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Abstract

Despite its importance, the time variable has
been largely neglected in the NLP and language
model literature. In this paper, we present
TimeLMs, a set of language models specialized
on diachronic Twitter data. We show that a con-
tinual learning strategy contributes to enhanc-
ing Twitter-based language models’ capacity to
deal with future and out-of-distribution tweets,
while making them competitive with standard-
ized and more monolithic benchmarks. We also
perform a number of qualitative analyses show-
ing how they cope with trends and peaks in ac-
tivity involving specific named entities or con-
cept drift. TimeLMs is available at https://
github.com/cardiffnlp/timelms.

1 Introduction

Neural language models (LMs) (Devlin et al., 2019;
Radford et al., 2019; Liu et al., 2019) are today a
key enabler in NLP. They have contributed to a
general uplift in downstream performance across
many applications, even sometimes rivaling human
judgement (Wang et al., 2018, 2019), while also
bringing about a new paradigm of knowledge ac-
quisition through pre-training. However, currently,
both from model development and evaluation stand-
points, this paradigm is essentially static, which
affects both the ability to generalize to future data
and the reliability of experimental results, since
it is not uncommon that evaluation benchmarks
overlap with pre-training corpora (Lazaridou et al.,
2021). As an example, neither the original ver-
sions of BERT and RoBERTa are up to date with
the current coronavirus pandemic. This is clearly
troublesome, as most of the communication in re-
cent years has been affected by it, yet these models
would barely know what we are referring to when
we talk about COVID-19 or lockdown, to name just
a few examples. The lack of diachronic special-
ization is especially concerning in contexts such
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as social media, where topics of discussion change
often and rapidly (Del Tredici et al., 2019).

In this paper, we address this issue by sharing
with the community a series of time-specific LMs
specialized to Twitter data (TimeLMs). Our initia-
tive goes beyond the initial release, analysis and ex-
perimental results reported in this paper, as models
will periodically continue to be trained, improved
and released.

2 Related Work

There exists a significant body of work on deal-
ing with the time variable in NLP. For instance,
by specializing language representations derived
from word embedding models or neural networks
(Hamilton et al., 2016; Szymanski, 2017; Rosen-
feld and Erk, 2018; Del Tredici et al., 2019; Hof-
mann et al., 2021). Concerning the particular case
of LMs, exposing them to new data and updating
their parameters accordingly, also known as contin-
ual learning, is a promising direction, with an es-
tablished tradition in machine learning (Lopez-Paz
and Ranzato, 2017; Lewis et al., 2020; Lazaridou
et al., 2021; Jang et al., 2021). Other works, how-
ever, have proposed to enhance BERT-based topic
models with the time variable (Grootendorst, 2020).
With regards to in-domain specialization, there are
numerous approaches that perform domain adap-
tation by pre-training a generic LM on specialized
corpora. A well-known case is the biomedical do-
main, e.g., BioBERT (Lee et al., 2020), SciBERT
(Beltagy et al., 2019) or PubMedBERT (Gu et al.,
2021). In addition to these approaches to specialize
language models, there have been similar temporal
adaptation analyses to the one presented in our pa-
per (Agarwal and Nenkova, 2021; Jin et al., 2021).
In particular, these works showed that training lan-
guage models in recent data can be beneficial, an
improvement that was found to be marginal in Luu
et al. (2021) in a different setting. In terms of con-
tinual lifelong learning, which is tangential to our
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main goal, Biesialska et al. (2020) provide a de-
tailed survey on the main techniques proposed in
the NLP literature.

More relevant to this paper, on the other hand,
are LMs specialized to social media data, specifi-
cally Twitter, with BERTweet (Nguyen et al., 2020),
TweetEval (Barbieri et al., 2020) and XLM-T (Bar-
bieri et al., 2021) being, to the best of our knowl-
edge, the most prominent examples. However, the
above efforts barely address the diachronic nature
of language. Crucially, they do not address the
problem of specializing LMs to social media and
putting the time variable at the core of the frame-
work. Moreover, it is desirable that such time-
aware models are released alongside usable soft-
ware and a reliable infrastructure. Our TimeLMs
initiative, detailed in Section 3, aims to address the
above challenges.

3 TimeLMs: Diachronic Language
Models from Twitter

In this section, we present our approach to train
language models for different time periods.

3.1 Twitter corpus
For the training and evaluation of language models,
we first collect a large corpus of tweets. In the
following we explain both the data collection and
cleaning processes.
Data collection. We use the Twitter Academic API
to obtain a large sample of tweets evenly distributed
across time. In order to obtain a sample which
is representative of general conversation on that
social platform, we query the API using the most
frequent stopwords1, for a set number of tweets at
timestamps distanced by 5 minutes - for every hour
of every day constituting a particular yearly quarter.
We also use specific flags supported by the API to
retrieve only tweets in English and ignore retweets,
quotes, links, media posts and ads.

For our initial base model (2019-90M hence-
forth), we used an evenly time-distributed corpus
from the API, for the period between 2018 and
2019, supplemented with additional tweets from
Archive.org which cover the same period but are
not evenly distributed.
Data cleaning. Before training any model, we fil-
ter each model’s training set of tweets using the
procedure detailed in this section. Starting with the
assumption that bots are amongst the most active

1We use the top 10 entries from: google-10000-english.txt

users, we remove tweets from the top one percent
of users that have posted most frequently. Addi-
tionally, following the recommendation of Lee et al.
(2021), we remove duplicates and near-duplicates.
We find near-duplicates by hashing the texts of
tweets after lowercasing and stripping punctua-
tion. Hashing is performed using MinHash (Broder,
1997), with 16 permutations. Finally, user mentions
are replaced with a generic placeholder (@user),
except for verified users.

3.2 Language model training
Once the Twitter corpus has been collected and
cleaned, we proceed to the language model pre-
training. This consists of two phases: (1) training
of a base model consisting of data until the end
of 2019; and (2) continual training of language
models every three months since the date of the
base model.
Base model training. Our base model is trained
with data until 2019 (included). Following Barbieri
et al. (2020), we start from the original RoBERTa-
base model (Liu et al., 2019) and continue training
the masked language model on Twitter data. The
model is trained using the same settings as Barbieri
et al. (2020), namely early stopping on the valida-
tion split and a learning rate of 1.0e−5. This initial
2019-90M base model converged after around fif-
teen days on 8 NVIDIA V100 GPUs.
Continuous training. After training our base
model, our goal is to continue training this lan-
guage model with recent Twitter corpora. At the
time of writing, for practical and logistical reasons,
the decision is to train a new version of each lan-
guage model every three months. The process to
train this updated language model is simple, as it
follows the same training procedure as the initial
pre-training of the language model explained above.
Our commitment is to keep updating and releasing
a new model every three months, effectively en-
abling the community to make use of an up-to-date
language model at any period in time.

3.3 TimeLMs release summary
In Table 1 we include a summary of the Twitter
corpora collected and models trained until the date
of writing. Models are split in four three-month
quarters (Q1, Q2, Q3 and Q4). Our base 2019-
90M model consists of 90 million tweets until the
end of 2019. Then, every quarter (i.e., every three
months) 4.2M additional tweets are added, and the
model gets updated as described above. Our latest
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released models, which are 2021-Q4 and 2021-
124M (the latter was re-trained only once with
all the data from 2020 and 2021), are trained on
124M tweets on top of the original RoBERTa-base
model (Liu et al., 2019). All models are currently
available through the Hugging Face hub at https:
//huggingface.co/cardiffnlp.

Models Additional Total

2019-90M - 90.26M

2020-Q1 4.20M 94.46M
2020-Q2 4.20M 98.66M
2020-Q3 4.20M 102.86M
2020-Q4 4.20M 107.06M
2021-Q1 4.20M 111.26M
2021-Q2 4.20M 115.46M
2021-Q3 4.20M 119.66M
2021-Q4 4.20M 123.86M

2021-124M 33.60M 123.86M

Table 1: Number of tweets used to train each model.
Showing number of tweets used to update models, and
total starting from RoBERTa-base by Liu et al. (2019).

In addition to these corpora for training language
models, we set apart a number of tweets for each
quarter (independent from the training set, with no
overlap). These sets are used as test sets on our
perplexity evaluation (see Section 4.2), and consist
of 300K tweets per quarter, which were sampled
and cleaned in the same way as the original corpus.

4 Evaluation

In this section, we aim at evaluating the effective-
ness of time-specific language models (see Section
3) on time-specific tasks. In other words, our goal
is to test the possible degradation of older mod-
els over time and, accordingly, test if this can be
mitigated by continuous training.
Evaluation tasks. We evaluated the released lan-
guage models in two tasks: (1) TweetEval (Bar-
bieri et al., 2020), which consists of seven down-
stream tweet classification tasks; and (2) Pseudo-
perplexity on corpora sampled from different time
periods. While the first evaluation is merely aimed
at validating the training procedure of the base lan-
guage model, the second evaluation is the core
contribution of this paper in terms of evaluation,
where different models can be tested in different
time periods.

4.1 TweetEval
TweetEval (Barbieri et al., 2020) is a unified Twit-
ter benchmark composed of seven heterogeneous
tweet classification tasks. It is commonly used to
evaluate the performance of language models (or
task-agnostic models more generally) on Twitter
data. With this evaluation, our goal is simply to
show the general competitiveness of the models re-
leased with our package, irrespective of their time
periods.
Evaluation tasks. The seven tweet classification
tasks in TweetEval are emoji prediction (Barbi-
eri et al., 2018), emotion recognition (Mohammad
et al., 2018), hate speech detection (Basile et al.,
2019), irony detection (Van Hee et al., 2018), offen-
sive language identification (Zampieri et al., 2019),
sentiment analysis (Rosenthal et al., 2017) and
stance detection (Mohammad et al., 2016).
Experimental setting. Similarly to the TweetE-
val original baselines, only a moderate parameter
search was conducted. The only hyper-parameter
fine-tuned was the learning rate (1.0e−3, 1.0e−4,
1.0e−5). The number of epochs each model is
trained is variable, as we used early stopping mon-
itoring the validation loss. The validation loss is
also used to select the best model in each task.
Comparison systems. The comparison systems
(SVM, FastText, BLSTM, RoBERTa-base and
TweetEval) are those taken from the original
TweetEval paper, as well as the state-of-the-art
BERTweet model (Nguyen et al., 2020), which
is trained over 900M tweets (posted between 2013
and 2019). All the language models compared are
based on the RoBERTa-base architecture.
Results. TweetEval results are summarized in Ta-
ble 2. BERTweet, which was trained on substan-
tially more data, attains the best averaged results.
However, when looking at single tasks, BERTweet
outperforms both our latest released models, i.e.,
TimeLM-19 and TimeLM-21, on the irony detec-
tion task2 only. It is also important to highlight that
TweetEval tasks include tweets dated until 2018 at
the latest (with most tasks being considerably ear-
lier). This suggests that our latest released model
(i.e. TimeLM-21), even if trained up to 2021 tweets,
is generally competitive even on past tweets. In-
deed, TimeLM-21 outperforms the most similar
TweetEval model, which was trained following a

2We note that the irony dataset was created via distant
supervision using the #irony hashtag, and there could be a
“labels” leak since BERTweet was the only model trained on
tweets of the time period (2014/15) of the irony dataset.
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Emoji Emotion Hate Irony Offensive Sentiment Stance ALL
SVM 29.3 64.7 36.7 61.7 52.3 62.9 67.3 53.5

FastText 25.8 65.2 50.6 63.1 73.4 62.9 65.4 58.1
BLSTM 24.7 66.0 52.6 62.8 71.7 58.3 59.4 56.5

RoBERTa-Base 30.8 76.6 44.9 55.2 78.7 72.0 70.9 61.3
TweetEval 31.6 79.8 55.5 62.5 81.6 72.9 72.6 65.2
BERTweet 33.4 79.3 56.4 82.1 79.5 73.4 71.2 67.9

TimeLM-19 33.4 81.0 58.1 48.0 82.4 73.2 70.7 63.8
TimeLM-21 34.0 80.2 55.1 64.5 82.2 73.7 72.9 66.2

Metric M-F1 M-F1 M-F1 F(i) M-F1 M-Rec AVG (F1) TE

Table 2: TweetEval test results of all comparison systems.

similar strategy (in this case trained on fewer tweets
until 2019), in most tasks.

4.2 Time-aware language model evaluation

Once the effectiveness of the base and subsequent
models have been tested in downstream tasks, our
goal is to measure to what extent the various mod-
els released are sensitive to a more time-aware eval-
uation. To this end, we rely on the pseudo perplex-
ity measure (Salazar et al., 2020).
Evaluation metric: Pseudo-perplexity (PPPL).
The pseudo log-likelihood (PLL) score introduced
by Salazar et al. (2020) is computed by iteratively
replacing each token in a sequence with a mask,
and summing the corresponding conditional log
probabilities. This approach is specially suited to
masked language models, rather than traditional
left-to-right models. Pseudo-perplexity (PPPL) fol-
lows analogously from the standard perplexity for-
mula, using PLL for conditional probability.
Results. Table 3 shows the pseudo-perplexity re-
sults in all test sets. As the main conclusion, the
table shows how more recent models tend to out-
perform models trained when evaluated older data
in most test sets (especially those contemporane-
ous). This can be appreciated by simply observing
the decreasing values in the columns of the Table
3. There are a few interesting exceptions, how-
ever. For instance, the 2020-Q1 and 2020-Q2 test
sets, which corresponding to the global start of the
coronavirus pandemic, are generally better suited
for models trained until that periods. Nonetheless,
models trained on more contemporary data appear
to converge to the optimal results.
Degradation over time. How long does it take for
a model to be outdated? Overall, PPPL scores tend
to increase almost 10% after one year. In general,

PPPL appears to decrease consistently every quar-
terly update. This result reinforces the need for
updated language models even for short time peri-
ods such as three-month quarters. In most cases,
degradation on future data is usually larger than
on older data. This result is not completely un-
expected since newer models are also trained on
more data for more time periods. In Section 6.1
we expand on this by including a table detailing
the relative performance degradation over language
models over time.

5 Python Interface
In this section we present an integrated Python
interface that we release along with the data and
language models presented in this paper. As men-
tioned in Section 3.3, all language models will be
available from the Hugging Face hub and our code
is designed to be used with this platform.

Our interface, based on the Transformers pack-
age (Wolf et al., 2020), is focused on providing easy
single-line access to language models trained for
specific periods and related use cases. The choice
of language models to be used with our interface is
determined using one of four modes of operation:
(1) ‘latest’: using our most recently trained Twitter
model; (2) ‘corresponding’: using the model that
was trained only until each tweet’s date (i.e., its
specific quarter); (3) custom: providing the pre-
ferred date or quarter (e.g., ‘2021-Q3’); and (4)
‘quarterly’: using all available models trained over
time in quarterly intervals. Having specified the
preferred language models, there are three main
functionalities within the code, namely: (1) com-
puting pseudo-perplexity scores, (2) evaluating lan-
guage models in our released or customized test
sets, and (3) obtaining masked predictions.

Users can measure the extent to which the cho-
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Models 2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4 Change

Barbieri et al., 2020 9.420 9.602 9.631 9.651 9.832 9.924 10.073 10.247 N/A

2019-90M 4.823 4.936 4.936 4.928 5.093 5.179 5.273 5.362 N/A

2020-Q1 4.521 4.625 4.699 4.692 4.862 4.952 5.043 5.140 -
2020-Q2 4.441 4.439 4.548 4.554 4.716 4.801 4.902 5.005 -4.01%
2020-Q3 4.534 4.525 4.450 4.487 4.652 4.738 4.831 4.945 -2.15%
2020-Q4 4.533 4.524 4.429 4.361 4.571 4.672 4.763 4.859 -2.81%
2021-Q1 4.509 4.499 4.399 4.334 4.439 4.574 4.668 4.767 -2.89%
2021-Q2 4.499 4.481 4.376 4.319 4.411 4.445 4.570 4.675 -2.83%
2021-Q3 4.471 4.455 4.335 4.280 4.366 4.394 4.422 4.565 -3.26%
2021-Q4 4.467 4.455 4.330 4.263 4.351 4.381 4.402 4.463 -2.24%

2021-124M 4.319 4.297 4.279 4.219 4.322 4.361 4.404 4.489 N/A

Table 3: Pseudo-perplexity results (lower is better) of all models in the Twitter test sets sampled from different
quarters (each quarter correspond to three months. Q1: Jan-Mar; Q2: Apr-Jun; Q3: Jul-Sep; Q4: Oct-Dec). The last
column reports difference in pseudo-perplexity, comparing the value obtained for each quarter’s test set, between
the model trained on the previous quarter and the model updated with data from that same quarter.

sen pretrained language models are aligned (i.e.,
familiar) with a given list of tweets (or any text)
using pseudo-perplexity (see Section 4.2 for more
details), computed as shown in Code 1.
from timelms import TimeLMs
tlms = TimeLMs(device=’cuda’)

tweets = [{’text’: ’Looking forward to watching
Squid Game tonight !’}]

pseudo_ppls = tlms.get_pseudo_ppl(tweets,
mode=’latest’) # loads 2021-Q4 model

Code 1: Computing Pseudo-PPL on a given tweet using
the most recently available model.

For a more extensive evaluation of language
models using pseudo-perplexity, we provide a ran-
dom subset of our test data across 2020 and 2021.3

To evaluate other models from the Transformers
package, we provide the ‘eval_model’ method
(tlms.eval_model()) to compute pseudo-
perplexity on any given set of tweets or texts (e.g.,
the subset we provide) using other language models
supported by the Transformers package. Both scor-
ing methods not only provide the pseudo-perplexity
scores specific to each model (depending on spec-
ified model name, or TimeLMs specified mode),
but also the PLL scores assigned to each tweet by
the different models.

Finally, predictions for masked tokens of any
given tweet or text may be easily obtained as
demonstrated in Code 2.
tweets = [{"text": "So glad I’m <mask> vaccinated.",

"created_at": "2021-02-01T23:14:26.000Z"}]

preds = tlms.get_masked_predictions(tweets, top_k=3,

3Limited to 50K tweets, the maximum allowed by Twitter.
IDs for all test tweets are available on the repository.

mode=’corresponding’) # loads 2021-Q1 model

Code 2: Obtaining masked predictions using model
corresponding to the tweet’s date. Requires tweets or
texts with a <mask> token.

Note that while the examples included in this
paper are associated with specific dates (i.e., the
created_at field), these are only required for
the ‘corresponding’ mode.

6 Analysis

To complement the evaluation in the previous sec-
tion, we perform a more detailed analysis in three
important aspects: (1) a quantitative analysis on
the degradation suffered by language models over
time; (2) the relation between time and size (Sec-
tion 6.2); and (3) a qualitative analysis where we
show the influence of time in language models for
specific examples (Section 6.3).

6.1 Degradation analysis
Table 4 displays the relative performance degra-
dation (or improvement) of TimeLMs language
models with respect to the test sets whose time
period is the latest where they have been trained
on (diagonals in the table). The table shows how
models tend to perform worse in newer data sets,
with a degradation of performance up to 13.68% of
the earlier 2020-Q1 model on the latest 2021-Q4
model (with data almost two years later than the
latest data the language model was trained on).

In order to compare the effect of continuous
training with respect to single training, Figure
1 shows the PPPL performances of 2021-124M
(trained on all 2020-2021 data at once) and the
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Models 2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4

2020-Q1 0.00% 2.29% 3.94% 3.78% 7.52% 9.52% 11.53% 13.68%
2020-Q2 0.04% 0.00% 2.46% 2.59% 6.24% 8.16% 10.42% 12.75%
2020-Q3 1.87% 1.67% 0.00% 0.82% 4.53% 6.47% 8.54% 11.10%
2020-Q4 3.95% 3.74% 1.57% 0.00% 4.82% 7.14% 9.22% 11.43%
2021-Q1 1.58% 1.37% -0.89% -2.36% 0.00% 3.05% 5.16% 7.39%
2021-Q2 1.21% 0.82% -1.55% -2.83% -0.77% 0.00% 2.83% 5.19%
2021-Q3 1.12% 0.75% -1.95% -3.20% -1.26% -0.61% 0.00% 3.25%
2021-Q4 0.10% -0.17% -2.97% -4.47% -2.51% -1.83% -1.37% 0.00%

Table 4: Difference across quarterly models and test sets comparing the pseudo-perplexity observed at the quarter
corresponding to each model, against the pseudo-perplexity observed for that same model on both previous and
future test sets. Highlights model degradation on future data, as well as how models fare on past data.

4.20

4.30

4.40

4.50

2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4

2021-Q4 2021-124M

Figure 1: Performance (PPPL) of 2021-124M and 2021-Q4 models across the test sets.

2021-Q4 (updating 2021-Q3) models. Note how
2021-124M shows improved performance gener-
ally, with the largest differences being attained on
the first two quarters of 2020, but not for the latest
quarters where continuous training seems to work
slightly better. While more analysis would be re-
quired, this result suggests that a single training
is beneficial for earlier periods, while a quarterly
training seems to be better adapted to the most re-
cent data. However, there does not seem to be any
meaningful catastrophic forgetting in the quarterly-
updated model, as the differences are relative small.

6.2 Time and size control experiment

Given the results presented earlier, one may natu-
rally wonder whether the improvement may be due
to the increase in training size or the recency of ad-
ditional data. While this question is not easy to an-
swer (and probably the answer will be in-between
these two reasons), we perform a simple control
experiment as an initial attempt. To this end, we
trained an additional language model with twice
the training data of the third quarter of 2021 (2021-
Q3). This way, the total number of training tweets

Models 2021-Q2 2021-Q3 2021-Q4

2021-Q2 4.445 4.570 4.675

2021-Q3 4.394 4.422 4.565
2021-Q3-2x 4.380 4.380 4.534

2021-Q4 4.381 4.402 4.463

Table 5: Results of the control experiment comparing
quarterly models where the 2021-Q3 model is trained
with twice the data from that quarter (2021-Q3-2x).

is exactly the same as the model trained until the
fourth quarter of 2021 (2021-Q4).

Considering the results on Table 5, we find that
the model trained on twice the data for Q3 outper-
forms the model trained with the default Q3 data
in all tested quarters. This confirms the assump-
tion that increasing training data leads to improved
language model performance. When comparing
with the model trained until 2021-Q4, results show
this 2021-Q3-2x model is only slightly better in the
2021-Q2 and 2021-Q3 test sets. However, as we
could expect, the model trained in more recent data
(i.e., until 2021-Q4) gets the best overall results on
the more recent test set (i.e., 2021-Q4).
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Model

So glad
I’m <mask>
vaccinated.

I keep
forgetting to

bring a <mask>.

Looking forward
to watching <mask>

Game tonight!

2020-Q1
not bag the

getting purse The
self charger this

2020-Q2
not mask The

getting bag the
fully purse End

2020-Q3
not mask the

getting bag The
fully purse End

2020-Q4
not bag the

getting purse The
fully charger End

2021-Q1
getting purse the

not charger The
fully bag End

2021-Q2
fully bag the

getting charger The
not lighter this

2021-Q3
fully charger the

getting bag The
not purse This

2021-Q4
fully bag Squid

getting lighter the
not charger The

Table 6: Masked token prediction over time using three
example tweets as input (using mode=‘quarterly’). For
each quarterly model, the table displays the top-3 pre-
dictions ranked by their prediction probability.

6.3 Qualitative analysis

In this section we illustrate, in practice, how mod-
els trained on different quarters perceive specific
tweets. First, we use their masked language model-
ing head to predict a <mask> token in context. Ta-
ble 6 shows three tweets and associated predictions
from each of our quarterly models. The model
belonging to the most pertinent quarter exhibits
background knowledge more aligned to the trends
of that period. In the two COVID-related examples,
we observe increasing awareness of the general no-
tion of being fully vaccinated (as opposed to not
vaccinated, the top prediction from the 2020-Q1
model) in the former, and, in the latter, two in-
stances where forgetting a mask is more likely than
forgetting other apparel less related to a particu-
lar period, such as a charger, a lighter or a purse.
Finally, note how, in the last example, “Looking
forward to watching <mask> Game tonight!", it
is only in 2021-Q4 that predictions change sub-
stantially, when the model has been exposed to
reactions to the "Squid Game" show, overlapping
in time with its global release.

Our second piece of analysis involves the visu-

Figure 2: PLL scores of TimeLMs language models
trained over different periods for three selected tweets.

alization of pseudo log-likehood (PLL) scores for
tweets requiring awareness of a trend or event tied
to a specific period (Figure 2). Indeed, more recent
models are better at predicting tweets involving
popular events, such as NFTs or, again, the show
"Squid Game". Conversely, we observe a stagna-
tion (or even degradation) of the PLL scores for a
tweet about a contestant of an older reality show.

7 Conclusion

In this paper we presented TimeLMs, language
models trained on Twitter over different time peri-
ods. The initiative also includes the future training
of language models every three months, thus pro-
viding free-to-use and up-to-date language models
for NLP practitioners. These language models are
released together with a simple Python interface
which facilitates loading and working with these
models, including time-aware evaluation. In our
evaluation in this paper, we have shown how time-
aware training is relevant, not only from the theoret-
ical point of view, but also the practical one, as the
results demonstrate a clear degradation in perfor-
mance when models are used for future data, which
is one of the most common settings in practice.

As future work, we are planning to explicitly in-
tegrate the time span variable in the language mod-
els, i.e., introducing string prefixes, along the lines
of Dhingra et al. (2022) and Rosin et al. (2022).
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