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Abstract

Model-based, reference-free evaluation metrics
have been proposed as a fast and cost-effective
approach to evaluate Natural Language Genera-
tion (NLG) systems. Despite promising recent
results, we find evidence that reference-free
evaluation metrics of summarization and di-
alog generation may be relying on spurious
correlations with measures such as word over-
lap, perplexity, and length. We further observe
that for text summarization, these metrics have
high error rates when ranking current state-of-
the-art abstractive summarization systems. We
demonstrate that these errors can be mitigated
by explicitly designing evaluation metrics to
avoid spurious features in reference-free evalu-
ation.

1 Introduction

Building reliable automated evaluation metrics is
a key factor for quick development of better NLG
systems. Recent work has proposed reference-free
evaluation metrics as a way to judge the quality of
generated outputs without the need for human ref-
erences (Celikyilmaz et al., 2020). Many of these
reference-free evaluations achieve remarkably high
correlations with human evaluations, raising hopes
that they may soon become a viable alternative
to expensive human evaluations (Kryscinski et al.,
2020; Goyal and Durrett, 2020; Sinha et al., 2020;
Phy et al., 2020; Gao et al., 2020).

However, simply looking at correlation with hu-
man scores may not be sufficient to determine the
efficacy and robustness of an evaluation metric. In
our work, we study recently proposed reference-
free evaluation metrics of text summarization and
dialog generation. We find that it is possible to
achieve similar levels of correlation with human
judgment, using simple spurious correlates such
as word overlap, length, and perplexity. Further-
more, we find that the learned metrics have a rela-

*Equal contribution.

tively high correlation with the spurious correlates
as compared to human scores, which suggests that
these metrics may rely heavily on spurious correla-
tions. This may be a potential explanation for the
robustness issues that are observed in recent work,
despite the seemingly high reported correlations
with human judgements (Gabriel et al., 2021; Yeh
et al., 2021).

We further analyze reference-free faithfulness
evaluation metrics and show that the reliance on
spurious correlations leads to errors in model se-
lection and development. First, we show that word
overlap, a spurious correlate for the task, does as
well as recently proposed reference-free metrics at
system-level ranking. Then, we look at rankings
amongst systems that are relatively abstractive and
faithful, i.e., the current state of the art, and find that
these learned metrics perform significantly worse
for these systems. This is because word-overlap is
not a good measure for ranking these systems in
terms of their faithfulness since all of these systems
have similarly low word overlap. This suggests that
we need metrics that are not overly reliant on word
overlap in their faithfulness prediction.

Finally, we explore whether a simple mitigation
strategy of adversarially training a faithfulness eval-
uation metric to avoid spurious correlates can lead
to a more robust metric. We find that our adversari-
ally trained metric performs well at overall pairwise
ranking while having a significantly lower corre-
lation with the spurious correlate of word-overlap.
Crucially, we show that our proposed metric has
improved performance in ranking between abstrac-
tive and faithful systems, which is a failure mode
for existing reference-free faithfulness evaluation
metrics.

2 Reference-free Evaluation of Text
Generation

We begin by defining the task of reference-free eval-
uation, as well as the example-level and systems-
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level evaluation of these metrics.

We define a reference-free evaluation metric as
a function F'(x,y) that can assign a quality score
to an output sequence y for a given input sequence
x. The goal of a reference-free evaluation metric
F(z,y) is to assign high scores to desirable out-
puts y for some attribute, such as the faithfulness
of a summary. Measuring the quality of this met-
ric is challenging, and prior work has relied upon
correlation to human judgments H(x,y).

Example-level evaluation: A number of exist-
ing reference free evaluations rely upon a procedure
which we call example-level human correlations
(Fabbri et al., 2020; Phy et al., 2020; Sinha et al.,
2020), which measures the effectiveness of a met-
ric by computing a Pearson or Spearman correla-
tion corrp,  (H(z,y), F(x,y)) over some sampled
evaluation data peval(z, ).

System-level evaluation: An alternative ap-
proach to evaluation is systems-level rankings
(Mathur et al., 2020; Kocmi et al., 2021), which
we define as the ability to identify which model is
better amongst a set of models M. F' is evaluated
via its accuracy in matching human evaluation H
on all pairs (m;, m;) € M x M where m; # m;.

The definitions of example and system level cor-
relations suggest that evaluations of these metrics
may have a strong dependence on the example and
systems distributions peyai(x,y) and M. As an
example, consider an evaluation for dialogue re-
sponse quality. Building a truly accurate predictor
for dialogue response quality is challenging, but if
Peval (2, y) consists of all either professionally writ-
ten examples or ungrammatical nonsense, a simple
grammar checker would perform exceedingly well.

This is an instance of what is called a spuri-
ous correlate. More formally, we define this as
some attribute S(x, y) which is correlated with H
in peval (2, v) but is not correlated with H for a care-
fully constructed test distribution peg(z,y). We
say that F' is spuriously correlated with S if:

1. F and H are highly correlated under
Peval (%, y) but not under prese(, ).

2. F remains correlated with .S under peege(, y).

3 Example-level Analysis of Learned
Evaluation Metrics

In this section, we look at example-level Spearman
correlations with human judgements for reference-
free evaluation metrics that have been proposed for

summarization and dialog generation. We compare
the metrics to spurious correlates such as word-
overlap, length and perplexity, in order to under-
stand whether the metrics can perform better than
these simple measures. We also measure to what ex-
tent the proposed metrics are correlated with these
spurious measures.

3.1 Faithfulness Evaluation in Text
Summarization

State-of-the-art text summarization models are ca-
pable of producing fluent summaries. However,
they suffer from generating information that is not
consistent (i.e., unfaithful) with the information in
the source article (Cao et al., 2018). Prior work
showed that reference-based metrics are not able to
capture such consistency errors (Falke et al., 2019).
This motivated researchers to build evaluation met-
rics to capture these faithfulness issues since col-
lecting human evaluations for faithfulness is ex-
pensive and time-consuming (Wang et al., 2020;
Durmus et al., 2020; Kryscinski et al., 2020; Goyal
and Durrett, 2020).

In this section, we analyze recently proposed
reference-free faithfulness evaluation metrics and
compare their performance against the spurious cor-
relate of word overlap. Furthermore, we analyze
the correlation between the learned metrics and
word overlap to understand to what extent these
metrics rely on spurious correlations. We focus
on learned entailment-based faithfulness evaluation
metrics due to their high performance in identifying
faithfulness issues (Pagnoni et al., 2021). In partic-
ular we evaluate FactCC (Kryscinski et al., 2020)
and DAE (Goyal and Durrett, 2021), which have
been shown to achieve higher example-level corre-
lations with human judgements than existing faith-
fulness evaluation metrics (Pagnoni et al., 2021).

FactCC. Kryscinski et al. (2020) proposed an
entailment-based method where they train a BERT-
based model to predict whether or not the source
article entails a summary. To train this model, they
generate synthetic training data by applying a set
of transformations to source article sentences in
order to get article, summary pairs. They evaluate
their approach on the CNN/DM dataset (See et al.,
2017) and report a high accuracy on example-level
comparisons on a human-annotated test set.

DAE. Goyal and Durrett (2021) collected human
annotations at the word-level and arc-level to study
faithfulness at a finer granularity. They also trained
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Figure 1: Correlation of the spurious correlates and
learned metrics with human scores. Density, a spurious
correlate, achieves similar performance as DAE and
performs significantly better than FactCC.

Metric | Human | Density
FactCC | 0.36 0.59
DAE 0.38 0.76

Table 1: Correlation of FactCC and DAE scores with
humans vs density. Both learned metrics have a sig-
nificantly higher correlation with density than human
scores.

a dependency arc entailment model for faithfulness
detection (Goyal and Durrett, 2020). They evaluate
on the same test set as Kryscinski et al. (2020) and
report improved results over FactCC.

We look at how these learned, reference-free met-
rics compare with word overlap — a simple spurious
correlate. One simple measure of whether a gener-
ated summary is faithful is to look at its word over-
lap with the source article; summaries with a higher
word overlap are more likely to be faithful (Ladhak
et al., 2021). However, this measure of faithfulness
is spurious because it cannot distinguish between
faithful and unfaithful summaries that have similar
word overlap. In particular, we look at two metrics
of word-overlap following Grusky et al. (2018):
coverage and density. Coverage measures the per-
centage of the words in the summary that are also
present in the article. Density instead looks at the
average length of the segments in the summary that
are extracted from the article.

Results. We use the large-scale faithfulness hu-
man annotations collected by Fabbri et al. (2020)
for 16 summarization models on the CNN/DM
dataset (See et al., 2017) for our analysis. Fig-
ure 1 shows the example-level correlations with
human scores for each of the factuality metrics as
well as the spurious correlates. We note that den-

sity has a similar correlation with human scores
as DAE, and is significanlty' better than FactCC.
This result is alarming because density is a spurious
correlate, yet it can achieve similar performance as
the metrics that have been trained for faithfulness
evaluation.

Moreover, we also see that both FactCC and
DAE have a significantly higher correlation with
density than they do with human scores (Table 1).
This indicates that these metrics may rely upon
spurious correlations and are not yet capturing a
deeper understanding of faithfulness.

3.2 Learned Metrics for Dialog Generation

Dialog generation systems need to be able to gen-
erate a response given the dialog context. The
ability to automatically evaluate the quality of a
response is essential for building dialogue systems.
Liu et al. (2016) show that referenced-based eval-
uation metrics do not correlate well with human
judgments of response quality. This has led to an
increased interest in reference-free evaluation met-
rics for evaluating dialogue response quality.

Similar to our analysis in § 3.1, we aim to look
at recently proposed metrics for reference-free eval-
uation, along with spurious correlates for dialog
response quality, and compare them against human
judgments.

DialogRPT. Gao et al. (2020) finetune GPT-2
to predict the different types of human feedback
(replies, upvotes, etc.) in Reddit threads and com-
bine these to form a composite score for response
quality. They evaluate their approach on the Reddit
data that they collected and show that their method
achieves higher example-level agreement with hu-
man judgments than baseline metrics.

MAUDE. Sinha et al. (2020) propose a model
that encodes each utterance in the dialog context
using a pre-trained BERT model and leverages
the temporal transitions between them to score a
response. They add noise to existing dialog re-
sponses to create negative examples and train their
system to distinguish them from valid responses
using noise contrastive estimation (NCE). They
evaluate their model on the PersonaChat (Zhang
et al., 2018) dataset and report improved example-
level Spearman correlation with human judgments
compared to existing baseline metrics.

'All numbers reported in the paper are bootstrap means
over 1000 bootstrap samples. We use a one-tailed percentile
bootstrap test to determine significance at o = 0.05.
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Figure 2: Correlation of the spurious correlates and learned metrics with human scores. PPL+Len represents a
simple combination of perplexity (PPL) and length features. The best spurious correlate performs significantly
better than all learned metrics on TopicalChat, and performs similarly to the best learned metric on PersonaChat and

DailyDialog.

Human Perplexity Length PPL+Len

DialogRPT | -0.033 -0.017  0.086 0.068

PersonaChat | Maude 0.303 0.373 -0.089 0.137
USL-H 0.496 0.092  0.506 0.469

DialogRPT | 0.117 -0.011  0.272 0.276

TopicalChat | Maude 0.135 0.243 -0.191 -0.148
USL-H 0.318 0.037  0.359 0.355

DialogRPT | 0.025 -0.182  0.359 0.270

DailyDialog | Maude -0.074 -0.076  0.102 0.033
USL-H 0.094 0.048 -0.208 -0.236

Table 2: Correlation of the metrics with human scores and spurious correlates. Reference-free evaluation metrics

have higher correlation with spurious correlates than the human scores.

USL-H. Phy et al. (2020) decompose response
quality into three aspects and train a model to score
a response along each of these aspects. They then
combine the scores hierarchically into one compos-
ite score for response quality. They evaluate their
metric on the DailyDialog (Li et al., 2017) dataset
and report significantly higher example-level corre-
lations than previous baseline metrics.

MNLI+Adv. Dziri et al. (2021) introduce an
entailment-based metric that evaluates the ground-
edness of a dialog response, i.e., whether the gener-
ated response is consistent with the information in
the provided external context, such as a Wikipedia
article. They trained their metric on automatically
generated adversarial data by applying perturba-
tions to the evidence. They further collect human
annotations for the various aspects of dialog gen-
eration, such as entailment, genericness, etc., and
show that their method is more effective in accu-
rately categorizing the generations than existing

entailment models.

To assess these metrics, we look at two spurious
correlates for dialog quality — perplexity and length
of the generated output — as well as a simple com-
bination of two measures. We compute perplexity
using a pre-trained GPT-2 language model (Rad-
ford et al., 2019). Perplexity (PPL) and length are
spurious correlates since they do not account for the
dialog context, and therefore it is possible to have
high-quality and low-quality responses with similar
perplexities/lengths. For groundedness evaluation,
we look at the same word overlap measures, as we
did for summarization, i.e., density and coverage,
and we measure overlap between the response and
the provided external evidence.

Results. We evaluate metrics? for response qual-
ity estimation on three popular multi-turn dialog
datasets — DailyDialog, which contains dialogs

2We use the code provided by Yeh et al. (2021) for these
experiments.
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about everyday topics (Li et al., 2017), TopicalChat,
which contains dialogs conditioned on a set of 8
broad topics (Gopalakrishnan et al., 2019), and Per-
sonaChat, which contains dialogs conditioned on
personas (Zhang et al., 2018).

To evaluate the recently proposed metric for
response groundedness, we use human annota-
tions collected by Dziri et al. (2021) on Wizard
of Wikipedia (Dinan et al., 2019), a dataset that
consists of dialogues conditioned on information
from Wikipedia articles. In particular, we use their
entailment annotations, where human annotators
judge whether or not the external evidence entails
a generated response.

Figure 2 shows the correlations with the human
scores and the spurious correlates for the dialog
generation evaluation metrics. In DialyDialog, we
find that perplexity achieves a similar correlation
with human judgments as USL-H. In TopicalChat,
perplexity or length alone does not beat out any of
the learned metrics; however, combining the two
measures achieves a significantly better correlation
with humans than learned metrics. In PersonaChat,
USL-H achieves the highest correlation with hu-
man judgment, though the combined PPL+Len
score is close. We observe that USL-H is more
consistent than the other reference-free metrics and
achieves significantly higher correlations with hu-
man scores than MAUDE and DialogRPT for Per-
sonaChat and TopicalChat. We further find that
the reference-free metrics have a higher correlation
with the spurious correlates than the human scores
(Table 2), which again suggests that these learned
metrics may be relying upon spurious correlations.

Spurious Correlates  Learned Metrics
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Figure 3: Correlation of the spurious correlates and
learned metrics with human scores on groundedness
evaluation. Both coverage and density get significantly
higher correlations with human scores than the learned

metrics.

Metric Human | Coverage | Density
USL-H 0.298 0.467 0.515
MNLI+Adv | 0.373 0.451 0.514

Table 3: Correlation of USL-H and MNLI+Adyv scores
with humans vs coverage and density. Both learned met-
rics have a significantly higher correlation with density
than human scores.

For groundedness evaluation?, both coverage
and density achieve significantly higher correlation
with human scores than MNLI+Ad and USL-H.
Furthermore, MNLI+Ad and USL-H get a higher
correlation with these spurious correlates than hu-
man scores (Figure 3).

Despite relatively high correlations on their orig-
inal datasets, these metrics seem to perform sim-
ilarly to simple spurious correlations on other
datasets. In order to better understand the effec-
tiveness of these reference-free evaluation metrics,
we suggest that future research includes compar-
isons to potential spurious correlates and that re-
search communities come up with a set of potential
standard spurious correlates.

4 Learned Metrics in System-level
Evaluation

4.1 Pairwise Ranking of Systems

Our example-level analysis demonstrates that re-
cently proposed learned evaluation metrics achieve
worse correlations with human scores than spurious
correlates for almost all the settings. Since an im-
portant goal of building these metrics is to be able
to rank arbitrary systems, we analyze whether these
concerns we observe at the example level manifest
into harms at the system level (i.e., ranking systems
incorrectly). In order to study this, we need a large
collection of human evaluation data across a wide
range of systems. Fabbri et al. (2020) have recently
released human evaluations for faithfulness across
16 summarization systems on CNN/DM. Therefore,
we focus on system-level rankings of faithfulness
for the remainder of the paper.

We first measure pairwise ranking accuracy for
all the systems shown in Figure 4.* We find that
system-level rankings suffer from a similar issue as
the example level correlations: density and cover-

3We do not include MAUDE and DialogRPT results for
this task since they perform significantly worse.

“Citations corresponding to these systems are included in
Appendix A.
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Figure 4: Density and human scores for summarization systems. We analyze the accuracy of the metrics in ranking
all the systems vs. ranking the systems within abstractive faithful group, shown in the blue box. Abstractive faithful
systems have faithfulness score higher than 4.5 (out of 5) and density lower than 30.

All Pairs | Within AF
Coverage | 56.54 26.60
Density 81.01 40.45
FactCC 78.87 38.26
DAE 80.39 37.88

Table 4: Accuracy of pairwise ranking across all the sys-
tems and within Abstractive Faithful (AF). We observe
that the ranking accuracy of all metrics is significantly
lower for systems within AF compared to all pairs. Den-
sity performs as well as the best learned metric (DAE)
in both cases.

age appear as spurious correlations (Table 4). From
this observation, we perform a finer-grained anal-
ysis and show that these factuality metrics fail on
the most important subset of model comparisons:
abstractive but faithful summarization system (AF)
— where the current state-of-the-art abstractive sum-
marization systems fall.

4.2 Results

Both faithfulness metrics perform relatively well
when we look at pairwise ranking accuracy across
all pairs of models (Table 4). However, they are

unable to improve over density, which achieves the
highest overall accuracy. When we look at ranking
within the abstractive faithful group, we see density
is no longer a good measure for the faithfulness of
a system since these systems are relatively close
in terms of density. Similarly, the performance of
the learned metrics drops significantly, which is an
expected result since our analysis in § 3.1 showed
that both FactCC and DAE are spuriously corre-
lated with density. We claim that our system-level
analysis is further evidence that these metrics may
be relying heavily on simple spurious measures
such as word overlap.

These results highlight the importance of per-
forming analyses across different distributions of
systems. If we were looking at just the overall rank-
ing accuracy of the metrics, we would conclude that
DAE and FactCC correctly measure faithfulness.
However, on closer examination, we see that both
metrics perform relatively poorly in ranking AF
systems, which is arguably the most crucial group
since most state-of-the-art systems operate in this
regime, and there is substantial interest in building
abstractive and faithful summarization systems.
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representations that are not predicitve of density.

All Pairs | Within AF
FactCC-Electra 77.85 27.70
FactCC 78.87 38.26
DAE 80.39 37.88
Adversarial 85.27 ‘ 59.20 ‘

Table 5: Pairwise ranking accuracy for systems across
All Pairs vs. Within Abstractive Faithful (AF) for DAE
and Adversarial. Adversarially trained metric performs
significantly better for the systems within AF than pre-
viously proposed metrics.

5 Adversarial Model

In our earlier example-level analysis, we found that
learned metrics have higher correlation with spu-
rious correlates than human judgment. We further
saw in our system-level analysis that learned met-
rics for faithfulness are unable to outperform den-
sity. One natural question that follows is whether
we can build metrics that do well at the systems
level by learning representations that rely less on
spurious correlates.

In order to do this, we train an entailment based
model using the synthetically generated data from
FactCC in an adversarial setup similar to Ganin
et al. (2016). In particular, our approach augments
the standard faithfulness predictor with a density
predictor that tries to predict the density of the sum-

mary from the model’s internal representation. We
use this density predictor as an adversary, and our
goal is to predict faithfulness while ensuring that
it is difficult to predict density using this same rep-
resentation. To achieve this, the gradients from
the density predictor are reversed, which makes it
harder to predict the density from the encoder’s rep-
resentation, and thus makes the faithfulness predic-
tions less reliant on density. The model architecture
is shown in Figure 5. We initialize the parameter
A to 0 and gradually increase it to 1, following the
schedule detailed in Ganin et al. (2016).

We fine-tune a pre-trained Electra model (Clark
et al., 2020) using the transformers library (Wolf
et al., 2020) for this task. We chose Electra in order
to match the model architecture in DAE. Since the
original FactCC metric was fine-tuned on BERT,
we also fine-tune our own version of FactCC on
Electra (FactCC-Electra) as an ablation. Our ad-
versarially trained model is essentially the same as
FactCC-Electra, but with an additional adversarial
head for predicting density.

Results. We note that the FactCC-Electra model
performs worse than the original FactCC, which
is consistent with the findings in Goyal and Dur-
rett (2021). Our adversarially trained metric has a
significantly lower example-level correlation with
density (27.71%), as compared to FactCC (59.10%)
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and DAE (76.37%). We find that the adversarial
model® can achieve a significantly better perfor-
mance than existing learned evaluation metrics in
ranking systems within the abstractive faithful (AF)
group (Table 5). This suggests that it is possible to
learn effective metrics that are not overly reliant on
spurious correlates. Furthermore, our metric is also
effective in overall pairwise ranking of the systems
achieving 85.27% accuracy.

6 Related Work

Most existing work on assessing the evaluation
methodology of evaluation metrics has focused on
reference-based evaluation. For example, Mathur
et al. (2020) take a critical look at the use of
example-level correlations to measure reference-
based evaluation metrics in Machine Translation.
They show that evaluating these metrics using
example-level correlations can be sensitive to the
presence of outliers which can lead to false con-
clusions about a metric’s efficacy. Furthermore,
Kocmi et al. (2021) show that proper assessment
of evaluation metrics is crucial as uninformed use
of automated metrics such as BLEU can lead to
bad deployment decisions. Caglayan et al. (2020)
has shown that automated reference-based eval-
uation metrics have robustness issues which can
cause them to score generated outputs higher than
human written outputs. Furthermore, Bhandari
et al. (2020) has studied the limitations of reference-
based evaluation metrics of text summarization,
comparing these metrics across different datasets
and application scenarios. In contrast, our work
focuses on analyzing learned, reference-free eval-
uation metrics in summarization and dialog gener-
ation, accounting for potential spurious correlates
for these evaluation tasks.

There has been some recent work comparing
existing reference-free evaluation metrics for text
summarization and dialog generation. Pagnoni
et al. (2021) has measured the efficacy of exist-
ing reference-free faithfulness evaluation metrics
of summarization on two different summariza-
tion datasets relying on example-level correlations.
Similarly, Gehrmann et al. (2021) has evaluated
automated metrics of text summarization across a
wide range of datasets. Gabriel et al. (2021) has
proposed a meta-evaluation framework to evaluate
the evaluation metrics looking at certain aspects of

>Qur adversarially trained model can be found at
https://github.com/esdurmus/adversarial_eval.

these metrics such as robustness, sensitivity, high
correlation with human scores, etc., and measured
existing evaluation metrics across these aspects.
Yeh et al. (2021) perform a comprehensive study
of existing dialog generation metrics across several
different datasets and find that the performance of
metrics varies widely across datasets.

Gabriel et al. (2021) and Yeh et al. (2021) are the
most related to our work since they study robust-
ness of these metrics looking at their performance
across different datasets. In our work, however, we
explicitly study spurious correlations and show that
these may potentially be contributing to the robust-
ness issues. We further present initial promising
results suggesting that controlling for these spuri-
ous correlates may result in more robust evaluation
metrics.

7 Conclusion

In conclusion, we study reference-free evaluation
metrics for summarization and dialog generation
and show that simply looking at overall example-
level correlation with human judgment paints an
incomplete picture of the effectiveness of a metric.
In particular, we show that these metrics are unable
to do better than simple spurious correlates for the
task. We see that this trend carries over in system-
level ranking for summarization systems, where
a spurious correlate for the task performs as well
as existing learned evaluation metrics. We find
that despite the relatively high overall system-level
ranking performance, the learned metrics are not
robust to distribution shifts. We show that they fail
to properly rank abstractive and (relatively) faithful
systems, which is where the current state of the
art operates. Finally, we train a faithfulness metric
that scores the faithfulness of a summary without
relying on the spurious overlap correlate. We show
that our metric is more robust across distribution
shifts and does better at ranking abstractive, faithful
summarization systems.

We suggest that future work in designing
reference-free evaluation metrics should be mindful
of the distribution of the evaluation data. In par-
ticular, metrics should be assessed across different
distributions of systems in order to test for robust-
ness and failure modes. Simple spurious correlates
can be used as a tool to indicate potential overes-
timates of the effectiveness of proposed metrics.
Finally, we highlight the importance of collecting
large-scale human evaluation datasets across a wide
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range of systems, similar to Fabbri et al. (2020), to
enable more comprehensive analyses of evaluation
metrics.
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A Text Summarization Models

Model Name | Paper

MO Lead-3 baseline

M1 Zhou et al. (2018)

M2 Dong et al. (2018)

M5 Wu and Hu (2018)

M8 See et al. (2017)

M9 Chen and Bansal (2018)
M10 Gehrmann et al. (2018)
Ml11 Kryscinski et al. (2018)
M12 Hsu et al. (2018)

M13 Pasunuru and Bansal (2018)
M14 Guo et al. (2018)

M15 Jiang and Bansal (2018)
M17 Raffel et al. (2019)
M20 Ziegler et al. (2019)
M22 Lewis et al. (2020)

M23 Zhang et al. (2020)

Table 6: Models that are used in § 4.
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