
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1422 - 1442

May 22-27, 2022 c©2022 Association for Computational Linguistics

Slangvolution: A Causal Analysis of Semantic Change
and Frequency Dynamics in Slang

Daphna Keidar ,∗ Andreas Opedal ,∗ Zhijing Jin , Mrinmaya Sachan
ETH Zürich, Max Planck Institute for Intelligent Systems, Tübingen, Germany

dkeidar@ethz.ch, andreas.opedal@inf.ethz.ch,
zjin@tue.mpg.de, mrinmaya.sachan@inf.ethz.ch

Abstract

Languages are continuously undergoing
changes, and the mechanisms that underlie
these changes are still a matter of debate. In
this work, we approach language evolution
through the lens of causality in order to
model not only how various distributional
factors associate with language change, but
how they causally affect it. In particular, we
study slang, which is an informal language
that is typically restricted to a specific group
or social setting. We analyze the semantic
change and frequency shift of slang words and
compare them to those of standard, nonslang
words. With causal discovery and causal
inference techniques, we measure the effect
that word type (slang/nonslang) has on both
semantic change and frequency shift, as well
as its relationship to frequency, polysemy and
part of speech. Our analysis provides some
new insights in the study of language change,
e.g., we show that slang words undergo
less semantic change but tend to have larger
frequency shifts over time.1

1 Introduction

Language is a continuously evolving system, con-
stantly resculptured by its speakers. The forces that
drive this evolution are many, ranging from pho-
netic convenience to sociocultural changes (Blank,
1999). In particular, the meanings of words and
the frequencies in which they are used are not
static, but rather evolve over time. Several pre-
vious works, in both historical and computational
linguistics, have described diachronic mechanisms,
often suggesting causal relationships. For example,
semantic change, i.e. change in the meaning of a
word, has both been suggested to cause (Wilkins,
1993; Hopper and Traugott, 2003) and be caused by
(Hamilton et al., 2016) polysemy, while also part

∗Equal contribution.
1Our code, along with the data, is made available at

https://github.com/andreasopedal/slangvolution.

Figure 1: We observe very different change dynamics
for the slang word “duckface” and the nonslang word
“inclusive.” “Inclusive” has acquired a new meaning,
reflected in a high semantic change score of 0.77 as
measured by our model. “Duckface” undergoes little
semantic change, scored 0.39 by our model, while its
usage frequency varies greatly.

of speech (POS) has been implied to be a causal
factor behind semantic change (Dubossarsky et al.,
2016). However, none of these studies perform a
causal analysis to verify these claims. Causality
(Pearl, 2009) allows us to not only infer causal ef-
fects between pairs of variables, but also model
their interactions with other related factors.

In this work, we focus on the linguistic evolution
of slang, defined as colloquial and informal lan-
guage commonly associated with particular groups
(González, 1998; Bembe and Beukes, 2007), and
use a causal framework to compare the change
dynamics of slang words to those of standard lan-
guage. More specifically, we compare the semantic
change as well as the changes in frequency, i.e.,
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frequency shift, over time between slang words
and standard, nonslang words. We learn a causal
graphical model (Spirtes et al., 2000) to assess how
these variables interact with other factors they have
been previously found to correlate with, such as fre-
quency, polysemy and part of speech (Dubossarsky
et al., 2016; Hamilton et al., 2016). Having discov-
ered a graph, we proceed to use do-calculus (Pearl,
1995) to evaluate the causal effects of a word’s type
(slang/nonslang) on semantic change and frequency
shift.

Semantic change is measured using the average
pairwise distance (APD) (Sagi et al., 2009; Giu-
lianelli et al., 2020) between time-separated con-
textualized representations, which were obtained
from a Twitter corpus via a bi-directional language
model (Liu et al., 2019). Our method builds on re-
cent semantic change literature (Schlechtweg et al.,
2020), with novel additions of dimensionality re-
duction and a combined distance function.

By deploying a causal analysis, we establish that
there is not just an association, but a direct effect of
a word’s type on its semantic change and frequency
shift. We find that a word being slang causes it to
undergo slower semantic change and more rapid
decreases in frequency. To illustrate, consider the
slang word “duckface” and the nonslang word “in-
clusive” as shown in Figure 1. Duckface is a face
pose commonly made for photos (Miller, 2011)
in the early 2010s, and while it has largely de-
creased in frequency since, its meaning has not
changed. In contrast, the nonslang word “inclu-
sive” has developed a new usage in recent years
(Merriam-Webster, 2019) and was given a high se-
mantic change score by our model.

Our analysis also sheds light on a couple of pre-
vious findings in the diachronic linguistics litera-
ture. We find support for the S-curve theory (Kroch,
1989), showing a causal effect from a word’s pol-
ysemy to its frequency. This relationship is ev-
ident in the increase in frequency that the word
“inclusive” displays in Figure 1 after it develops
a new meaning (Merriam-Webster, 2019). How-
ever, similar to Dubossarsky et al. (2017), we do
not find causal links to semantic change from fre-
quency, polysemy, or POS, which have been sug-
gested in previous works (Hamilton et al., 2016;
Dubossarsky et al., 2016).

In summary, our main contributions are three-
fold: (i) we formalize the analysis of change dy-
namics in language with a causal framework; (ii)

we propose a semantic change metric that builds
upon contextualized word representations; and
(iii) we discover interesting insights about slang
words and semantic change – e.g., showing that
the change dynamics of slang words are different
from those of nonslang words, with slang words
exhibiting both more rapid frequency fluctuations
and less semantic change.

2 Related Work

2.1 Semantic Change

A typical method for measuring semantic change
is by comparing word representations across time
periods (Gulordava and Baroni, 2011; Kim et al.,
2014; Jatowt and Duh, 2014; Kulkarni et al., 2015;
Eger and Mehler, 2016; Schlechtweg et al., 2019).
With this approach, previous research has proposed
laws relating semantic change to other linguistic
properties (Dubossarsky et al., 2015; Xu and Kemp,
2015; Dubossarsky et al., 2016; Hamilton et al.,
2016). For instance, Dubossarsky et al. (2016)
find that verbs change faster than nouns, whereas
Hamilton et al. (2016) discover that polysemous
words change at a faster rate, while frequent words
change slower. However, the validity of some of
these results has been questioned via case-control
matching (Dubossarsky et al., 2017), highlighting
the influence of word frequency on the represen-
tations and thus on the semantic change metric
(Hellrich and Hahn, 2016). Such analyses can in-
deed give stronger evidence for causal effects. In
this work we take a methodologically different ap-
proach, considering observational data alone for
our causal analysis.

The aforementioned works rely on fixed word
representations, whereas more recent approaches
(Hu et al., 2019; Giulianelli et al., 2020) have pro-
posed semantic change measures based on con-
textualized word embeddings (Peters et al., 2018;
Devlin et al., 2019), which can flexibly capture con-
textual nuances in word meaning. This has lead
to a further stream of work on semantic change
detection with contextualized embeddings (Mar-
tinc et al., 2020; Kutuzov and Giulianelli, 2020;
Schlechtweg et al., 2020; Montariol et al., 2021;
Kutuzov et al., 2021; Laicher et al., 2021). We
build upon this line of work and extend them using
principal component analysis (PCA) and a combi-
nation of distance metrics.
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2.2 Characterization and Properties of Slang

Slang is an informal, unconventional part of the
language, often used in connection to a certain
setting or societal trend (Dumas and Lighter, 1978).
It can reflect and establish a sense of belonging to a
group (González, 1998; Bembe and Beukes, 2007;
Carter, 2011) or to a generation (Citera et al., 2020;
Earl, 1972; Barbieri, 2008).

Mattiello (2005) highlights the role slang plays
in enriching the language with neologisms, and
claims that it follows unique word formation pro-
cesses. Inspired by this, Kulkarni and Wang (2018)
propose a data-driven model for emulating the gen-
eration process of slang words that Mattiello (2005)
describes. Others have described the ephemeral-
ity of slang words (González, 1998; Carter, 2011),
although this property has not been previously ver-
ified by computational approaches.

3 Causal Methodology for Change
Dynamics

Examining change dynamics through a causal lens
helps determine the existence of direct causal ef-
fects, by modeling the interactions between vari-
ables. For example, it allows us to conclude
whether word type directly influences semantic
change, or rather influences polysemy, which in
turn causes semantic change. In this section, we
first give a short overview of relevant work on
causality, before presenting how we apply these
concepts to word change dynamics.

3.1 Overview of Causal Discovery and
Causal Inference

A common framework for causal reasoning is
through causal directed acyclic graphs (DAGs)
(Pearl, 2009). A causal DAG consists of a pair
(G,P ) where G = (V,E) is a DAG and P is
a probability distribution over a set of variables.
Each variable is represented by a node v ∈ V , and
the graph’s edges e ∈ E reflect causal relationships.
There are two main tasks in causality. Causal dis-
covery is the task of uncovering the causal DAG
that explains observed data. Assuming a causal
DAG, the task of causal inference then concerns
determining the effect that intervening on a vari-
able, often referred to as treatment, will have on
another variable, often referred to as outcome.

The causal DAG is often inferred from domain
knowledge or intuition. However, in cases where
we cannot safely assume a known causal struc-

ture, causal discovery methods come in useful.
Constraint-based methods (Spirtes et al., 2000)
form one of the main categories of causal discov-
ery techniques. These methods use conditional
independence tests between variables in order to
uncover the causal structure. To do so, they rely
on two main assumptions: that the graph fulfills
the global Markov property and the faithfulness
assumption. Together they state that we observe
conditional independence relations between two
variables in the distribution if and only if these two
variables are d-separated (Geiger et al., 1990) in
the graphical model. For more details, we refer to
Appendix D.1.

Causal inference is commonly approached with
do-calculus (Pearl, 1995). We denote the interven-
tion distribution P(Y |do(X = x)) to be the distri-
bution of the outcome Y conditioned on an inter-
vention do(X = x) which forces the treatment
variable X to take on the value x. Note that this is
in general not necessarily equal to P(Y |X = x).2

When they are not equal, we say that there is con-
founding. Confounding occurs when there is a third
variable Z, which causes both the treatment X and
the outcome Y .

We say that there is a causal effect of X on Y if
there exist x and x′ such that

P(Y |do(X = x)) 6= P(Y |do(X = x′)). (1)

One way to quantify the causal effect is with the
average causal effect (ACE):

E[Y |do(X = x)]− E[Y |do(X = x′)]. (2)

To estimate the causal effect using observational
data, we need to rewrite the intervention distribu-
tion using only conditional distributions. Assuming
a causal DAG, this can be done with the truncated
factorization formula (Pearl, 2009),

P(XV |do(XW = xW )) =

=
∏

i∈V \W

P(Xi|Xpa(i))1{XW=xW },
(3)

for W ⊂ V , with XW being the variables in P
corresponding to the nodes in W .

2For instance, there is a causal effect of altitude on temper-
ature but not vice versa. Hence, intervening on temperature
will not cause a shift in the distribution of altitude, but condi-
tioning will.
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3.2 Causality for Change Dynamics
In this work, we estimate the direct causal effect of
a word’s type on its semantic change and frequency
shift dynamics. In order to establish that such an
effect exists, and to know which variables to control
for, we turn to causal discovery algorithms. The
variables in our causal graph additionally include
frequency, polysemy and POS.

For learning the causal graph, we choose the
constraint-based PC-stable algorithm (Colombo
and Maathuis, 2014), an order-independent vari-
ant of the well-known PC algorithm (Spirtes et al.,
2000), discussed in Appendix D.1. We are learn-
ing a mixed graphical model (Lauritzen, 1996; Lee
and Hastie, 2015), consisting of both continuous
(e.g., frequency) and categorical (e.g., type) vari-
ables. For this reason we opt for constraint-based
algorithms, allowing us to tailor the conditional
independence tests according to the various data
types.

Having learned the causal graph (Section 6.2),
we proceed to estimate the ACE of word type on
both semantic change and frequency shift using
do-calculus (Section 6.3).

4 Slang and Nonslang Word Selection

We select 100 slang words and 100 nonslang words
for our study, presented in Appendix E. In the trade-
off between statistical significance and time spent
on computation and data collection, we found that
a set of 200 words was enough to get highly sig-
nificant results. The slang words are randomly
sampled from the Online Slang Dictionary,3 which
provides well-maintained and curated slang word
definitions as well as a list of 4,828 featured slang
words as of June 2021. We limit the scope of our
study to only encompass single-word expressions,
and in so doing we filter out 2,169 multi-word
expressions. To further clean the data, we also
delete words with only one character and acronyms.
Lastly, we limit the causal analysis to words that
are exclusively either slang or nonslang, excluding
“hybrid” words with both slang and nonslang mean-
ings, such as “kosher” or “tool.” Including words
of this type would have interfered with the causal
analysis by creating a hardcoded dependency be-
tween word type and polysemy, as these words by
definition are polysemous. We do however per-
form a separate analysis of the hybrid words in
Appendix C.

3http://onlineslangdictionary.com/

For the reference set of standard, nonslang,
words we sample 100 words uniformly at random
from a list of all English words, supplied by the
wordfreq library in Python (Speer et al., 2018).

5 Data Collection

We curate a Twitter dataset from the years 2010 and
2020, which we select as our periods of reference,
and collect the following variables:

• Word type: Whether a word is slang or not

• Word frequency: The average number of tweets
containing the word per day in 2010 and 2020
(Section 5.2)

• Frequency Shift: The relative difference in fre-
quency the word has undergone between 2010
and 2020 (Section 5.3)

• Polysemy: The number of senses a word has
(Section 5.4)

• Part of speech: A binary variable for each POS
tag (Section 5.5)

• Semantic change: The semantic change score
of the word from 2010 to 2020 (Section 5.6)

5.1 Twitter Dataset
As a social media platform, Twitter data is rich
in both slang and nonslang words. The Twitter
dataset we curated comprises 170,135 tweets from
2010 and 2020 that contain our selected words.
Sampling tweets from two separate time periods
allows us to examine the semantic change over a
10-year gap. For every slang and nonslang word,
and each of the two time periods, we obtain 200-
500 random tweets that contain the word and were
posted during the corresponding year. We keep
each tweet’s text, tweet ID, and date it was posted.
As a post-processing step, we remove all URLs and
hashtags from the tweets. To protect user privacy,
we further replace all user name handles with the
word “user.” On average, we have 346 tweets per
slang word and 293 tweets per nonslang word.

5.2 Word Frequency
We approximate a word’s frequency by the average
number of times it is tweeted within 24 hours. This
average is calculated in practice over 40 randomly
sampled 24 hour time frames in a given year, in
each of which we retrieve the number of tweets con-
taining the word. The frequencies are calculated
separately for 2010 and 2020. Due to the growing
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Figure 2: Relative shift in frequency from 2010 to 2020,
where a positive score corresponds to an increase in fre-
quency. We see that slang words present both the high-
est increases and the highest decreases in frequency.
Moreover, a large frequency decrease is observed ex-
clusively in a set of slang words, indicating these words
faded from usage during the decade.

popularity of social media, the number of tweets
has significantly increased over the decade. There-
fore, we divide the counts from 2020 by a factor of
6.4, which is the ratio between the average word
counts in both years in our dataset. The frequencies
from both years are then averaged to provide the
frequency variable for the causal analysis.

5.3 Frequency Shift
We are now interested in analyzing the dynamics
of frequency shifts. To evaluate the relative change
in frequency for a given word w we take

FreqShift(w) = log
x2020(w)

x2010(w)
(4)

where, xk(w) is the frequency of word w in year k.
This has been shown to be the only metric for rela-
tive change that is symmetric, additive, and normed
(Tornqvist et al., 1985). Importantly, this measure
symmetrically reflects both increases and decreases
in relative frequency. The mean relative changes in
frequency were −0.486(±1.644) for slang words
and 0.533(±1.070) for nonslang words, where a
positive score corresponds to an increase in fre-
quency. As evident in Figure 2, not only did more
slang words exhibit a decrease in frequency than
nonslang ones, the words that showed the highest
frequency increase are also slang.

We also examine the absolute value of Eq. (4)
to evaluate the degree of change, may it be a de-
crease or an increase. We find that, as expected,

slang words have significantly higher changes in
frequency than nonslang words (p < 0.05). See
Appendix C for more details.

5.4 Polysemy

We define a word’s polysemy score as the number
of distinct senses it has4. For nonslang words, we
take the number of senses the word has in Merriam
Webster and for slang words we take the number
of definitions on the Online Slang Dictionary. We
use two separate resources as we find that no dictio-
nary encapsulates both slang and nonslang words.
The mean polysemy scores are (2.074 ± 2.595)
for slang words and (3.079± 2.780) for nonslang
words with a significant difference in distribution
(p < 0.05) according to a permutation test, im-
plying that the latter are used with a larger variety
of meanings. In addition, the slang senses of the
hybrid words exhibit a distribution similar to those
of the slang words (Appendix C). More polyse-
mous words tend to have a higher word frequency
in our dataset – the log transform of frequency and
polysemy display a highly significant (p < 0.001)
linear correlation coefficient of 0.350.

5.5 Part of Speech

For each word, we retrieve four binary variables, in-
dicating whether a word can be used as noun, verb,
adverb or adjective, which were the four major
POS tags observed in our data. To calculate these
variables we run the NLTK POS tagger (Loper and
Bird, 2002) on the tweets, and collect the distribu-
tion of POS tags for each word. Note that a word
may have more than one POS tag, depending on
the context in which it is used. Each of the binary
variables is then set to be 1 if the word had the
corresponding POS tag in at least 5% of its tweets
and 0 otherwise.

5.6 Semantic Change Score

In this section we explain the details of how we
obtain the semantic change scores. We start by
fine-tuning a bi-directional language model on a
slang-dense corpus (Section 5.6.1), after which
we survey the literature and propose metrics (Sec-
tion 5.6.2) that we use to perform an extensive
experimentation study to find the most suitable one
(Section 5.6.3). Finally, we apply this metric to our

4Note that this definition also encapsulates potential cases
of homonymy. We choose not to make a distinction between
polysemy and homonymy in this analysis.
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sets of slang and nonslang words on the Twitter
data (Section 5.6.4).

5.6.1 Obtaining Contextualized
Representations

We familiarize the bi-directional language model
with slang words and the contexts in which they are
used by fine-tuning it on the masked language mod-
eling task. For this purpose we use a web-scraped
dataset from the Urban Dictionary, previously col-
lected by Wilson et al. (2020). After preprocessing
and subsampling, the details of which can be found
in Appendix A.1, we are left with a training set of
200, 000 slang-dense text sequences.

As our bi-directional language model we select
RoBERTa (Liu et al., 2019). Beyond performance
gains compared to the original BERT (Devlin et al.,
2019), we select this model since it allows for more
subword units. We reason, that this could be use-
ful in the context of slang words since potentially
some of the sub-units used in these words would
not have been recognized by BERT. We choose the
smaller 125M parameter base version for computa-
tional reasons. We train the model using the Adam
optimizer (Kingma and Ba, 2015) with different
learning rates γ. The lowest loss on the test set
was found with γ = 10−6, which we proceed with
for scoring semantic change. For more details on
training configurations, we refer to Appendix A.2.

5.6.2 Quantifying Semantic Change
In order to select a change detection metric, we
evaluate our model on the SemEval-2020 Task 1
on Unsupervised Lexical Semantic Change Detec-
tion (Schlechtweg et al., 2020). This task provides
the first standard evaluation framework for seman-
tic change detection, using a large-scale labeled
dataset for four different languages. We restrict
ourselves to English and focus on subtask 2, which
concerns ranking a set of 37 target words according
to their semantic change between two time peri-
ods. The ranking is evaluated using Spearman’s
rank-order correlation coefficient ρ.5 Our space of
configurations includes layer representations, di-
mensionality reduction techniques and semantic
change metrics.

Layer Representations: Previous work (Etha-
yarajh, 2019) has shown that embeddings re-
trieved from bi-directional language models are not

5We note the caveat that our model is fine-tuned on Urban
Dictionary text, while the older of the two English datasets of
SemEval consists of text from 1810-1860.

isotropic, but are rather concentrated around a high-
dimensional cone. Moreover, the level of isotropy
may vary according to the layer from which the rep-
resentations are retrieved (Ethayarajh, 2019; Cai
et al., 2021). This leads us to experiment with
representations from different layers in our fine-
tuned RoBERTa model, namely, taking only the
first layer, only the last layer or summing all layers.

Dimensionality Reduction: To the best of our
knowledge, only one previous semantic change
detection approach (Rother et al., 2020) has incor-
porated dimensionality reduction, more specifically
UMAP (McInnes et al., 2018). As the Euclidean
distances in the UMAP-reduced space are very sen-
sitive to hyperparameters and it does not retain an
interpretable notion of absolute distances, it might
be unsuitable for pure distance-based metrics like
APD, and we therefore also experiment with PCA.

Metrics for Semantic Change: Given represen-
tations Xt = {x1,t, ...,xnt,t} for a particular word
in time period t, we define the average pairwise
distance (APD) between two periods as

APD(Xt1 ,Xt2) =
1

nt1nt2

∑
xi,t1

∈Xt1
xj,t2

∈Xt2

d(xi,t1 ,xj,t2) ,

(5)

for some distance metric d(·, ·), where nt1 , nt2 are
the number of words in each time period. We
experiment with Euclidean distance d2(x1,x2),
cosine distance dcos(x1,x2) and Manhattan dis-
tance d1(x1,x2). Furthermore, we propose a novel
combined metric. Note that d2(·, ·) ∈ [0,∞] and
dcos(·, ·) ∈ [0, 2]. Further note that

||x1 − x2||22 ≤ ||x1||22 + ||x2||22 (6)

Normalizing both metrics for a support in [0, 1], we
get a combined metric with the same unit support
to be the following average:

d2,cos(x1,x2) =
0.5 · d2(x1,x2)√
||x1||2 + ||x2||2

(7)

+
dcos(x1,x2)

4
(8)

We argue that this provides a more complete met-
ric, capturing both absolute distance and the angle
between vectors.

In addition to the APD metrics, we experiment
with distribution-based metrics (see Appendix B.1).
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Reduction h APD Score
PCA 100 d2 and dcos 0.489∗∗

PCA 100 dcos 0.464∗∗

PCA 100 d2 0.298
None 768 d2 and dcos 0.345∗

Table 1: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different dimensionality reduction tech-
niques for APD (*: p < 0.05, **: p < 0.01).

5.6.3 Evaluating the Semantic Change Scores

We first compare the results for the three types
of layer representations for different APD metrics,
and note that summing all layer representations
yields the best results. Consequentially, we pro-
ceed with the rest of the experiments using only
these representations. For both PCA and UMAP,
we experiment with projecting the representations
down to h ∈ {2, 5, 10, 20, 50, 100} dimensions.
These combinations are tested together with the
APD metrics as presented in Section 5.6.2 as well
as the distribution-based metrics described in Ap-
pendix B. The latter do not however in general
display significant correlations.

We present a small subset of the scores result-
ing from the APD configurations in Table 1, high-
lighting our finding that both PCA dimensionality
reduction and using a combined metric improve
the performance. More results and comparisons
to baselines are presented in Appendix B.3. We
observe that the proposed combined metric consis-
tently outperforms both d2 and dcos across values
of h for PCA. We also note that UMAP projec-
tions perform poorly with the APD metrics and
that projecting down to 50-100 dimensions seems
to be optimal, which maintains 70-85% of the vari-
ance as we illustrate in Appendix B.2. In addition,
both norm-based metrics d1 and d2 perform worse
with dimensionality reduction. As our final metric,
we choose the best performing configuration on
SemEval, with PCA h = 100 and the combined
metric, as seen in Table 1.

5.6.4 Semantic Change Scores for Slang and
Nonslang Words on the Twitter Dataset

We obtain semantic change scores using the Twitter
dataset described in Section 5.1. For the seman-
tic change analysis, we exclude words that have
less than 150 tweets in each time period within the
dataset, which leaves us with 80 slang and 81 non-

Figure 3: Semantic change scores between 2010 and
2020. We see that nonslang words typically underwent
larger changes in meaning throughout the decade.

slang words. We also normalize the scores accord-
ing to the sample. The resulting semantic change
scores are shown in Figure 3. The mean semantic
change scores are 0.564(±0.114) for slang words
and 0.648(±0.084) for nonslang words. The dif-
ference in semantic change score distributions is
significant (p < 0.001) via a permutation test. The
word with the highest semantic change score of 1
is “anticlockwise,” and the word with the lowest
score of 0 is “whadja.”

6 Causal Analysis

6.1 Preparation for Causal Discovery

PC-stable is constraint-based and thus makes use
of conditional independence tests. In the case of
continuous Gaussian variables, we can perform
partial correlation tests to assess conditional inde-
pendence, since zero partial correlation in this case
is equivalent to conditional independence (Baba
et al., 2004). As word frequency has been sug-
gested to follow a lognormal distribution (Baayen,
1992), we take the log transform of it. The continu-
ous variables semantic change, frequency change
and log-frequency are then all assumed to be ap-
proximated well by a Gaussian distribution, which
is confirmed by diagnostic density and Q-Q plots
(displayed in Appendix D.2).

We categorize the discrete polysemy variable,
experimenting with nine different plausible cate-
gorizations for the sake of robustness of the re-
sults. Word type and POS are categorical in na-
ture. For the categorical variables and for mixes
of categorical and continuous variables, we per-
form chi-squared mutual information based tests
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Figure 4: DAG representing the causal relationships in our dataset. We see that word type directly influences
frequency shift, semantic change and polysemy, and polysemy in turn influences frequency.

(Edwards, 2000), since the approximate null distri-
bution of the mutual information is chi-squared
(Brillinger, 2004). For all conditional indepen-
dence tests we experiment with significance levels
α ∈ {0.01, 0.03, 0.05}.

6.2 Resulting Causal Structure

In Figure 4 we see the result from the above ap-
proach, with dashed lines representing edges that
were apparent in most but not all of the configura-
tions. See Appendix D.3 for a sensitivity analysis.

We first observe that word type has a direct
causal effect on both the semantic change score
and the frequency shift, without any confounding
from the other variables. We also note a direct in-
fluence of word polysemy on frequency.

Moreover, none of the four POS categories,
which are all gathered in one node in Figure 4,
have a causal link to any of the other variables. We
additionally observe a dependency between word
type and polysemy. This edge could not be oriented
by the PC-stable algorithm, however we manually
orient it as outgoing from type and ingoing to pol-
ysemy, since an intervention on type should have
a causal effect on the number of word senses and
not vice versa. It is also interesting to note that
polysemy does not seem to have a causal effect
on semantic change. Its association with semantic
change (p < 0.05, rejecting the null hypothesis
of independence between polysemy and semantic
change) is instead confounded by word type.

6.3 Causal Effects

In our case of no confounders, evaluating the
ACE of word type on semantic change is straight-
forward, as it reduces to the difference between the

conditional expectations:

E[S|do(T = nonslang)]− E[S|do(T = slang)] =

= E[S|T = nonslang]− E[S|T = slang]
(9)

See Appendix D.4 for a derivation. The case of
frequency shift is analogous.

We estimate the expectations by the sample
means on the normalized values and get an average
causal effect of 0.084, which is a highly signifi-
cant value (p < 0.001) based on a t-test. For the
observed changes in relative frequency, calculated
according to Eq. (4), we get an average causal ef-
fect of 1.017 (p < 0.001 via a t-test).

7 Discussion

We analyze the dynamics of frequency shift and se-
mantic change in slang words, and compare them to
those of nonslang words. Our analysis shows that
slang words change slower in semantic mean-
ing, but adhere to more rapid frequency fluctu-
ations, and are more likely to greatly decrease
in frequency. Our study is the first computational
approach to confirm this property in slang words
(González, 1998; Carter, 2011).

To ensure that this is the result of a causal ef-
fect, and not mediated through another variable or
subject to confounders, we model the data with a
causal DAG, by also considering the potential inter-
acting variables polysemy, frequency and POS. We
discover that there is no influence of confounders,
nor are there mediators between a word’s type and
its semantic change or its frequency shift, which
confirms a direct causal effect. This means that if
we could intervene on a word’s type, i.e., by setting
it to be slang instead of nonslang or vice versa, we
would expect its change dynamics to differ.

Our results are consistent with those of Du-
bossarsky et al. (2017), which found that neither
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the law relating semantic change to frequency, pol-
ysemy (Hamilton et al., 2016) nor prototypicality
(Dubossarsky et al., 2015) were found to be as
strong as previously thought after a case-control
study using a scenario without semantic change.
Indeed, there is no directed path from polysemy or
frequency to semantic change in our causal graph,
but they are both influenced by word type. We leave
for future research to explore whether other word
categorizations, e.g., related to specific domains,
languages or phonetic aspects, sustain this result.

In addition, our analysis does not support the
claim that POS could underlie semantic change
(Dubossarsky et al., 2016). We note however that
as our vocabulary contains 50% slang words, the
results need not be consistent with results obtained
with a word sample drawn from standard language.

Moreover, in the causal structure we discover
that word polysemy has a direct effect on word
frequency, which is in line with previous linguis-
tic studies showing that a word’s frequency grows
in an S-shaped curve when it acquires new mean-
ings (Kroch, 1989; Feltgen et al., 2017), as well
as a known positive correlation between polysemy
and frequency (Lee, 1990; Casas et al., 2019). We
emphasize that this relationship is not merely an ar-
tifact of contextualized word representations being
affected by frequency (Zhou et al., 2021), since our
polysemy score does not rely on word representa-
tions as in Hamilton et al. (2016). Our approach
is however not without drawbacks – the polysemy
variable is collected from dictionaries, which may
be subjective in their assignments of word senses.

Our study, along with previous work on the dy-
namics of semantic change, is limited by mainly
considering distributional factors. Linguists have
suggested that sociocultural, psychological and po-
litical factors may drive word change dynamics
(Blank, 1999; Bochkarev et al., 2014), and slang
words are not an exception. Although challenging
to measure, the influence of such factors on slang
compared to nonslang words would be interesting
to examine in future work.

In conclusion, we believe that a causal analysis
as we have presented here provides a useful tool to
understand the underlying mechanisms of language.
Complementing the recent emergence of research
combining causal inference and NLP (Feder et al.,
2021), we have shown that tools from causality
can also be beneficial for gaining new insights in
diachronic linguistics.

8 Conclusion

In this work, we have analyzed the diachronic
mechanisms of slang language with a causal
methodology. This allowed us to establish that
a word’s type has a direct effect on its semantic
change and frequency shift, without mediating ef-
fects from other distributional factors.
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Figure 5: Frequency counts over years in Urban Dictio-
nary data

A Appendix – Fine-tuning with Urban
Dictionary data

A.1 Preprocessing
The full Urban Dictionary data contains 3, 534, 966
word definitions. In the dataset provided by Wil-
son et al. (2020), each entry contains a definition,
examples in which the word occurs, number of up-
votes & downvotes from website visitors, username
of the submitter and a timestamp. As the data is
crowd-sourced, many of these entries are noisy and
of low quality. We therefore filter the lower quality
definitions out before fine-tuning RoBERTa. Af-
ter performing data exploration, we came up with
two criteria that we found the most indicative of a
definition’s quality: the number of upvotes it got,
and its upvote/downvote ratio. The distribution of
upvotes, downvotes and the upvote/downvote ratios
in the dataset can be seen in Figure 6 below. We
also note that the number of submissions to Urban
Dictionary is relatively well-spread, see Figure 5.
This implies that we do not have a strong bias to-
wards more recently popularized slang terms in the
dataset, and that we do have representation of the
entire time span of interest; 2010− 2020.

We keep the entries having more than 20 up-
votes and an upvote/downvote ratio of at least 2.
This leaves us with 488, 010 Urban Dictionary en-
tries, out of which we randomly sample 100, 000
to reduce the computation time in the fine-tuning
process. We use both the definitions and the word
usage examples for fine-tuning, producing a final
dataset of 200, 000 sequences.

A.2 Training
We randomly split the data into 80% train and 20%
test, before training for 10 epochs with an early
stopping with patience 3. The batch size was set to
1 in the interest of memory constraints. Following
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Figure 6: The distributions of (a) upvote/downvote ra-
tio, (b) number of upvotes and number of downvotes
among definitions in the dataset in log-scale.

the setup from the pre-training stage as explained
in Liu et al. (2019), we use the Adam optimizer
(Kingma and Ba, 2015) with ε = 10−6, β1 = 0.9
& β2 = 0.98 and a linear learning rate decay. For
the learning rate, we argue that since the initial-
ized parameters should provide a solution which
is already close to the optimum when evaluating
on our dataset (our fine-tuning being the very same
masked language modeling task as RoBERTa has
already been trained on), the learning rate should be
smaller. Thus, instead of picking the learning rate
γ = 6 · 10−4 as was done by Liu et al. (2019), we
experiment with γ ∈ {10−4, 10−5, 10−6, 10−7}.
Training was done using an NVIDIA GeForce GTX
1080 8GB GPU and took around 1 to 1.5 days per
model.

B Appendix – Experiments on
SemEval-2020

B.1 Distribution-based Metrics
Method: In addition to the distance-based APD
metrics, we experiment with two distribution-based
ones, namely entropy difference (ED) & Jensen-
Shannon Divergence (JSD) (Giulianelli et al.,
2020).

We assume a categorical distribution over a set
of Kw word senses for word w and time period t.
The word sense swi of an occurrence i is then given
by:

swt
i ∼ Cat(αwt

1 , ..., αwt
Kw

) =: Pwt

Given two time periods of word sense distributions,
we define the ED metric as

|H(swt2)−H(swt1)|

with entropy H(·). The JSD is given as:

1

2
KL(Pwt1 ||M) +

1

2
KL(Pwt2 ||M)

with M = Pwt1+Pwt2

2 and KL(·||·) being the KL-
divergence.

We obtain the word sense distributions via a clus-
tering of the representations from both time periods.
We experiment with K-Means and Gaussian Mix-
ture Models (GMMs), the latter proposed due to
its ability to find more general cluster shapes. We
also experiment briefly with Affinity Propagation,
which has been used in previous semantic change
detection work (Martinc et al., 2020; Kutuzov and
Giulianelli, 2020; Montariol et al., 2021). How-
ever, we find it to be ill-suited for our purposes
since it results in an excessive amount of clusters in
comparison to how a human would classify word
senses.

For both K-means and GMM, we experiment
with selecting the optimal Kw ∈ [1, 10] through
two different procedures. The first one is a slight ex-
tension of the method from Giulianelli et al. (2020)
– we select the Kw which optimizes the silhouette
score (Rousseeuw, 1987) for a set of different ini-
tializations. Their approach does not consider the
single cluster case however, so we extend it by
setting Kw = 1 when the best silhouette score is
below a threshold of 0.1. For K-Means, we further
experiment with an automatic elbow method6 for

6See https://kneed.readthedocs.io/en/stable/index.html
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Figure 7: Clusters found with GMM from 2-
dimensional PCA representations of the word gag.

the sum of squared distances to the cluster cen-
troids, which decreases monotonically with the
number of clusters. We again select the cluster
assignments with the largest silhouette score for
multiple random initalizations. For GMM, we fur-
ther experiment with taking the model which corre-
sponds to the best Bayesian Information Criterion
(Schwarz, 1978).

Clustering examples: In Figure 7 we see three
clusters found for “gag.” They do not seem to
correspond to word senses however: An example
from the first cluster is “user i need a pic of you
begging if i ’ m boiling these because boiled eggs
make me gag . :d,” an example from the second
cluster is “lmao rt user user user so i tried that tuna
with cheese and my gag reflexes were in full affect
!” and an example from the third cluster is “gag
me with a spoon” – all seemingly referring to the
sensation of being about to vomit.

We show another example in Figure 8 of the
word “gnarly,” this time reduced to 2 dimensions
using UMAP. Gnarly has three meanings according
to the Online Slang Dictionary: It can either mean
very good / excellent / cool, gross / disgusting or
painful / dangerous. These three word senses are
not separated by UMAP and GMM, for instance
both “its a good thing one of my roomies is a dude
, who else would kill gnarly spiders in my room
when i start to hyperventilate” and “rt user bro my
wreck on the scooter was so gnarly like it was fun
i love shit like that . i wish i could’ve been on
jackass” are put in the first cluster.

B.2 Variance Explained by PCA components
Consider Figure 9 for example plots of how much
variance is preserved with PCA on the contextual-
ized representations.

Figure 8: Clusters found with GMM from 2-
dimensional UMAP representations of the word
gnarly.

Baseline Score
Combined APD PCA100 0.489

Kutuzov and Giulianelli (2020) 0.605
Kaiser et al. (2020) 0.461
Rother et al. (2020) 0.440

Table 2: Comparison to the three highest performing
previous works on the SemEval-2020 Task 1 subtask 2
for the English dataset.

B.3 Results

We further present more results of the experimen-
tation on the SemEval-2020 Task 1 Subtask 2. All
tables show the Spearman’s rank-order correlation
between the change metrics and the ground truths.

In Table 2 we compare our best performing setup
to the three best performing previous approaches on
SemEval-2020 Task 1 Subtask 2. We see that only
Kutuzov and Giulianelli (2020) display a higher
score, which might be partially explained by the
fact that they fine-tune their model on the SemEval
test corpora. We do not do this since our main goal
is not to beat state-of-the-art on the shared task,
but rather to find a good enough model to detect
semantic change in slang.

The results comparing the layer representations
can be observed in Table 3. As a side observation
we also note that the less isotropic first layer rep-
resentations seem to perform better than the more
isotropic last layer representations.

In Table 4 we present a comparison across differ-
ent layer representations for both APD-based and
distribution-based metrics. We observe that none
of the distribution-based metrics give significant
results, even when used with dimensionality reduc-
tion techniques. While a few of them do have a
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Figure 9: Explained variance by number of compo-
nents used in PCA for the slang words bromance and
whadja

slight positive correlation, we omit this approach
altogether. The APD results on the other hand show
a high correlation for many of the configurations,
providing an indication of the APD’s robustness in
detecting semantic change. We show a selection of
these in Table 6.

d2 APD dcos APD
First layer 0.22 0.234
Last layer 0.07 0.2

Sum of all layers 0.336∗ 0.332∗

Table 3: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different layer representations (p < 0.05).

Reps Cluster Metric Score p

First - APD d2 0.22 0.19
First - APD dcos 0.23 0.16
First K-Means ED −0.08 0.64
First K-Means JSD 0.06 0.73
First GMM ED 0.05 0.76
First GMM JSD 0.07 0.67

Last - APD d2 0.01 0.97
Last - APD dcos 0.20 0.24
Last K-Means ED 0.00 0.96
Last K-Means JSD 0.20 0.23
Last GMM ED −0.07 0.70
Last GMM JSD −0.10 0.57

All - APD d2 0.34 0.04
All - APD dcos 0.33 0.05
All K-Means ED 0.03 0.85
All K-Means JSD 0.09 0.60
All GMM ED −0.13 0.43
All GMM JSD 0.00 0.99

Table 4: Comparison across different layer represen-
tations with APDs and distribution metrics, with Kw

selected through silhouette scores.

C Appendix – Hybrid Words

We define hybrid words as words that have both
a slang and nonslang meaning, i.e., occurring in
both Online Slang Dictionary (OSD) and Merriam
Webster (MW). In this section, we compare the
polysemy, semantic change, frequency shift as well
as the absolute frequency change patterns of hybrid
words to slang and nonslangs.

Polysemy is collected for hybrid words from
OSD and MW separately. Since the MW dictio-
nary may also contain slang meanings, we filter
out definitions labeled as slang, informal or vul-
gar from these scores. The mean polysemy scores
of the slang words are (2.074 ± 2.568) and the
mean OSD polysemy scores of the hybrid words
are (2.580± 2.178), with a non-significant differ-
ence (p > 0.05) in distribution according to a per-
mutation test. This tells us that we are not skewing

1437



APD Score p

d2 0.336 0.042
dcos 0.332 0.045
d1 0.409 0.012

d2 and dcos 0.345 0.037
d2, dcos and d1 0.398 0.015

Table 5: Comparison across APD metrics for original
representations. Representations are sums across all
layers.

Dim APD Score p

PCA2 d2 −0.153 0.367
UMAP2 dcos −0.136 0.424
PCA5 dcos 0.209 0.215
PCA5 d2 and dcos 0.268 0.109

UMAP5 d2, dcos and d1 −0.146 0.39
PCA20 d2 and dcos 0.42 0.010
PCA50 d2 0.26 0.121
PCA50 dcos 0.394 0.016
PCA50 d2 and dcos 0.478 0.003
PCA50 d2, dcos and d1 0.344 0.037

UMAP50 d2 −0.158 0.35
PCA100 d1 0.297 0.074
PCA100 d2 and dcos 0.489 0.002

UMAP100 dcos −0.133 0.433

Table 6: Comparison across different dimensions with
PCA and UMAP for APD metrics. Representations are
sums across all layers.

the polysemy score distribution of the slang words
by excluding hybrid words.

As for the nonslang meanings of the hybrid
words, we get a mean polysemy score of (6.880±
6.080) which is significantly different (p < 0.001)
from those of the nonslang words (3.079± 2.780).
This is an interesting observation, implying that
had we included nonslang words with hybrid mean-
ing in our nonslang words sample, the difference
in polysemy between slang and nonslang words
would have been larger. Some example words from
this category with high MW polysemy scores in-
clude “split,” “down” and “walk.”

For the relative frequency changes, we present
the results as histograms in Figure 10. The fre-
quency changes in hybrid words seem to fall be-
tween those of the slang words and the nonslang
words. We observe a mean and standard deviation
of −0.154 and 0.608 respectively.

In addition, we compare the absolute relative fre-
quency changes as described in Section 5.3 across

Figure 10: Relative difference in frequency between
2020 and 2010, for slang, nonslang and hybrid words,
where a positive score corresponds to an increase in fre-
quency.

Figure 11: Absolute value of relative difference in fre-
quency between 2020 and 2010, for slang, nonslang
and hybrid words, where a larger score corresponds to
a larger absolute increase in frequency.

slang, nonslang and hybrid words. The histograms
are presented in Figure 11. We observe, respec-
tively, a mean and standard deviation of 1.246 &
1.180 for the slang words, 0.950 & 0.724 for the
nonslang words and 0.482 & 0.402 for the hybrid
words. The difference in mean is significant be-
tween the slang and nonslang words (p < 0.05),
indicating that slang words have undergone a larger
absolute change in frequency. Furthermore, we
note a highly significant difference (p < 0.001) in
the mean of the hybrid words compared to both the
slang and nonslang word means.

We compare the normalized semantic change
scores between the slang, nonslang and hybrid
words. Histograms over the semantic change scores
are shown in Figure 12. We observe that the dis-
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Figure 12: Difference in semantic change score be-
tween 2010 and 2020 for slang, nonslang and hybrid
words, where a larger score corresponds to a more pro-
nounced semantic change.

tribution over hybrid change scores seem again to
be centered between the slang and nonslang dis-
tributions, with mean 0.621 ± 0.073. According
to a permutation text, there is a significant differ-
ence in semantic change both between hybrid and
slang words (p < 0.001) and between hybrid and
nonslang words (p < 0.05).

D Appendix – Causal Analysis

D.1 Preliminary on Constraint-based Causal
Discovery

Assumptions The constraint-based causal dis-
covery algorithms make use of two main as-
sumptions, namely the global Markov assump-
tion and the faithfulness assumption. The global
Markov property (Peters et al., 2017) holds if all d-
separations (defined below) encoded in the causal
graph imply conditional independencies in the dis-
tribution over the variables contained in the graph.
More formally, for a graph G = (V,E) and distri-
bution P over the variables XV it holds that for any
disjoint subsets A,B and C of V

XA ⊥d XB|XC , in G

⇒ XA ⊥⊥ XB|XC , in P

The faithfulness assumption states the converse
of the global Markov assumption: All conditional
independencies in the distribution are encoded by
d-separations in the graph.

d-separation Two nodes A,B ∈ V are said to
be d-separated (Geiger et al., 1990), by a set of
nodes Z ⊂ V if for all paths between A and B, at
least one of the following holds:

• The path contains a directed
chain A · ·· → C → · · ·B or
A · ·· ← C ← · · ·B such that C ∈ Z

• The path contains a forkA · ·· ← C → · · ·B
such that C ∈ Z

• The path contains a collider
A · ·· → C ← · · ·B such that C /∈ Z
or C ′ /∈ Z ∀C ′ ∈ desc(C) (i.e., neither C
nor any of its descendants is in Z)

We would then denote XA ⊥d XB|XZ .

Markov Equivalence Constraint-based algo-
rithms use conditional independence tests in order
to identify a Markov equivalence class of DAGs.
Two DAGs are defined to be Markov equivalent
if they have the same skeleton (edges omitting di-
rection) and v-structures. The three vertices A,B
and C form a v-structure if A → B ← C and A
and C are not directly connected by an edge. Alter-
natively, two DAGs are Markov equivalent if they
describe the same set of d-separation relationships.
A Markov equivalence class is the set of all Markov
equivalent DAGs.
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Figure 13: Diagnostic plots for continuous variables,
displaying approximate Gaussian shape.

PC Algorithm One common constraint-based al-
gorithm is the PC algorithm (Spirtes et al., 2000).
Starting with a full DAG, it eliminates an edge be-
tween adjacent vertices i and j if Xi and Xj are
conditionally independent given some subset of
the remaining variables. This process, including
the conditional independence tests, is conducted
iteratively starting from a conditioning set of size
k = 0 to k = |V | − 2. In addition to the global
Markov and faithfulness assumptions, the PC algo-
rithm also assumes causal sufficiency, namely the
absence of unobserved confounders. With these
assumptions satisfied and access to correct condi-
tional independence relations, the PC algorithm is
guaranteed to be sound, complete and uniformly
consistent (Kalisch and Bühlmann, 2007).

PC-stable PC-stable is an order-independent ex-
tension with the same guarantees as the original
(Colombo and Maathuis, 2014).

D.2 Diagnostic Plots

In Figure 13 we present the density and Q-Q plots
for semantic change score, log of word frequency
and log of frequency change.

D.3 Sensitivity Analysis on Polysemy

Polysemy is a discrete variable which we treat as
an ordered factor in the analysis by splitting it into
categories. Since polysmey can be plausibly cat-
egorized in different ways, we experiment with 9
different categorizations of it and examine the sta-
bility of the resulting graphs. For each categoriza-

Figure 14: DAG of causal relationships, with the per-
centage of experiments that found each edge, across
different configurations of α and different categoriza-
tions of the polysemy score. Solid edges appeared in
100% of the output graphs.

tion, we run PC-stable with the three significance
levels α ∈ {0.05, 0.03, 0.01}. In Figure 14 we
present the results of this sensitivity analysis. We
see that the edges between word type and polysemy,
from word type to frequency change, as well as the
edge from polysemy to frequency, are apparent in
all of the configurations. The edge from word type
to semantic change is apparent in 21/27 (77.8%) of
the configurations. We also observe a few edges
very rarely, and therefore label them as noise and
do not take them into account for the causal analy-
sis. These consist of an edge from the POS Noun
to semantic change in 3/27 (11.1%) of the config-
urations, and edges from polysemy to frequency
shift and from polysemy to semantic change each
apparent in 1/27 (3.7%) of the configurations.

By inferring the causal graph from a set of cate-
gorizations, we make up for the possible noise in
the polysemy variable and ensure that the graph
is not sensitive to small variations in the words’
polysemy scores.

D.4 Causal Inference
Given the causal DAG in Figure 4, we derive the ex-
pression for the average causal effect of word type
on semantic change. Define the following random
variables: T = word type, X = polysemy, Y =
frequency, Z = frequency shift and S = semantic
change, with respective probability mass functions
PT & PX and probability density functions fY , fZ
& fS .

Note that the possible values for T lie in
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{slang, nonslang}. By the truncated factorization
for the connected component of the causal DAG
(i.e., excluding POS), we have that

P(s, t, x, y, z|do(T = t′)) =

fY |X(y|x)fZ|T (z|t)fS|T (s|t)PX|T (x|t)1{t=t′}

Marginalizing over T , we get

P(s, x, y, z|do(T = t′)) =

= fY |X(y|x)fZ|T (z|t′)fS|T (s|t′)PX|T (x|t′)

Next, marginalize over the continuous random vari-
ables Y and Z to get

P(s, x|do(T = t′)) =

∫
y

∫
z
fY |X(y|x)fZ|T (z|t′)fS|T (s|t′)PX|T (x|t′)dzdy =

∫
y
fY |X(y|x)fS|T (s|t′)PX|T (x|t′)

(∫
z
fZ|T (z|t′)dz

)
︸ ︷︷ ︸

=1

dy =

fS|T (s|t′)PX|T (x|t′)
∫
y
fY |X(y|x)dy︸ ︷︷ ︸

=1

=

fS|T (s|t′)PX|T (x|t′)

Finally

P(s|do(T = t′)) =

∑
x

fS|T (s|t′)PX|T (x|t′) = fS|T (s|t′)

Taking the expectation, we get

E[S|do(T = t′)] = ES|T [S|t′]

E Appendix – Selected Words

In Appendix E we list all the slang and nonslang
words used in this study.

Slang Nonslang Hybrid
a-list admitting annihilated

badass adulterous balling
blankie agenda bastard
bling allotted beef

blowjob anticlockwise bloody
blumpkin avoiders bomb
bonehead awesome book

bro banzai bookmark
bromance bright booty
bumfuck butane bounce
bupkis calorie bowl
chillax chug brains
chones committeeman candle
colitas competencies chicken
compo contenders classic

conniption conventionally crock
crappy copyediting decompress
dang deathblow dim
dis decomposition dirt

dogg despoil dose
duckface didot down
dudette doubleheader egg
fanboy echo eye

fap enhancements fat
gangsta epilator fence
glitterati estimated fire

gorp fiddled fluffer
gotsta galavant foxy
gunt glutton freckle

hasbian greeting fruitcake
horribad grisly gag
jabroni groans ghost
jalopy haircut gig

jerkwad heaviest gnarly
lame-o humblest god
lemme ignites gridlock
lowkey inclusive grip

mcdreamy intimidator grub
meme jugglers gumby
mosey jute hanger

motherfucking lawlessness head
mozzie legalist hell
netizen milepost hitter
nuker mistreatment item
pedo moldovan jammed
peeps morphology jill

plastered mushroom jock
poopy nonskid kick

preemie outlawing kosher
pregos pantsuit locks

prettyful peppy mad
rapey performative mine1441



Slang Nonslang Hybrid
rehab postural money
relly protocol move
roofie repentant mule

roshambo rump pecker
sesh sabertooth peckish
shart sailor peeper

shiesty scallywag pig
shtick scheme pinch
sicc sculptured plums
sinse scummiest postal

skeevy shield rad
skyrocket shylock ratchet

slore snug roadkill
snitch squall sausage
soused steeple scissor
spam strap scoot
spec superabundance scream

spec-ops sympathizer screaming
sucky telogen smoked
tenner terrifies sneak

thingamabob they split
trisexual trampolining squawk
tweeker underpainting stat

twit underrated stew
whadja unicorn streak

workaround unlike styling
wut unmatched swap

zooted upgrade thick
vanadium thirsty

threads
tool
toots

tweaker
walk

walkie
whippet
windy

wrecked
zombie
zounds
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