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Abstract
In recent years, large-scale pre-trained lan-
guage models (PLMs) containing billions of
parameters have achieved promising results
on various NLP tasks. Although we can pre-
train these big models by stacking computing
clusters at any cost, it is impractical to use
such huge computing resources to apply big
models for each downstream task. To address
the computation bottleneck encountered in de-
ploying big models in real-world scenarios,
we introduce an open-source toolkit for Big
Model Inference and tuning (BMInf), which
can support big model inference and tuning at
extremely low computation cost. More specif-
ically, at the algorithm level, we introduce
model quantization and parameter-efficient tun-
ing for efficient model inference and tuning. At
the implementation level, we apply model of-
floading, model checkpointing, and CPU-GPU
scheduling optimization to further reduce the
computation and memory cost of big models.
Based on above efforts, we can efficiently per-
form big model inference and tuning with a sin-
gle GPU (even a consumer-level GPU like GTX
1060) instead of computing clusters, which is
difficult for existing distributed learning toolk-
its for PLMs. BMInf is publicly released at
https://github.com/OpenBMB/BMInf.

1 Introduction

Recent years have witnessed the great success of
pre-trained language models (PLMs) (Han et al.,
2021) in the NLP community. Various techniques
of PLMs enable us to train big models containing
billions of parameters from large-scale unlabeled
corpora in a self-supervised fashion. Up to now,
these big models (with billions of parameters like
GPT-3 (Brown et al., 2020)) have achieved promis-
ing results on various NLP tasks and gained exten-
sive attention from researchers. Despite the success

∗ indicates equal contribution.
† indicates corresponding authors.

CPU

GTX 
1060

GTX 
1070

GTX 
1080Ti

GTX 
2080Ti

Tesla 
V100

Tesla 
A100

Mixed-Precision 
Arithmetic Operators

Model Offloading & Checkpoing

CPU-GPU Scheduling 
Optimization

Model Quantization Parameter-Efficient 
Tuning

Encoder Decoder Encoder-
Decoder

Hardware

Implementation

Algorithm

 Model

User 
Should Control

User 
Can Control

User 
Cannot Control

Figure 1: The overall framework of BMInf. To make
BMInf convenient for users, the underlying implementa-
tion and the hardware adaptation will not be exposed to
users, and these modules can be automatically executed.

of big models, the massive parameters of these big
models also bring challenges to their inference and
tuning. Since the pre-training process of big mod-
els usually requires to be completed once, the cost
caused by massive parameters can be handled by
stacking computing resources. However, the in-
ference and tuning process of PLMs depends on
specific application scenarios and will frequently
use big models for computation. If we still stack
devices to speed up the inference and tuning of
big models, the cost of time, memory, and even
money would become unbearable. In this paper,
we introduce a toolkit BMInf, aiming at efficiently
performing big model inference and tuning.

As shown in Figure 1, BMInf is built based on
a four-level framework, the most important part of
which lies in its algorithm level and implementation
level. At the algorithm level, we introduce model
quantization to compress big models from high-
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bit floating-point parameters to low-bit fixed-point
ones, which can significantly reduce the memory
cost of big models. The faster computation speed
of low-bit numbers can also accelerate the compu-
tation of big models. Besides model quantization,
we also introduce parameter-efficient tuning meth-
ods (Ding et al., 2022), which freeze the parameters
of big models to reduce the computation and mem-
ory cost. By inserting additional learnable mod-
ules into big models, parameter-efficient tuning can
tune these additional modules to help big models
handle specific tasks. Some recent works (Lester
et al., 2021; Gu et al., 2021; Hu et al., 2021) have
shown that applying parameter-efficient tuning on
big models can achieve results comparable to fine-
tuning all model weights.

At the implementation level, we implement
model offloading and model checkpointing, which
can make full use of CPU memory to store mas-
sive parameters of big models. Moreover, model
offloading and checkpointing can drop parame-
ters and computation graphs during both the for-
ward and backward propagation, which can further
save GPU memory to operate more data. For the
underlying arithmetic operators, we reimplement
the mixed-precision CUDA arithmetic operators,
which can better utilize the tensor cores of GPUs
to further speed up the computation, especially
accelerating the mixed-precision computation in
model quantization. Considering model offloading
and model checkpointing bring extra CPU-GPU
communication to load offloaded model weights,
we perform CPU-GPU scheduling optimization to
synchronously execute weight loading and model
computation. This CPU-GPU scheduling optimiza-
tion can alleviate the time waiting for weight load-
ing. All of model offloading, model checkpointing,
and parameter-efficient tuning can benefit from the
scheduling optimization.

Due to the algorithm-level and implementation-
level efficiencies, BMInf can work on various
GPUs at the hardware level, including both pow-
erful GPUs (e.g. Tesla V100 and Tesla A100) and
consumer GPUs (e.g. GTX 1060 and GTX 1080Ti).
In Section 4, we will show that BMInf can run
models with more than 10 billion parameters on
a consumer GPU GTX 1060, which is quite diffi-
cult for existing PLM-related distributed toolkits
such as Megatron (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020). At the model level,
BMInf supports various possible architectures of
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Figure 2: The illustration of model quantization. To
balance both efficiency and effectiveness, we use 8-bit
fixed-point numbers to represent the weights of all linear
layers and higher-bit floating-point numbers (16-bit or
32-bit numbers) to represent hidden states. Here we use
32-bit floating-point numbers as an example. The dotted
parts are only used for the low-bit adaptation training.

Transformer-based PLMs, and users can choose
their own model architectures for inference and
tuning. To make BMInf more convenient for users,
the underlying implementation and the hardware
adaptation are automatically executed and will not
be exposed to users. In the following sections, we
will show more details about BMInf, especially at
the algorithm level and implementation level.

2 Algorithms to Support the Efficient
Inference and Tuning of Big Models

In this section, we briefly introduce how BMInf
supports big model inference and tuning in an ef-
ficient manner at the algorithm level, including
model quantization and parameter-efficient tuning.

2.1 Model Quantization

The massive parameters of big models not only
bring a huge amount of computation but also re-
quire a lot of memory to store parameters and com-
putation graphs. Therefore, applying model com-
pression is crucial to reduce the computation and
memory cost of big models. Since we want big
models to maintain generality after model com-
pression, we choose model quantization rather than
model pruning and model distillation for our toolkit.
The latter two compression approaches are usually
used to compress big models for specific tasks and
will significantly change the model structure.

Model quantization aims to compress model

225



weights from high-bit floating-point numbers to
low-bit fixed-point ones. Typically, PLMs are usu-
ally represented with 32-bit or 16-bit floating-point
numbers, while their quantized models can be rep-
resented with 8-bit, 4-bit, or even 1-bit fixed-point
numbers, saving much memory usage. In addi-
tion, GPUs have tensor cores specially designed for
low-bit numbers, and thus model quantization can
also speed up the computation. For Transformer-
based PLMs, Zafrir et al. (2019) show that the 8-bit
quantization has little impact on the model perfor-
mance. To further alleviate the performance degra-
dation, Shen et al. (2020) apply mixed-bit quanti-
zation where only those parameters with low Hes-
sian spectrum are required to be quantized. Zhang
et al. (2020) further utilize knowledge distillation
to force low-bit models to imitate high-bit models.

Considering that training a 1-bit or 2-bit Trans-
former is still challenging due to the significant
decrease in model capacity, our toolkit primarily
quantizes high-bit (16-bit or 32-bit) models to 8-
bit fixed-point ones. The performance of low-bit
quantization is highly hardware-related, and those
complex quantization mechanisms may only serve
specific devices. Therefore, as shown in Figure 2,
we apply a simple and effective mixed-bit quanti-
zation method, where hidden states are represented
with high-bit numbers, while the weights of all lin-
ear layers are represented with 8-bit numbers. Dur-
ing the computation, we first quantize the input into
8-bit hidden states and perform computation opera-
tions, and then dequantize the output into high-bit
states. To make the quantization less impactful on
models, we use a small amount of pre-trained data
for additional low-bit adaptation training. Specifi-
cally, in the low-bit adaptation stage, we still use
high-bit numbers to represent model weights, but
quantize these weights into low-bit forms for com-
putation (the dotted parts in Figure 2). After the
low-bit-adaptation stage, high-bit weights are dis-
carded, and their corresponding low-bit weights are
left for inference and tuning.

2.2 Parameter-Efficient Tuning

Vanilla fine-tuning (Radford and Narasimhan,
2018; Devlin et al., 2019) needs to tune all model
weights, a mixed-precision PLM with N parame-
ters (Model weights are 16-bit numbers and opti-
mizer states are 32-bit numbers) under this setting
would require: (1) N 16-bit weight states and N
16-bit gradient states; (2) N 32-bit master model
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Figure 3: The illustration of parameter-efficient tuning.
Here we take prompt tuning and adapter tuning as exam-
ples to show how to perform parameter-efficient tuning.

weights; (3) N 32-bit momentum states and N 32-
bit variance states for the optimizer. These add
up to a total of 16N bytes memory consumption.
Since a big model has massive parameters, this
consumption is too large to compute.

To efficiently tune big models for specific tasks,
parameter-efficient tuning (Ding et al., 2022) has
been proposed. As shown in Figure 3, the main
idea of parameter-efficient tuning is to insert new
modules into PLMs and only tune these additional
modules, i.e. all PLM weights do not need to be
tuned anymore. Under the setting of parameter-
efficient tuning, we only need to store the forward
and backward information of those tuned modules,
which is significantly smaller than tuning all PLM
weights. Prompt tuning (Lester et al., 2021; Gu
et al., 2021) and adapter tuning (Stickland and
Murray, 2019; Houlsby et al., 2019) are two typi-
cal parameter-efficient tuning approaches. Prompt
tuning aims to better trigger the potential capa-
bilities inside PLMs by only modifying the input.
Since PLMs are mostly pre-trained on cloze-style
tasks, prompt tuning first inserts several prompt
embeddings into the input to adapt all downstream
tasks to cloze-style tasks, which can bridge the pre-
training and fine-tuning objectives, and then tunes
the prompt embeddings to adapt PLMs to specific
tasks. Adapter tuning mainly focuses on inserting
extra adapter layers into PLMs to help adapt PLMs
to handle downstream tasks.

Although freezing all PLM weights has been
shown to perform moderately on downstream

226



tasks (Lester et al., 2021), it is still one way
to balance time efficiency, memory consump-
tion, and model effectiveness. In fact, some re-
cent parameter-efficient tuning methods (Hu et al.,
2021) have achieved comparable results to fine-
tuning all model weights. In our toolkit, we provide
a unified interface to freeze all weights of big mod-
els and compute gradients for those additional mod-
ules, which can support various parameter-efficient
tuning methods.

3 Implementations to Reduce the
Computation and Memory Cost

In this section, we briefly introduce how BMInf
reduces the computation and memory cost at the
implementation level, including model offloading
and model checkpointing, as well as CPU-GPU
scheduling optimization. In fact, we also reimple-
ment efficient mixed-precision arithmetic operators
to better utilize GPU tensor cores. Since the reim-
plementation of CUDA operators is too detailed to
be described in words, we will not show it here and
recommend our readers refer to the source code.

3.1 Offloading and Checkpointing

Although we can exponentially compress big mod-
els through model quantization, it is still difficult
for the GPU memory to support the storage of
model weights and computation graphs. There-
fore, we apply model offloading to utilize the CPU
memory, which is often very large and cheap. As
shown in Figure 4, the main idea of model offload-
ing is to place model weights on the CPU. When
the model is computed layer by layer, we load the
offloaded weights from the CPU to the GPU for
computation. After the computation is completed,
we free the loaded weights and computation graphs
to save the GPU memory. Since model weights can
be divided into small pieces (such a piece is called
a phase) to load, model offloading is quite impor-
tant for running big models using low computing
resources.

Although model offloading can well solve the
forward propagation of big models, it cannot work
for the back propagation, since much of the infor-
mation used for the backward propagation needs to
be computed and preserved in the forward propa-
gation. The consumption of this memory is usually
hidden behind the computation graph and often
overlooked. In fact, the memory required for the
back propagation is also quite huge. Take the ma-
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Figure 4: The illustration of model offloading and model
checkpointing. All blue parts are stored in the CPU and
all yellow ones are in the GPU. The dotted parts are
temporary units, whose data and computation graphs
will be freed from memory after computation.

trix multiplication y = Wx as an example, it is
used almost everywhere in neural networks. As-
suming that the gradient of y has been obtained
and denoted as dL

dy = y, we have dL
dx = W⊤y and

dL
dW = yx⊤, where L is the final loss score. That
is to say, the memory used for the matrix multi-
plication cannot be freed immediately after being
used, leading to a conflict with model offloading.

To address the issue, we apply model check-
pointing, which is also used by existing distributed
frameworks such as Megatron and DeepSpeed to
accelerate the pre-training of big models. The core
of checkpointing is that it allows some of the infor-
mation used in the back propagation not to be saved
in the forward propagation, but to be recomputed
in the back propagation. As shown in Figure 4,
some hidden states are reserved for the back propa-
gation and all other intermediate results are imme-
diately freed. The reserved information is named
“checkpoint”. By dividing big models into several
checkpoint-separated phases, freed intermediate re-
sults and computation graphs are recomputed as
the back propagation passes through these phases,
and then released immediately again after obtain-
ing gradient states. Assuming the checkpointing
is performed every K operations, this approach
reduces the memory footprint to at least 1

K of the
original one, while only affecting the efficiency by
one extra forward propagation time. Generally, of-
floading phases are consistent with checkpointing

227



Calc 2

Calc 1 Load 3Load 1

Calc 2

Calc 1

Calc 3

Load 2 Load 4

Load 1

Calc 1

Calc 1 Load 2

Calc 2

Calc 2 Load 3

Calc 3

Calc 4

Load 5

Calc 4

…

…

…

…

…

T1 T2 T3 T4 T5

Pool 1

Pool 2

Fixed

w/o overlapping
communication

w/ overlapping
communication

Fixed

Pool

T1 T2 T3 T4 T5

Figure 5: The illustration of overlapping weight loading
and model computation. From the figure, we can find
that through the CPU-GPU scheduling optimization, the
time cost of weight loading can be negligible.

1060 1080Ti 2080Ti V100 A100
GPU Type

0

5

10

15

20

25

De
co

de
r S

pe
ed

 (t
ok

en
s/

s)

4.4

12

19
20

26

3

7

Megatron+DeepSpeed
BMInf

Figure 6: The decoding speed (tokens/s) when perform-
ing big model inference with different GPUs.

phases to avoid conflicts.

3.2 CPU-GPU Scheduling Optimization
One negative effect of offloading and checkpoint-
ing is that they lead to fragmented memory. In
some widely-used deep learning frameworks such
as PyTorch and TensorFlow, the GPU memory is
allocated dynamically. However, checkpoints are
long-lived while those freed and recomputed ten-
sors are short-lived. Suppose the memory alloca-
tion is performed in an alternating pattern: long-
lived, short-lived, long-lived, short-lived, · · ·, this
may allow those long-lived tensors to be located
in some fragmented regions of the GPU memory,
which may affect the efficiency. In the worst case,
when a block of M bytes is required, the GPU
memory indeed has more than M bytes in total, but
a contiguous block of M bytes can never be found
for allocation. Meanwhile, model offloading and
model checkpointing require frequent communica-

北 京 环 球 影 城 指 定 单 日 门 票 将 采
用价格滚动制度，即推出淡季日、平季
日、旺季日和特定日门票。淡季日门票价
格 为418元 ，平季日门票价 格
为528元 ，旺季日门票价 格
为638元，特定日门票价格为688元。

Universal Studios Beijing will adopt
a price rolling system, and the prices of low
season tickets, mid-season tickets, high season
tickets, and special season tickets will be dif-
ferent. The price of low season tickets is 418
RMB, the price of mid-season tickets is 528
RMB, the price of high season tickets is 638
RMB, and the price of special season tickets
is 688 RMB.

Table 1: The Chinese text is an inference example of
the CPM-2 implemented with BMInf. The underlined
tokens are all generated by CPM-2. In this table, we
also give the translated English text corresponding to
the Chinese text.

tion between CPU and GPU to load model weights,
which also brings lots of extra time overhead.

To address these issues, we perform a CPU-GPU
scheduling optimization. More specifically, we first
pre-allocate those long-lived blocks into a contigu-
ous section of the GPU memory (“Fixed” in Fig-
ure 5). Then, we pre-allocate two extra memory
pools in the GPU to perform weight loading and
model computation alternately (“Pool 1” and “Pool
2” in Figure 5). With these two pre-allocated pools,
the CPU-GPU communication and the model com-
putation can be synchronously executed, and the
CPU-GPU communication time can be completely
overlapped in the computation time. Owing to
synchronously execution, the time cost of weight
loading can be negligible.

4 Evaluation

In this section, we present some evaluation results
of big model inference and tuning to show the effi-
ciency of our toolkit BMInf. The following results
are based on the model CPM-2 (Zhang et al., 2022).
CPM-2 is a Chinese PLM with over 10 billion pa-
rameters. Since CPM-2 has an encoder-decoder
architecture, it can be used for both text under-
standing and text generation. The original CPM-2
is implemented with the distributed toolkits Deep-
Speed and Megatron, which are currently the most
efficient open-source tools for running big models.
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Figure 7: The minimum number of GPUs (Tesla V100)
required for prompt tuning (batch size = 32) and the
learning speed per GPU (samples/s) when taking mini-
mum GPUs for tuning. Here, the model implemented us-
ing Megatron and DeepSpeed has 16-bit floating-point
parameters, while the model based on BMInf has 8-bit
fixed-point parameters.

4.1 The Results of Big Model Inference

As shown in Figure 6, we can find that models im-
plemented with DeepSpeed and Megatron cannot
perform model inference on some consumer GPUs
with limited GPU memory, such as GTX 1060 and
GTX 1080Ti. For BMInf, even on a GTX 1060
with only 6GB memory units can infer a big model
with over 10 billion parameters.

On some powerful GPUs like Tesla V100 and
Tesla A100, BMInf achieves 4 ∼ 6 times speedup.
In addition to the decoding speed, we also give a
case in Table 1, which can intuitively reflect the
inference quality of the model implemented with
BMInf.

4.2 The Results of Big Model Tuning

In order to evaluate the performance of BMInf on
big model tuning, we follow the setting of CPM-
2, use CCPM and LCQMC for experiments, and
apply prompt tuning to adapt CPM-2 to these two
datasets. CCPM is a text classification dataset re-
lated to Chinese poems, and LCQMC is a classifi-
cation dataset of intent similarity.

From Figure 7, we can find that when perform-
ing prompt tuning (batch size = 32), the CPM-2
version implemented with DeepSpeed and Mega-
tron requires 16 GPUs, while the version based on
BMInf requires only one GPU. For the speed of
processing samples, BMInf has achieved nearly 10
times speedup.

Dataset Model ACC GPU

CCPM
FT∗ 91.6 32
PT(FP16)∗ 90.9 16(↓ 50%)
PT(INT8) 87.4 1(↓ 97%)

LCQMC
FT∗ 89.2 32
PT(FP16)∗ 88.4 16(↓ 50%)
PT(INT8) 85.3 1(↓ 97%)

Table 2: The comparison between fine-tuning (FT) and
prompt tuning (PT). “PT(INT8)” is implemented based
on the model quantization of BMInf. “∗” means the
result is from the CPM-2 paper (Zhang et al., 2022).
“ACC” means the accuracy of models (%) and “GPU”
means the minimum GPU number required for tuning.
“↓” indicates a percentage decrease in the minimum
number of GPUs required for tuning.

From Table 2 we can find that model quantiza-
tion still affects the model performance to a cer-
tain extent. The reason is that the models with
more parameters are more susceptible to the low-
bit variance brought by the quantization methods.
Although 8-bit quantization has been demonstrated
the little impact on those models with millions of
parameters, how to robustly quantify those big mod-
els with billions of parameters remains us an future
work.

5 Conclusion and Future Work

In this paper, we introduce an efficient toolkit
BMInf to provide a way to use large-scale
PLMs. By applying model quantization, parameter-
efficient tuning, model offloading, model check-
pointing, CPU-GPU scheduling optimization, as
well as the reimplementation of mixed-precision
arithmetic operators, BMInf can perform big model
inference and tuning with less than 1/30 of the GPU
memory and 10 times speedup, as compared with
existing open-source distributed toolkits for pre-
training and fine-tuning PLMs.

In the future, our work to improve BMInf will
focus on the following three directions:

(1) At the model level, we will gradually support
more models;

(2) At the algorithm level, we will continue to im-
prove our model quantization methods to achieve
better performance, and work with other toolkits
such as OpenPrompt (Ding et al., 2021) to explore
more effective ways to tune big models;

(3) At the implementation level, we will provide
long-term maintenance for this toolkit.
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We hope this toolkit can help researchers utilize
big models for their own works and advance the
adaption of big models in the NLP community.
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