relations (e.g. Author that writes paper in ACL). We augment the database with entries for those multi-hop
relations (e.g. (X, author.publish_in, acl)), and then create productions in the grammar aligning those
relations with their NL phrases (e.g. 1 in Tab. 9).

Note that the productions defining different relations might have the same syntactic body, for example,
r1 and 7o in Tab. 9. Since our synthesis algorithm based on Herzig and Berant (2019) performs type
checking before composing productions, when it generates an utterance like Author that publish in ACL,
only r1 will be used, because the entity span ACL has a type (conference) venue, not journal.

Comparatives and Superlatives We also create productions for idiomatic comparatives and superlative
expressions. Those productions specify the NL expressions for the comparative/superlative form of
some relations. For example, for the relation paper.publication_year with objects of date time, its
superlative form would be most recent and first (r14 in in Tab. 9), while its comparative form could
be prepositional phrases like published before (r12) and published after. Those productions define the
lexicons for comparative/superlative expressions, and could be used by the domain-general rules like 71 in
Tab. 8 to compose utterances (e.g. Fig. 2).

Besides superlative expressions for relations whose objects are measurable, we also create id-
iomatic expressions for relations with countable subjects or objects. As an example, the utterance
“The most popular topic for papers in ACL” involves grouping ACL papers by topic and return the most
frequent one. Such computation is captured by the CountSuperlative operation in our SCFG based on
Wang et al. (2015), and we create productions aligning those relations with the idiomatic noun phrases
describing their superlative form (e.g. 16 in Tab. 9).

Perhaps the most interesting form of superlative relations are those involving reasoning with additional
entities. For instance, the relation in “venue that X publish mostly in” between the entity author and
venue implicitly involves counting the papers that the author X publishes. For those relations, we create
“macro” productions (e.g. o0 in Tab. 10), which defines the lambda function that computes the answer
(e.g. return the publication venue where X publishes the most number of papers) given the arguments
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Id

Production Body (LHS—RHS and Semantic Function)

Multi-hop Relations
Entity Tyle: Author

Description

1 RelVP—publish in Verb phrase for multi-hop relation
ConstantFn (string author.publish_in) author that writes paper in ACL
"2 RelVP—publish in Similar relation for journal publications.
ConstantFn (string author.publish_in_journal)
73 RelNP—keyphrase | topic Noun phrase for multi-hop relation
ConstantFn (string author.keyphrase) key[.)h.raseltoplc OfAl?” T””"&
chaining the two relations topic of
paper by Alan Turing
T4 RelVP—rworks on Verb phrase for the same relation
ConstantFn (string author.keyphrase)
75 RelVP—cites Verb phrase ofr the multi-hop relation
ConstantFn (string author.cites) author who cites Alan Turing, chaining
the three relations: author of paper that
cites paper by Alan Turing
76 RelVP—cites Verb phrase chaining the relations
ConstantFn (string author.cites_paper) author of paper that cites paper_name
Entity Type: Paper
7 RelVP—cites Verb phrase chaining the relations
ConstantFn (string paper.cites_author) Paper that cites paper by Alan Turing
Entity Type: Venue
T8 RelNP—topic Noun phrase in multi-hop relation fopic
ConstantFn (string venue.keyphrase) of ACL, chaining the two relations fopic
of paper published in ACL
T9 Prep—in Prepositional phrase describing the
ConstantFn (string venue.keyphrase) same relation (e.g. Venue in NLP)
Entity Type: Journal
r10 RelNP—topic Noun phrase in multi-hop relation fopic
ConstantFn (string venue _keyphrase) ofNature, similar to the one for venues.
r11  Prep—in Prepositional phrase describing the
ConstantFn (string venue.keyphrase) same relation
Comparative Relations
ri2  ComparativeLtPREP—published before Comparative prepositions to describe
ConstantFn (string paper.publication_year) publication dates
r13  ComparativeGtPREP—published after Comparative prepositions to describe
ConstantFn (string paper.publication_year) publication dates
Superlative Relations
Entity Type: Paper
r14  SuperlativeAdj—most recent | first Superlative adjectives to describe
ConstantFn (string paper.publication_year) publication dates
r15  SuperlativeMinAdj—most cited Superlative adjectives to describe the a
ConstantFn (string paper.citation_count) paper’s citations
Entity Type: Keyphrase
r16 CountSuperlativeNP—the most popular topic for Superlative form to refer to the most
ConstantFn (string keyphrase.paper) frequent keyphrase for a set of paper, )
e.g. the most popular topic for paper in
ACL
Entity Type: Venue
r17  MultihopCountSuperlativeNP+—sthe most popular venue for Superlative form to refer to the most
ConstantFn (string venue.keyphrase) popular venue for paper about a topic,
e.g. the most popular venue for paper
in deep learning
Entity Type: Dataset
r1s  MultihopCountSuperlativeNP—the most popular dataset for

ConstantFn (string dataset.paper)

Superlative form to refer to the most
popular dataset used by a set of paper

Table 9: List of example idiomatic productions used in SCHOLAR (to be continued in Table 10).

(e.g. an author X).
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Id

Production Body (LHS—RHS and Semantic Function)
Superlative Relations (cont’d)
Entity Tyle: Author

Description

19  SuperlativeMinAdj—most cited Superlative adjectives to describe the an
ConstantFn (string author.citation_count) ?.uthOI‘S c1tat19ns, e.g., most cited author
in deep learning
ro0  MacroVP—publish mostly in Superlative form of the verb relational
lambda author, venue ( phrase Author that publish mostly in
call countSuperlative ACL with complex computation.
(var venue) countSuperlative returns the entity
(string max) x in venue for which the papers in x
(string venue.paper) (via relation venue . paper) has the
(call getProperty (var author) (string author.paper)) largestintersection with papers by
) author (via realtion author . paper)
21 MacroVP—publish mostly in Similar relation for journals.
lambda author, journmal ...
raz MacroVP—spublish mostly in Similar relation for topics of paper.
lambda author, keyphrase ...
ro3  MacroVPw—cites $NP the most e.g. Author that cites Alan Turing the
lambda author, author ... most.
ro4a  MacroVPwscites $NP the most e.g. Author that cites semantic parsing
lambda author, paper ... paper the most.
ros  MacroVPw—cites the most .. ..
Similar expression in reversed
lambda author, paper ... form.e.g. Author that semantic parsing
paper cites the most.
ro6  MacroNPPrep—The most productive author for e.g. The most productive author for

lambda author, paper ...

paper in deep learning

Table 10: List of example idiomatic productions used in SCHOLAR (continued). Semantic functions are simplified for illustration
purpose. Refer to https://github.com/percyliang/sempre/blob/master/TUTORIAL.md for more details
on A-calculus SCFGs.
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Id

Production Body (LHS—RHS and Semantic Function)
Multi-hop Relations

Description

71 RelPrep—in Prepositional phrase for multi-hop

ConstantFn (string city.located_in_country) relation gztzes n ”fe Us, Chalnlng the
two relations city in state in the US

"2 RelPreprrin Prepositional phrase for multi-hop
ConstantFn (string mountain.located_in_country) relation mountains in the US

"3 RelPreprrin Prepositional phrase for multi-hop
ConstantFn (string river.located_in_country) relation rivers in the US

" RelPreprrin Prepositional phrase for multi-hop
ConstantFn (string place.located_in_country) relation places in the US

Superlative Relations

" SuperlativeAdj—longest Superlative adjectives to describe the
ConstantFn (string river.length) length of rivers.

7o SuperlativeMinAdj—shoriest Superlative adjectives to describe the
ConstantFn (string river.length) length of rivers.

T7 SuperlativeAdj—highest Superlative adjectives to describe the
ConstantFn (string mountain.elevation) elevation of mountains.

s SuperlativeMinAdj—lowest Superlative adjectives to describe the
ConstantFn (string mountain.elevation) length of rivers.

"o SuperlativeAdj—highest Superlative adjectives to describe the
ConstantFn (string place.elevation) elevation of mountains.

"o SuperlativelinAdj—lowest Superlative adjectives to describe the
ConstantFn (string place.elevation) length of rivers.

ri1 SuperlativeNP—the longest length Noun phrase used in superlative queries
ConstantFn (string river.length) for thf: length of rivers, e.g., river in

Washington that has the longest length
ri2  SuperlativeNP—the highest elevation

ConstantFn (string mountain.elevation)

For querying the elevations of
mountains.

r13  SuperlativeNP—the highest elevation

ConstantFn (string place.elevation) For querying the elevations of places.

Table 11: List of idiomatic productions used in GEO

C Model Configurations

Paraphraser We finetune the paraphraser using a batch size of 1,024 tokens for 5, 000 iterations (500
for warm-up), with a learning rate of 3e — 5 using ADAM. We apply label smoothing with a probability of
0.1.

Semantic Parser Our semantic parser is a neural sequence-to-sequence model with dot-product atten-
tion (Luong et al., 2015), using a BERTg,s encoder and an LSTM decoder, augmented with copying
mechanism. The size of the LSTM hidden state is 256. We decode programs using beam search with a
beam size of 5. Following Herzig and Berant (2019), we remove hypotheses from the beam that leads to
error executions.

Iterative Training As described in §3.1.1, we first run the iterative paraphrasing and training algorithm
for one pass to generate the validation set. In the first iteration of this stage, we train a semantic parser on
the (unparaphrased) seed canonical data (D¢,y,) as the initial paraphrase filtering model. In the second
stage, we restart the learning process using the generated validation set, and initialize the paraphrase
filtering model using the previously trained semantic parser. For each stage, we run the iterative learning
algorithm (§2) for two iterations. We generate 10 paraphrases for each example. In each iteration, we train
the semantic parser for 30 epochs with a batch size of 64. We use separate learning rates for the BERT
encoder (3e — 5) and other parameters (0.001) in the model (Shaw et al., 2019). For each iteration in the
second stage, we perform validation by finding the model checkpoint that achieves the lowest perplexity on
the validation set. We perform validation using perplexity for efficiency reasons, as evaluating denotation
accuracy requires performing beam search decoding and querying the database, which could be slow.
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Evaluation Metric For the perplexity metric to evaluate language gaps, we fine-tune a GPT-2 language
model on the paraphrased canonical data D, for 1, 500 steps (150 steps for warm-up) with a batch size
of 64 and a learning rate of 1e — 5. We use the following equation to compute perplexity

1 —logp(u
PPL(Dpa) = exp (1 > ~logp(u), (1)
‘]D)nat’

<uvz>€Dnat
This is slightly different from the standard corpus-level perplexity. We use this metric because it is more
sensitive (larger A) on our small (< 1K) evaluation sets, and always correlates with the corpus-level
perplexity. For reference, here is the sequence of perplexities using Eq. (1) in the upper half of Tab. 12
compared to the corpus-level ones:

Eq. (1) 220 214 209 207 215
Corpus-PPL 193 188 184 182 1838

D Does the Model Generalize to Out-of-Distribution Samples?

We also investigated whether the model could generalize to utterances with out-of-distribution program
patterns not seen in the training data Dp,,;. We report accuracies on the splits whose program templates are
covered (In Coverage) and not covered (Out of Coverage) by D,;. Not surprisingly, the model performs
significantly better on the in-coverage sets with less language mismatch. An exception is K =500 on
SCHOLAR, where the perplexity on out-of-coverage samples is slightly lower. This is because utterances
in SCHOLAR tend to use compound nouns to specify compositional constraints (e.g. ACL 2021 parsing
papers), a language style common for in-coverage samples but not captured by the grammar. With
smaller K and Dy, it is less likely for the paraphrased data Dp,, to capture similar syntactic patterns.
Anther factor that makes the out-of-coverage PPL smaller when K = 500 is that there are more (simpler)
examples in the set compared to K > 500, and the relatively simple utterances will also bring down the
PPL.

Our results are also in line with recent research in compositional generalization of semantic parsers (Lake
and Baroni, 2018; Finegan-Dollak et al., 2018), which suggests that existing models generalize poorly to
utterances with novel compositional patterns (e.g. conjunctive objects like Most cited paper by X and Y)
not seen during training. Still surprisingly, our model generalizes reasonably to compositionally novel (out-
of-coverage) splits, registering 30%~50% accuracies, in contrast to HB19 reporting accuracies smaller
than 10% on similar benchmarks for OVERNIGHT. We hypothesize that synthesizing compositional
samples increases the number of unique program templates in training, which could be helpful for
compositional generalization (Akyiirek et al., 2021). As an example, the number of unique program
templates in D, when K = 2,000 on SCHOLAR and GEO is 1.9K and 1.7K, resp, compared to only
125 and 187 in Dy,. This finding is reminiscent of data augmentation strategies for supervised parsers
using synthetic samples induced from (annotated) parallel data (Jia and Liang, 2016; Wang et al., 2021b).
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In Coverage  Out of Coverage
+ Acc  PPL Acc PPL

500 740437 1 823 234 | 476 182

K Acc

g 1,000 759 +1.7 ' 814 21.3 ;| 50.6 21.7
g 2,000 77.8+2.2 : 822 20.7 1 50.2 22.7
3 4,000 784 +1.7 | 832 205! 453 22.0
8,000 755+21 1 79.8 214 : 43.4 224
500 61.6+54 1 792 7.6 ' 298 9.9
o 1,000 685x77 ! 814 74 : 28.8 11.3
8 2,000 72.8 +2.8 : 820 74 | 376 10.8
4,000 675+63 ; 755 7.6 | 388 11.2
[

8,000 679 +45 1 755 7.5 1 413 11.2

Table 12: Results on SCHOLAR and GEO with varying amount of canonical examples in the seed training data. We report results
on In Coverage splits where the program templates of evaluation samples appear in the canonical training data, as well as on
Out of Coverage splits with disjoint program templates.
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