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Abstract

Events are fundamental building blocks of real-
world happenings. In this paper, we present
a large-scale, multi-modal event knowledge
graph named MMEKG. MMEKG unifies dif-
ferent modalities of knowledge via events,
which complement and disambiguate each
other. Specifically, MMEKG incorporates (i)
over 990 thousand concept events with 644 re-
lation types to cover most types of happenings,
and (ii) over 863 million instance events con-
nected through 934 million relations, which
provide rich contextual information in texts
and/or images. To collect billion-scale instance
events and relations among them, we addition-
ally develop an efficient yet effective pipeline
for textual/visual knowledge extraction system.
We also develop an induction strategy to create
million-scale concept events and a schema orga-
nizing all events and relations in MMEKG. To
this end, we also provide a pipeline' enabling
our system to seamlessly parse texts/images to
event graphs and to retrieve multi-modal knowl-
edge at both concept- and instance-levels.

1 Introduction

Recently, many Knowledge Graphs (KGs) have
been curated (e.g., Wikidata (Vrande¢i¢ and
Krotzsch, 2014)) and successfully applied to vari-
ous applications, ranging from information extrac-
tion (Lai et al., 2021) to information retrieval (Dong
et al., 2014). KGs typically store billions of world
facts in a directed graph, where nodes denote en-
tities and edges denote their relations. Although
simple yet effective, the expression ability of such
entity-centric KGs is limited (Liu et al., 2020).
How we can represent more complex knowledge,
such as events, situations, or different modalities,
becomes a key question for broader applications.
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Figure 1: Examples of visual and textual events, and
their relations. CO-REF denotes co-reference.

In this paper, we present a large-scale Multi-
Modal Event Knowledge Graph (MMEKG) that
bridges, complements, and disambiguates different
modalities of knowledge, for better understanding
or reasoning. Similar to real-world happenings,
MMEKG takes events as its basic building blocks.
Each event is defined by a concept, several argu-
ments, and corresponding roles. Among events are
various types of relations, such as causal, temporal,
or sub-event relations. Thus eneities can be argu-
ments in KGs. Figure 1 shows two example events:
a visual sleep event with arguments cat (sleeper)
and sofa (place), and a textual dressing event with
arguments cat (wearer) and scarf (clothing), where
argument roles are in brackets. The two events not
only bridge the text and image with complementary
arguments but also offer underlying commonsense
knowledge — covering with a scarf usually hap-
pens when sleeping.

Compared with existing event KGs (Speer et al.,
2016; Zhang et al., 2020; Hwang et al., 2021),
MMEKG advances this field in the following three
aspects: (1) A large-scale ontology contains 990
thousand concept events and 644 relation types,
which covers most types of real-world happenings.
(2) Multi-modal knowledge is naturally fused. To
our best knowledge, it is the first event KG that
bridges different modalities of data through fine-
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Figure 2: llustration of Demo System. Any input texts/images can be parsed into event graphs, where nodes denote

instance events and edges denote event-event relations. Each instance event also refers to detailed information:
concept event, synset, arguments with corresponding roles, and the linked neighbors in MMEKG (blue tables). Note

that a single image mainly contains one event.

grained alignments of events and arguments. (3)
The integration of concept and instance events
not only makes it possible to enlarge the ontology
from instance events but also provides concept-
level commonsense knowledge with contextual in-
stances for comprehensive reasoning.

There are mainly two steps to build MMEKG. (1)
To construct a schema and acquire concept events,
we first manually combine FrameNet (Baker et al.,
1998) and WordNet (Fellbaum, 1998) to initialize
a high-quality event ontology; we then expand it
automatically via ontology induction from instance
events. For flexibility and exchangeability, we ex-
tend the Simple Event Model (SEM) (Van Hage
et al., 2011) to define our ontology in Resource
Description Framework (RDF). (2) To extract in-
stance events from either texts or images, we devel-
oped a knowledge extraction system to support fast
and massive extraction under the practical scenario.
This system consists of event extraction and event
relation extraction in both modalities, as well as the
alignment between them. In addition, this system
can parse any input texts/images to event graphs
and seamlessly retrieve multi-modal knowledge
from MMEKG.

To cover a variety of events, we apply our
extraction system into multiple sources, includ-
ing C4 News?, Wikipedia®, Bookcorpus*, and
CC3M&12M (Sharma et al., 2018; Changpinyo
et al., 2021). These data sources result in 863 mil-
lion instance events and 934 million relations. To
ensure its quality, we evaluate both our extraction
system and the constructed MMEKG. Compared

Zhttps://www.tensorflow.org/datasets/catalog/c4
3https://dumps.wikimedia.org/enwiki/
“https://www.gutenberg.org/

with state-of-the-art models of each sub-tasks, our
methods achieve comparable or better performance
on standard benchmarks. The adaptation to prac-
tical corpus led to no significant degradation. We
sample thousands of events and relations from
MMEKG for manual evaluation. The precision
is acceptable at both concept and instance levels.

2 Overview of MMEKG

2.1 Definitions

Our proposed MMEKG, as shown in Figure 3, is
different from traditional event-centric KGs and
has four types of nodes and four types of relations.
Nodes include concept events, instance events, enti-
ties, and non-entity arguments e.g., literals. Among
them, concept events (color in purple in Figure 3)
are modality agnostic and provide high-level sum-
marization of instance events (color in yellow), and
entities/literals (color in blue) could be event argu-
ments. The four types of relations contain (1) rela-
tion between instance events. Such type of relation
can be further categorized into more fine-grained
sub-types, such as temporal, causal, co-occur, and
other semantic relations, (2) relation between con-
cept events, named as subclassOf which denotes a
hierarchical relation, (3) relation between concept
events and instance events, named as instanceOf
relation that integrates concept and instance events,
and (4) role relations that reflect the roles of argu-
ments (entities or non-entities) to the linked events.
Different concept events have different roles. For-
mally, we have:

Definition 1 MMEKG = {(h,r,t)|h,t €

g,?" S R} & = gcthginsUgentugnenta
where E.pt, Eins, Eent, and Epeny represent
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Figure 3: Three levels of MMEKG are illustrated from left to right. The left part is extracted multimodal context.
The middle part shows the instance events aggregated from raw context. The right part are inducted concept events.

the set of concept event, instance event, en-
tities, and non-entities, respectively. R
Rins—ins U cht—cpt U cht—ins U 7?'rolev where
Rins—ins and Rept—cpt represent the set of rela-
tions between instance events or between concept
events, Repi—ins Tepresents the set of relations
between instance events and concept events, and
R ole denotes the set of argument roles. w(h, r, t)
denotes the relation weight of the triple (h, 7, t) in
MMEKGQ, i.e., the confidence score of being true.

2.2 User Interface and System Architecture

As shown in Figure 2, based on MMEKG and the
extraction system, we have developed a prototype
system that can parse arbitrary texts or images to
an event graph, where the nodes denote instance
events and the edges denote their relations. For
each instance event, we link it to a concept event
in MMEKG by identifying the trigger word and its
synset (Event Detection). According to the concept
event and corresponding roles, we also extract argu-
ments, either a span in texts or a region in images
(Argument Extraction). These modules consist of
two main components: Textual Knowledge Ex-
traction and Visual Knowledge Extraction (no
trigger word). Another main component is Event
Relation Extraction which extracts various rela-
tions among events, including the fusion of tex-
tual and visual events. Note that concept events,
synsets, and relation types, are defined by our cross-
modal event ontology. The linked neighbors in
MMEKG are also shown below for better under-
standing. The detailed architectures behind the
demo system, MMEKG and the extraction system,
are shown in Figure 3 and Figure 5 respectively.

3 Cross-modal Event Ontology

Ontology is critical because it not only confines
what types of knowledge are concerned but also
offers a reasoning ability — only the induction
from instances to concepts brings new knowledge,
i.e., from the special to the general. The deduction
from concepts to instances has no uncertainty but
provides additional information. In this section,
we introduce our RDF Schema to model ontology
data (Section 3.1), an initial ontology by combin-
ing external resources (Section 3.2), and ontology
induction for continuous expansion (Section 3.3).

3.1 Schema

Following prior work (Gottschalk and Demidova,
2019), we inherit and extend the basic Simple
Event Model (SEM) (Van Hage et al., 2011;
McBride, 2004) as a knowledge representation ba-
sis. An example schema is shown in Figure 4.

Single event representation is extended from
SEM and FrameNet. (1) Each role has an associ-
ated ekg:[role] connecting instance event e € E;, 5
and argument a € Eepy |J Enent. (2) We addition-
ally add virtual nodes connecting instance events
with edge ekg:contextOf to represent a source
of such event. Edges from the virtual node like
ekg:trigger, ekg:modality and ekg:content indicate
the trigger word, modality and sentence/image in-
dex of this source respectively.

Event-event Relation mainly includes (1)
rdf:instanceOf to integrate instance and concept
events, (2) rdf:subclassOf that indicates the hier-
archy of concept events, and (3) other relations
among instance events, such as temporal or causal
relations. For such relations, we design a link-
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Figure 4: Illustration of Schema designed in MMEKG. Dashed boxes indicate literals and solid boxes indicate
events, entities, and relations. We use different colors to represent different types of schema. Blue: Event-related.
Green: Relation-related. Yellow: Information of related texts/images from which the system extracts instance

events. The uncolored circle is a virtual node connecting an instance event and its source information.

ing node marked by [EventRel_id]. There are two
advantages to this design: (a) Good extensibility.
For possible N-to-1 event relations, multiple sub-
jects and objects can be organized through the link-
ing nodes. Conventional subj-rel-obj tuples cannot
handle this case. (b) Integration of informative
statistics and supplements. For example, we add
the frequency and confidence score (obtained from
ontology induction in Section 3.3) as prior to the
events for reasoning with uncertainty.

3.2 Ontology Initialization

Based on schema, we initialize the ontol-
ogy by merging WordNet (Fellbaum, 1998),
FrameNet (Baker et al., 1998), and imSitu (Yatskar
et al.,, 2016) Ontology. In specific, we map
each verb and adjective synset in WordNet to a
frame in FrameNet (for example, roast.v.01 —
Apply_heat). The frames are high-level concept
events, and the aligned synsets become fine-grained
concept events. Moreover, the WordNet taxon-
omy brings hierarchical information. For mapping,
we first jointly consider the result from structural
mapping (Leseva and Stoyanova, 2019) and cosine-
similarity score between definitions about synsets
and frames given by Sentence-BERT (Reimers and
Gurevych, 2019). We randomly sample 100 synset-
frame pairs to check whether the definitions of
mapped synset and frame align well, and find 89%
pairs are reasonable. Then we extend the ontology
from imSitu dataset by manually aligning WordNet
synset to annotated frame as our visual ontology.

3.3 Ontology Induction

This section details how to expand the initial ontol-
ogy from the perspectives of hierarchical taxonomy
and relation types.

Taxonomy Induction finds more fine-grained
concept events hierarchically. For exam-
ple, both complete, complete atour and
complete a tour in fall belong to the initial-
ized concept event Activity_finish:complete.v.01,
while they represent events with different granular-
ity. Therefore we hope to discriminate them with
a more hierarchical and fine-grained taxonomy
structure.

Given an initialized concept event o and one of
its specific roles r, we first select all arguments con-
nected by role r with an instance event categorized
to o. Then we cluster these arguments heuristically
by lemmatizing the headword of each phrase. We
further name each cluster by that lemmatized head-
word and calculate a salience score for each cluster
by jointly considering (1) the confidence score w
of each event-role-argument triple clustered in and
(2) how much information each cluster name pro-
vides. Finally, we select K clusters with the highest
salience scores and create new concept events by
combining role  and these names with their trigger
words. Corresponding instance events are also cat-
egorized into these newly derived concept events.
As shown in Figure 3, we derive new concept
events such as complete.v.01__Activity:tour and
complete.v.01__ Activity:tour__Time:fall. These
fine-grained concept events summarize instance
events via instanceOf relations and are summa-
rized by complete.v.01 with subclassOf relations.
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Figure 5: The architecture of Extraction System. There
are four main components: Cross-modal Event Ontol-
ogy, Textual Knowledge Extraction, Visual Knowledge
Extraction, and Event Relation Extraction. We use
the same ontology introduced in Section 3 for both
MMEKG and this extraction system. Another three
components are introduced in Section 4 respectively.

Relation Induction aims to discover common-
sense relations between concept events, based on
the relations between instance events. Similar to
taxonomy induction, we calculate a salience score
sr(on, o) for each pair of concept events (o, 0¢)
on relation r. The score considers (1) the con-
fidence score of relation r between the children
instance events. (2) the commonality of o; w.r.t. .
We add (op, r, 0;) with a salience score exceeding
a threshold to MMEKG. For example in Figure 3,
since the salience score of the triple (talk.v.01, co-
occur, sit.v.01) exceeds the threshold, we expand
such relation from instance-level to concept-level.

4 Knowledge Extraction System

This section briefly introduces our knowledge
extraction system collecting large-scale instance
events and relations for MMEKG, which is shown
in Figure 5. We follow the overall framework
of previous knowledge extraction systems like
GAIA (Li et al., 2020b) and RESIN (Wen et al.,
2021), but extends and optimizes event-related
components to enable it extracting billion-scale,
high-quality events efficiently. With more ad-
vanced models, tuning strategy and component
architectures, our system achieves comparable if
not better performance on each component using a
common benchmark. We also substitute all Cross-
encoder in the system to Bi-encoder if possible and
conduct a joint model of multi-task training during
event relation extraction for efficiency.

4.1 Textual Knowledge Extraction

This component extracts nodes of the event graph
from unstructured texts via event detection and ar-
gument extraction. (1) We pre-process the corpus
as follows. First, we identify document bound-
aries using BERT-base Next Sentence Prediction
(NSP) model and heuristic rules (5-10 sentences
per document). Then, we obtain POS-tag and de-
pendency tree via Stanza (Qi et al., 2020). Verbs
and adjectives are regarded as candidate words
triggering events. (2) Thanks to the synsets in
our ontology, we convert Event Detection as an
unsupervised word sense disambiguation (WSD)
task to avoid costly training data. We apply a Bi-
encoder model (Blevins and Zettlemoyer, 2020) to
predict the most possible synset for candidate trig-
ger words. Each synset refers to a concept event.
We thus can link the texts with MMEKG. (3) We
propose an efficient and effective method named
PAIE (Ma et al., 2022) for Event Argument Ex-
traction. The basic idea is to extend QA-based
models (Du and Cardie, 2020) to predict all roles
for a target event simultaneously. We propose to
prompt PLMs for extraction tasks and design a role
interaction prompt template for each concept event.
All role embeddings serve as query vectors to iden-
tify argument spans as the answer. We train the
model on annotations provided by FrameNet.

4.2 Visual Knowledge Extraction

For visual knowledge extraction, we design a
two-stage extraction network. Both models are
trained using the largest visual situation recogni-
tion dataset (Yatskar et al., 2016; Pratt et al., 2020).
(1) For event detection, we leverage pre-trained
ViT (Dosovitskiy et al., 2021) to obtain patched
image features. Then, another layer of transformer
is finetuned to classify images into our visual con-
cept events. (2) Following Pratt et al. (2020), we
use pre-trained ResNet-50 (He et al., 2016) as the
backbone of Faster R-CNN (Ren et al., 2015), and
conditional LSTM decoder to aggregate role infor-
mation to extract arguments from images.

4.3 Event Relation Extraction

This component aims to extract temporal, causal,
co-occur, and semantic relations between instance
events. Co-occur includes text/image alignments.

Temporal and Causal Relation. For temporal and
causal relations, we propose a novel method that
builds a document-level graph to infer the relations
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Component Sub-task Benchmark Metric QOur score SOTA
Text Event Extraction WSD SemEval-2007 Accuracy 74.5 77.4 (Barba et al., 2021)
EAE ACE-05 Fl1 67.0 65.4 (Du and Cardie, 2020)
. . VerbD imSitu Accuracy 46.8 43.2 (Suhail and Sigal, 2019)
Visual Event Extraction imSitu Accuracy 238 19.5 (Suhail and Sigal. 2019)
Event Relation Extraction ECI Causal-TimeBank F1 61.7 53.2 (Zuo et al., 2021)

Table 1: Performance of each component. Abbreviation in column Sub-task: EAE: Event Argument Extraction.
VerbD: Verb Detection. ECI: Event Causality Identification.

Table 3: Taxonomy induction.

#Instance  #Concept  # Relation  # Relation #Sample  Positive Negative
Event Event Type
1000 80.1% 19.9%
ConceptNet _ 74,989 116,097 4
ATOMIC _ 309,515 877,108 8 Modality Precision
ASER (core) | 52,940,258 52,296,498 14 E— 0%
ASER (full) | 438,648,952 648,514,465 14 Event \iﬁlj 646
o (4
MMEKG-core | 12,310,716 990,123 48,599,695 644 — 697
MMEKG-full | 863,428,946 990,123 934,413,371 644 Triple Cmi’“;‘:) Gl 638%
SH- . (%

Table 2: Statistics of MMEKG and existing event KG.

among events globally. Our method could con-
duct across-sentence reasoning without clear tem-
poral/causal indicators and complicated heuristic
rules. This enables us to identify all temporal and
causal relations of a document simultaneously and
efficiently. We jointly predict temporal and causal
relations as multi-label multi-task classification and
train the model based on Causal-TimeBank (Mirza,
2014). There are six relation types in total: Before,
After, During, Includes, Included, and Causal.

Co-occurrence Relation. For textual co-
occurrence, we identify it via dependency pars-
ing if the trigger words have a conj relation. For
cross-modal co-occurrence, we extract events from
paired image-caption respectively and assume they
co-occur. We also observe semantic shifts between
different modalities. As shown in Figure 1, the
textual dressing event may be a sub-event of the
visual sleeping event. We will investigate it soon.

Semantic Relation. We claim that when an
argument of event A is a gerund phrase B, B
could also be viewed as a sub-event of A trig-
gered by the gerund functioning as its seman-
tic component. For example, we extract two
events from sentence Eating too much fried chicken
cause overweight: cause overweight (event A)
and eat too much chicken (event B). Since A is
also an argument of role influencing_entity for B,
event eat too much chicken and cause overweight
are connected with relation influencing_entity.
Based on such assumption, we expand the relation

Table 4: Instance-level evaluation.

types by exploiting the frame elements in FrameNet.
We capture all event pairs in sentences satisfy-
ing (1) the trigger words are connected by acl or
acl:relcl in dependency parsing, or (2) the trigger
of one event is extracted as an argument of another
event. Then we identify these two events having a
relation labeled by the argument role.

5 [Evaluation

5.1 MMEKG Statistics

Table 2 presents the statistics of MMEKG and other
Event KGs. We build a full version, MMEKG-
full, and MMEKG-core which filters out infrequent
events (< 3 times), leading to a denser and more
accurate version. MMEKG involves not only a
much larger ontology but also more instance events.

5.2 Extraction System Performance

Table 1 shows the results of our components trained
on publicly available datasets, since there is no uni-
fied benchmark to evaluate the entire extraction
process. We can see that all of our knowledge ex-
traction components, except WSD, achieve better
performance. Our WSD model performs compara-
bly and efficiently for massive event detection.

5.3 Instance-level Evaluation

Considering the different data distribution between
training data and extracted corpus, we manually
evaluate the instance-level quality of MMEKG. We
randomly select 1,000 instance events in texts and
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Type #Sample Positive Similar Negative
Temporal 134 65.7% 15.7% 18.6%
Co-occur 139 57.6% 20.1% 22.3%
Semantic 137 46.0% 36.5% 17.5%

All 550 58.5% 22.4% 19.1%

Table 5: Relation induction.

500 from images. Along with original contexts,
we invite six colleagues to label whether the ex-
tracted event represents the semantic meaning of
the original source or not. For instance event rela-
tions, we consider: (1) causal/temporal relations
from texts and (2) cross-modal co-occurrence from
image-caption pairs. We sample 200 textual rela-
tions and 300 cross-modality relations. Along with
the contexts, we provide these extracted relations
to the same six colleagues and ask them whether
the relation extracted matches the original resource.
Results in Table 4 demonstrate little performance
degradation in precision® and an acceptable quality
of our proposed MMEKG, considering the com-
plexity of the entire pipeline.

5.4 Ontology-level Evaluation

Large-scale ontology is critical for knowledge rea-
soning. We further evaluate the quality of inferred
taxonomy and relations. The difference from the
instance-level evaluation is that no context is pro-
vided for reference in ontology evaluation. We
construct pairs with one positive and one negative
sample for comparison convenience, as illustrated
in Figure 6, and ask the same six colleagues which
sample agrees with our commonsense more. The
results are shown in Tables 3 and 5. Both nega-
tives are around 20%. In particular, for relation
induction, some similar pairs are hard to tell which
one is better. We attribute this to the low recall
and random negative sampling, which may bring
in false negatives. This also provides insights for
future improvements.

6 Related Work

Event Knowledge Graph Existing event knowl-
edge graphs (Speer et al., 2016; Sap et al., 2019;
Zhang et al., 2020) usually face a dilemma about
quality and quantity. ATOMIC (Sap et al., 2019)
annotates manually and constructs high-quality

>We do not report recall here because (1) there is no an-
notated ground truth of instance events in extracted corpus.
(2) precision is much more important since we extract events
from large corpus to construct KG.

Taxonomy Induction:
positive:

negative:

Relation Induction:
positive:

include,

negative:
include,

Figure 6: Examples of pair constructed for taxonomy
(top) and relation induction (bottom). Each pair includes
one positive and one negative sample. Positive ones are
sampled from induced concept events or relations. Neg-
ative ones are generated by substituting the arguments
(taxonomy) or tail events (relation) in positive samples.

knowledge bases, while ASER (Zhang et al., 2020)
leverages defined patterns and automatic pipeline
to build a large-scale graph. Compared with ASER,
we not only develop a larger KG by larger cor-
pus and advanced extraction system but also derive
complicated ontology and incorporate information
across modalities to control the quality of KG.

Knowledge Extraction System Previous multi-
modal knowledge extraction systems, such as
GAIA (Li et al., 2020b) and RESIN (Wen et al.,
2021), jointly extract information of a small do-
main from relatively small-scale resource. Our sys-
tem inherits their overall framework but is applied
for extracting billion-scale and universal events.
Therefore we optimize event-related modules tar-
getedly for both efficiency and effectiveness.

Cross-media Event Argument Alignment Some
previous works (Li et al., 2020a; Fung et al., 2021)
also bridge texts and images through fine-grained
alignments of event arguments for various tasks,
such as multi-modal event extraction and fake news
detection. Instead, we fuse knowledge from differ-
ent modalities to construct such a large-scale KG.

7 Conclusion

We present the first Multi-modal Event KG
(MMEKG) with a large-scale event ontology. It
not only bridges and complements different modal-
ities of knowledge via more expressive events but
also benefits comprehensive reasoning with rich
cross-modal contexts. Additionally, we provide a
demo system that can seamlessly parse and link any
texts/images via our knowledge extraction system.
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