
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
System Demonstrations, pages 35 - 43

May 22-27, 2022 ©2022 Association for Computational Linguistics

TextPruner: A Model Pruning Toolkit for Pre-Trained Language Models

Ziqing Yang†, Yiming Cui‡†, Zhigang Chen†
†State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, China
‡Research Center for Social Computing and Information Retrieval (SCIR),

Harbin Institute of Technology, Harbin, China
†{zqyang5,ymcui,zgchen}@iflytek.com

‡ymcui@ir.hit.edu.cn

Abstract

Pre-trained language models have been pre-
vailed in natural language processing and be-
come the backbones of many NLP tasks, but
the demands for computational resources have
limited their applications. In this paper, we
introduce TextPruner, an open-source model
pruning toolkit designed for pre-trained lan-
guage models, targeting fast and easy model
compression. TextPruner offers structured post-
training pruning methods, including vocabulary
pruning and transformer pruning, and can be
applied to various models and tasks. We also
propose a self-supervised pruning method that
can be applied without the labeled data. Our ex-
periments with several NLP tasks demonstrate
the ability of TextPruner to reduce the model
size without re-training the model. 1

1 Introduction

Large pre-trained language models (PLMs) (De-
vlin et al., 2019; Liu et al., 2019) have achieved
great success in a variety of NLP tasks. However,
it is difficult to deploy them for real-world applica-
tions where computation and memory resources are
limited. Reducing the pre-trained model size and
speeding up the inference have become a critical
issue.

Pruning is a common technique for model com-
pression. It identifies and removes redundant or
less important neurons from the networks. From
the view of the model structure, pruning methods
can be categorized into unstructured pruning and
structured pruning. In the unstructured pruning,
each model parameter is individually removed if
it reaches some criteria based on the magnitude
or importance score (Han et al., 2015; Zhu and
Gupta, 2018; Sanh et al., 2020). The unstructured
pruning results in sparse matrices and allows for
significant model compression, but the inference

1The source code and the documentation are available at
http://textpruner.hfl-rc.com

speed can hardly be improved without specialized
devices. While in the structured pruning, rows or
columns of the parameters are removed from the
weight matrices (McCarley, 2019; Michel et al.,
2019; Voita et al., 2019; Lagunas et al., 2021; Hou
et al., 2020). Thus, the resulting model speeds up
on the common CPU and GPU devices.

Pruning methods can also be classified into
optimization-free methods (Michel et al., 2019)
and the ones that involve optimization (Frankle and
Carbin, 2019; Lagunas et al., 2021). The latter usu-
ally achieves higher performance, but the former
runs faster and is more convenient to use.

Pruning PLMs has been of growing interest.
Most of the works focus on reducing transformer
size while ignoring the vocabulary (Abdaoui et al.,
2020). Pruning vocabulary can greatly reduce the
model size for multilingual PLMs.

In this paper, we present TextPruner, a model
pruning toolkit for PLMs. It combines both trans-
former pruning and vocabulary pruning. The pur-
pose of TextPruner is to offer a universal, fast, and
easy-to-use tool for model compression. We ex-
pect it can be accessible to users with little model
training experience. Therefore, we implement the
structured optimization-free pruning methods for
its convenient use and fast computation. Pruning
a base-sized model only requires several minutes
with TextPruner. TextPruner can also be a useful
analysis tool for inspecting the importance of the
neurons in the model.

TextPruner has the following highlights:
• TextPruner is designed to be easy to use. It

provides both Python API and Command Line
Interface (CLI). Working with either of them
requires only a couple of lines of simple code.
Besides, TextPruner is non-intrusive and com-
patible with Transformers (Wolf et al., 2020),
which means users do not have to change their
models that are built on the Transformers li-
brary.

35

http://textpruner.hfl-rc.com

• TextPruner works with different models and
tasks. It has been tested on tasks like text
classification, machine reading comprehen-
sion (MRC), named entity recognition (NER).
TextPruner is also designed to be extensible
for other models.

• TextPruner is flexible. Users can control the
pruning process and explore pruning strate-
gies via tuning the configurations to find the
optimal configurations for the specific tasks.

2 Pruning Methodology

We briefly recall the multi-head attention (MHA)
and the feed-forward network (FFN) in the trans-
formers (Vaswani et al., 2017). Then we describe
how we prune the attention heads and the FFN
based on the importance scores.

2.1 MHA and FFN

Suppose the input to a transformer is X ∈ Rn×d

where n is the sequence length and d is the hidden
size. the MHA layer with Nh heads is parameter-
ized by WQ

i ,WK
i ,W V

i ,WO
i ∈ Rdh×d

MHA(X) =

Nh∑

i

Att
WQ

i ,WK
i ,W V

i ,WO
i

(X) (1)

where dh = d/Nh is the hidden size of each
head. Att

WQ
i ,WK

i ,W V
i ,WO

i
(X) is the bilinear self-

attention

Att
WQ

i ,WK
i ,W V

i ,WO
i

(X) =

softmax(
X(WQ

i)>WK
i X>√

d
)X(W V

i)>WO
i

(2)

Each transformer contains a fully connected
feed-forward network (FFN) following MHA. It
consists of two linear transformations with a GeLU
activation in between

FFNW1,b1,W2,b2(X) =

GeLU(XW1 + b1)W2 + b2 (3)

where W1 ∈ Rd×dff , W2 ∈ Rdff×d, b1 ∈ Rdff ,
b2 ∈ Rd. dff is the FFN hidden size. The
adding operations are broadcasted along the se-
quence length dimension n.

2.2 Pruning with Importance Scores
With the hidden size fixed, The size of a trans-
former can be reduced by removing the attention
heads or removing the intermediate neurons in the
FFN layer (decreasing dff , which is mathemat-
ically equal to removing columns from W1 and
rows from W2). Following Michel et al. (2019),
we sort all the attention heads and FFN neurons ac-
cording to their proxy importance scores and then
remove them iteratively.

A commonly used importance score is the sen-
sitivity of the loss with respect to the values of the
neurons. We denote a set of neurons or their out-
puts as Θ. Its importance score is computed by

IS(Θ) = Ex∼X

∣∣∣∣
∂L(x)

∂Θ
Θ

∣∣∣∣ (4)

The expression in the absolute sign is the first-order
Taylor approximation of the loss L around Θ = 0.
Taking Θ to be the output of an attention head hi,
IS(Θ) gives the importance score of the head i;
Taking Θ to be the set of the i-th column of W1,
i-the row of W2 and the i-th element of b1, IS(Θ)
gives the importance score of the i-th intermeidate
neuron in the FFN layer.

A lower importance score means the loss is less
sensitive to the neurons. Therefore, the neurons
are pruned in the order of increasing scores. In
practice, we use the development set or a subset of
the training set to compute the importance score.

2.3 Self-Supervied Pruning
In equation (4), the loss L usually is the training
loss. However, there can be other choices of L. We
propose to use the Kullback–Leibler divergence to
measure the varitaion of the model outputs:

LKL(x) = KL(stopgrad(q(x))||p(x)) (5)

where q(x) is the original model prediction distribu-
tion and p(x) is the to-be-pruned model prediction
distribution. The stopgrad operation is used to
stop back-propagating gradients. An increase in
LKL indicates an increase in the diviation of p(x)
from the original prediction q(x). Thus the gradient
of LKL reflects the sensitivity of the model to the
value of the neurons. Evaluation of LKL does not
require label information. Therefore the pruning
process can be performed in a self-supervised way
where the unpruned model provides the soft-labels
q(x). We call the method self-supervised prun-
ing. TextPruner supports both supervised pruning

36

Figure 1: Three pruning modes in TextPruner.

(where L is the training loss) and self-supervised
pruning. We will compare them in the experiments.

3 Overview of TextPruner

3.1 Pruning Mode

As illustrated in Figure 1, there are three pruning
modes In TextPruner.

Vocabulary Pruning The pre-trained models
have a large vocabulary, but some tokens in the
vocabulary rarely appear in the downstream tasks.
These tokens can be removed to reduce the model
size and accelerate the training speed of the tasks
that require predicting probabilities over the whole
vocabulary. In this mode, TextPruner reads and to-
kenizes an input corpus. TextPruner goes through
the vocabulary and checks if the token in the vocab-
ulary has appeared in the text file. If not, the token
will be removed from both the model’s embedding
matrix and the tokenizer’s vocabulary.

Transformer Pruning Previous studies (Michel
et al., 2019; Voita et al., 2019) have shown that
not all attention heads are equally important in the
transformers, and some of the attention heads can
be pruned without performance loss (Cui et al.,
2022). Thus, Identifying and removing the least
important attention heads can reduce the model
size and have a small impact on performance.

In this mode, TextPruner reads the examples and
computes the importance scores of attention heads
and the feed-forward networks’ neurons. The heads
and the neurons with the lowest scores are removed
first. This process is repeated until the model has
been reduced to the target size. TextPruner also
supports custom pruning from user-provided masks
without computing the importance scores.

Pipeline Pruning In this mode, TextPruner per-
forms transformer pruning and vocabulary pruning
automatically to fully reduce the model size.

3.2 Pruners

The pruners are the cores of TextPruner,
and they perform the actual pruning process.
There are three pruner classes, corresponding
to the three aforementioned pruning modes:
VocabularyPruner, TransformerPruner and
PipelinePruner. Once the pruner is intialized, call
the pruner.prune(. . .) to start pruning.

3.3 Configurations

The following configuration objects set the pruning
strategies and the experiment settings.

GeneralConfig It sets the device to use (CPU or
CUDA) and the output directory for model saving.

VocabularyPruningConfig It sets the token
pruning threshold min_count and whether prun-
ing the LM head prune_lm_head. The token
is to be removed from the vocabulary if it ap-
pears less than min_count times in the corpus; if
prune_lm_head is true, TextPruner prunes the
linear transformation in the LM head too.

TransformerPruningConfig The transformer
pruning parameters include but not are limited to:

• pruning_method can be mask or iterative.
If it is iterative, the pruner prunes the model
based on the importance scores; if it is mask,
the pruner prunes the model with the masks
given by the users.

• target_ffn_size denotes the average
FFN hidden size dff per layer.

• target_num_of_heads denotes the aver-
age number of attention heads per layer.

• n_iters is number of pruning iterations.
For example, if the original model has Nh

heads per layer, the target model has N ′h
heads per layer, the pruner will prune (Nh −
N ′h)/n_iters heads on average per layer per
iteration. It also applies to the FFN neurons.

• If ffn_even_masking is true, all the FFN
layers are pruned to the same size dff ; other-
wise, the FFN sizes vary from layer to layer
and their average size is dff .

• If head_even_masking is true, all the
MHAs are pruned to the same number of
heads; otherwise, the number of attention
heads varies from layer to layer.

37

Figure 2: The workflow of TextPruner. The yellow blocks are the general arguments for any pruners. The green
blocks should be provided for the TransformerPruner and PipelinePruner. The blue blocks should be provided for
the VocabularyPruner and PipelinePruner.

Figure 3: A typical TextPruner workflow for trans-
former pruning and vocabulary pruning.

• If ffn_even_masking is false, the FFN
hidden size of each layer is restricted to be
a multiple of multiple_of. It make the
model structure friendly to the device that
works most efficiently when the matrix shapes
are multiple of a specific size.

• If use_logits is true, self-supervised prun-
ing is enabled.

All the configurations can be initialized manu-
ally in python scripts or from JSON files (for the
CLI, the configurations can only be initialized from
the JSON files). An example of the configuration
in a Python script is shown in Figure 3.

3.4 Other utilities
TextPruner contains diagnostic tools such as sum-
mary which inspects and counts the model pa-
rameters, and inference_time which measures the
model inference speed. Readers may refer to the

examples in the repository to see their usages.

3.5 Usage and Workflow

TextPruner provides both Python API and CLI. The
typical workflow is shown in Figure 2. Before call-
ing or Initializing TextPruner, users should prepare:

1. A trained a model that needs to be pruned.
2. For vocabulary pruning, a text file that defines

the new vocabulary.
3. For transformer pruning, a python script file

that defines a dataloader and an adaptor.
4. For pipeline pruning, both the text file and the

python script file.

Adaptor It is a user-defined function that takes
the model outputs as the argument and returns the
loss or logits. It is responsible for interpreting the
model outputs for the pruner. If the adaptor is
None, the pruner will try to infer the loss from the
model outputs.

Pruning with Python API First, initialize
the configurations and the pruner, then call
pruner.prune with the required arguments, as
shown in Figure 2. Figure 3 shows an example.
Note that we have not constructed the GeneralCon-
fig and VocabularyPruningConfig. The pruners will
use the default configurations if they are not speci-
fied, which simplifies the coding.

Pruning with CLI First create the configura-
tion JSON files, then run the textpruner-cli.
Pipeline pruning example:

textpruner-cli \
--pruning_mode pipeline \
--configurations vocab.json trm.json \
--model_class BertForClassification \
--tokenizer_class BertTokenizer \
--model_path models/ \
--vocabulary texts.txt \
--dataloader_and_adaptor dataloader.py

38

Model Vocabulary size Model size Dev (en) Dev (zh) Test (en) Test (zh)

XLM-R 250002 1060 MB (100%) 84.8 75.1 85.7 75.0

+ Vocabulary Pruning on en 26653 406 MB (38.3%) 84.6 - 85.9 -
+ Vocabulary Pruning on zh 23553 397 MB (37.5%) - 74.7 - 74.5
+ Vocabulary Pruning on en and zh 37503 438 MB (41.3%) 84.8 74.3 85.8 74.5

Table 1: The accuracy scores (×100%) of models with the pruned vocabulary on XNLI dev set and test set.

Structure 12 10 8 6

3072 100%
(1.00x)

89%
(1.08x)

78%
(1.19x)

67%
(1.30x)

2560 94%
(1.08x)

83%
(1.18x)

72%
(1.29x)

61%
(1.44x)

2048 89%
(1.17x)

78%
(1.28x)

67%
(1.43x)

56%
(1.63x)

1536 83%
(1.29x)

72%
(1.42x)

61%
(1.63x)

50%
(1.90x)

Table 2: Transformer sizes (listed as percentages) and
speedups (listed in the parentheses) of different struc-
tures relative to the base model (12, 3072).

3.6 Computational Cost

Vocabulary Pruning The main computational
cost in vocabulary pruning is tokenization. This
process will take from a few minutes to tens of
minutes, depending on the corpus size. How-
ever, the computational cost is negligible if the
pre-tokenized text is provided.

Transformer Pruning The main computational
cost in transformer pruning is the calculation of im-
portance scores. It involves forward and backward
propagation of the dataset. This cost is proportional
to n_iters and dataset size. As will be shown
in Section 4.2, in a typical classification task, a
dataset with a few thousand examples and setting
n_iters around 10 can lead to a decent perfor-
mance. This process usually takes several minutes
on a modern GPU (e.g., Nvidia V100).

3.7 Extensibility

TextPruner supports different pre-trained models
and the tokenizers via the model structure defi-
nitions and the tokenizer helper functions regis-
tered in the MODEL_MAP dictionary. Updating
TextPruner for supporting more pre-trained models
is easy. Users need to write a model structure def-
inition and register it to the MODEL_MAP, so that
the pruners can recognize the new model.

4 Experiments

In this section, we conduct several experiments to
show TextPruner’s ability to prune different pre-
trained models on different NLP tasks. We mainly
focus on the text classification task. We list the re-
sults on the MRC task and NER task with different
pre-trained models in the Appendix.

4.1 Dataset and Model
We use the Cross-lingual Natural Language Infer-
ence (XNLI) corpus (Conneau et al., 2018) as the
text classification dataset and build the classifica-
tion model based on XLM-RoBERTa (Conneau
et al., 2020). The model is base-sized with 12
transformer layers with FFN size 3072, hidden size
768, and 12 attention heads per layer. Since XNLI
is a multilingual dataset, we fine-tune the XLM-R
model on the English training set and test it on the
English and Chinese test sets to evaluate both the
in-language and zero-shot performance.

4.2 Results on Text Classification
Effects of Vocabulary Pruning As XLM-R is a
multilingual model, We conduct vocabulary prun-
ing on XLM-R with different languages, as shown
in Table 1. We prune XLM-R on the training set
of each language, i.e., we only keep the tokens that
appear in the training set.

When pruning on the English and Chinese train-
ing sets separately, the performance drops slightly .
After pruning on both training sets, the model size
still can be greatly reduced by about 60% while
keeping a decent performance.

Vocabulary pruning is an effective method for
reducing multilingual pre-trained model size, and it
is especially suitable for tailoring the multilingual
model for specific languages.

Effects of Transformer Pruning For simplicity,
we use the notation (H,F) to denote the model
structure, where H is the average number of atten-
tion heads per layer, F is the average FFN hidden
size per layer. With this notation, the original (un-
pruned) model is (12, 3072). Before we show the

39

Figure 4: The Performance of the pruned models with
different structures on the test sets. The x-axis repre-
sents different average numbers of attention heads; the
y-axis represents different average FFN sizes. Left col-
umn: the accuracy scores on the English test set; Right
column: the accuracy scores on the Chinese test set.
Models in the first row have homogenous structures,
while models in the second row do not. UHF stands for
uneven heads and FFN neurons.

results on the specific task, we list the transformer
sizes and their speedups of different target struc-
tures relative to the unpruned model (12, 3072) in
the Table 2.

We compute the importance scores on the En-
glish development set. The number of iterations
niters is set to 16. We report the mean accuracy of
five runs. The performance on English and Chinese
test sets are shown in Figure 7. The top-left corner
of each heatmap represents the performance of the
original model. The bottom right corner represents
the model (6, 1536), which contains half attention
heads and half FFN neurons.

The models in heatmaps from the first row have
homogenous structures: each transformer in the
model has the same number of attention heads and
same FFN size, while the models in the bottom
heatmaps have uneven numbers of attention heads
and FFN sizes in transformers. We use the abbre-
viation UHF (Uneven Heads and FFN neurons) to
distinguish them from homogenous structures. We
see that by allowing each transformer to have dif-
ferent sizes, the pruner has more freedom to choose
the neurons to prune, thus the UHF models perform
better than the homogenous ones.

Note that the model is fine-tuned on the English
dataset. The performance on Chinese is zero-shot.
After pruning on the English development set, the

Figure 5: Model Performance on the English test set
with different number of iterations.

drops in the performance on Chinese are not larger
than the drops in the performance on English. It
means the important neurons for the Chinese task
remain in the pruned model. In the multilingual
model, the neurons that deal with semantic under-
standing do not specialize in specific languages but
provide cross-lingual understanding abilities.

Figure 5 shows how niters affects the perfor-
mance. We inspect both the non-UHF model
(6, 1536) and the UHF model (6, 1536)UHF. The
solid lines denote the average performance over
the five runs. The shadowed area denotes the stan-
dard deviation. In all cases, the performance grows
with the niters. Pruning with only one iteration
is a bad choice and leads to very low scores. We
suggest setting niters to at least 8 for good enough
performance.

In Figure 5 we also compare the supervised
pruning (with L being the cross-entropy loss
with the ground-truth labels) and the proposed
self-supervised pruning (with L being the KL-
divergence Eq (5)) . Although no label information
is available, the self-supervised method achieves
comparable and sometimes even higher results.

How much data are needed for model pruning?
To answer this question, we randomly sample 10%,
20%, . . ., 90%, 100% examples from the English
development set for computing importance scores.
We inspect the (6, 1536)UHF model. Each experi-
ment has been run five times. The results are shown

40

Figure 6: Model Performance on the test set with dif-
ferent number of examples for computing importance
scores. Left y-axis: accuracy on Enligh. Right y-axis:
accuracy on Chinese.

in Figure 6. With about 70% examples (about 1.7K
examples) from the development set, the pruned
model achieves a performance that is nearly com-
parable with the model pruned with the full devel-
opment set (2490 examples).

5 Conclusion and Future Work

This paper presents TextPruner, a model prun-
ing toolkit for pre-trained models. It leverages
optimization-free pruning methods, including vo-
cabulary pruning and transformer pruning to re-
duce the model size. It provides rich configuration
options for users to explore and experiment with.
TextPruner is suitable for users who want to prune
their model quickly and easily, and it can also be
used for analyzing pre-trained models by pruning,
as we did in the experiments.

For future work, we will update TextPruner to
support more pre-trained models, such as the gen-
eration model T5 (Raffel et al., 2020). We also
plan to combine TextPruner with our previously
released knowledge distillation toolkit TextBrewer
(Yang et al., 2020) into a single framework to pro-
vide more effective model compression methods
and a uniform interface for knowledge distillation
and model pruning.

Acknowledgements

This work is supported by the National Key Re-
search and Development Program of China via
grant No. 2018YFB1005100.

References
Amine Abdaoui, Camille Pradel, and Grégoire Sigel.

2020. Load what you need: Smaller versions of

mutililingual BERT. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 119–123, Online. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Yiming Cui, Wei-Nan Zhang, Wanxiang Che, Ting Liu,
Zhigang Chen, and Shijin Wang. 2022. Multilin-
gual multi-aspect explainability analyses on machine
reading comprehension models. iScience, 25(4).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic BERT
with adaptive width and depth. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10619–10629, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

41

https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/https://doi.org/10.1016/j.isci.2022.104176
https://doi.org/https://doi.org/10.1016/j.isci.2022.104176
https://doi.org/https://doi.org/10.1016/j.isci.2022.104176
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829

Roberta: A robustly optimized bert pretraining ap-
proach.

J. S. McCarley. 2019. Pruning a bert-based question
answering model. CoRR, abs/1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 14014–14024.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang
Che, Ting Liu, Shijin Wang, and Guoping Hu. 2020.
TextBrewer: An Open-Source Knowledge Distilla-
tion Toolkit for Natural Language Processing. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demon-
strations, pages 9–16. Association for Computational
Linguistics.

Michael Zhu and Suyog Gupta. 2018. To prune, or
not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings. OpenReview.net.

A Datasets and Models

We experiment with different pre-trained models
to test TextPruner’s ability to prune different mod-
els. For the MRC task, we use SQuAD (Rajpurkar
et al., 2016) dataset and RoBERTa (Liu et al.,
2019) model; For the NER task, we use CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003) and
BERT (Devlin et al., 2019) model. All the models
are base-sized, i.e., 12 transformer layers with a
hidden size of 768, an FFN size of 3072, and 12
attention heads per layer.

B Transformer Pruning on MRC

We compute the importance scores on a subset of
the training set (5120 examples). The F1 score
on the SQuAD development set is listed in Table
3. (12, 3072) is the unpruned model. The per-
formance grows with the niters. The number of
iterations also plays an important role on model
performance in the SQuAD task. We also see that
pruning with only one iteration is a bad choice and
leads to low scores. Setting niters to at least 8
achieves good enough performance.

C Transformer Pruning on NER

We compute the importance scores on the CoNLL
2003 development set. The F1 score on the test
is listed in Table 4. We also see large gaps in
performance between niters = 4 and niters = 8.

The performance of the pruned models with dif-
ferent structures is shown in Figure 7. We only con-
sider the UHF case for it can achieve the best over-
all performance. The number of iterations niters is
set to 16.

42

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1910.06360
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.acl-demos.2
https://www.aclweb.org/anthology/2020.acl-demos.2
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM

Model 1 2 4 8 16

(12, 3072) 91.4

(8, 2048) 76.4 80.3 81.9 82.9 82.5
(8, 2048)UHF 87.5 86.4 87.6 88.3 88.4
(6, 1536) 12.8 42.6 49.5 51.5 56.5
(6, 1536)UHF 47.2 55.6 66.1 74.1 75.2

Table 3: The F1 score on SQuAD. Each score is aver-
aged over five runs. Different columns represent results
under different number of iterations. We bold the best
F1 in each row.

Model 1 2 4 8 16 32

(12, 3072) 91.3

(8, 2048) 88.5 88.4 88.7 89.2 89.2 89.4
(8, 2048)UHF 81.8 90.0 90.6 90.7 90.8 90.8
(6, 1536) 33.6 56.2 62.4 80.5 83.4 84.1
(6, 1536)UHF 9.8 67.6 80.2 86.2 87.0 87.3

Table 4: The F1 score on CoNLL 2003. Each score is
averaged over five runs.

Figure 7: The Performance of the pruned models with
different structures on the CoNLL 2003 test set. Each
score is averaged over five runs.

43

