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Abstract

Misinformation is a pressing issue in modern
society. It arouses a mixture of anger, dis-
trust, confusion, and anxiety that cause dam-
age on our daily life judgments and public pol-
icy decisions. While recent studies have ex-
plored various fake news detection and media
bias detection techniques in attempts to tackle
the problem, there remain many ongoing chal-
lenges yet to be addressed, as can be witnessed
from the plethora of untrue and harmful con-
tent present during the COVID-19 pandemic
and the international crises of late. In this tuto-
rial, we provide researchers and practitioners
with a systematic overview of the frontier in
fighting misinformation. Specifically, we dive
into the important research questions of how to
(i) develop a robust fake news detection system,
which not only fact-check information pieces
provable by background knowledge but also
reason about the consistency and the reliability
of subtle details for emerging events; (ii) un-
cover the bias and agenda of news sources to
better characterize misinformation; as well as
(iii) correct false information and mitigate news
bias, while allowing diverse opinions to be ex-
pressed. Moreover, we discuss the remaining
challenges, future research directions, and ex-
citing opportunities to help make this world
a better place, with safer and more harmonic
information sharing.

1 Introduction

The growth of online platforms has greatly facili-
tated the way people communicate with each other
and stay informed about trending events. How-
ever, it has also spawned unprecedented levels of
inaccurate or misleading information, as traditional
journalism gate-keeping fails to keep up with the
pace of media dissemination. These undesirable
phenomena have caused societies to be torn over
irrational beliefs, money lost from impulsive stock
market moves, and deaths occurred that could have
been avoided during the COVID-19 pandemic, due

to the infodemic that came forth with it, etc. (All-
cott and Gentzkow, 2017; Rapoza; Solomon et al.,
2020). Even people who do not believe the misin-
formation may still be plagued by the pollution of
unhealthy content surrounding them, an unpleasant
situation known as information disorder (Wardle
et al., 2018). Thus, it is of pertinent interest for our
community to better understand, and to develop ef-
fective mechanisms for remedying misinformation
and biased reporting.

The emerging nature of news events, which
also span diverse domains (e.g., economy, military,
health, sports, etc.) and reporting style (e.g., long
text vs. short text, realistic image vs. artistic image,
etc.), makes misinformation detection and charac-
terization challenging. Combating fake news and
biased reports involve an interdisciplinary research
area of reasoning on the semantics, style, cross-
media contextualization, background knowledge,
and propagation patterns, among others (Saquete
et al., 2020; Pennycook and Rand, 2021; Collins
et al., 2021). Moreover, the recent trends towards a
more comprehensive understanding of the source
stance, reporting intent, target audience, and pro-
paganda technique behind a problematic piece of
news (Zhang and Ghorbani, 2020) require greater
socio-cultural norm and common sense awareness.

In this half-day tutorial, we aim to present a sys-
tematic overview of technological advancement in
tackling interconnected tasks related to misinforma-
tion, media bias, malicious intent monitoring, and
corrective actions. First, we will review prevailing
paradigms and data resources for misinformation
detection and characterization. Moreover, we will
discuss the latest approaches to automatically ex-
plain why a news piece is inaccurate or mislead-
ing, and perform rectification of biased reporting.
The participants will learn about trends and emerg-
ing challenges, representative deep neural network
models, ready-to-use training resources, as well
as how state-of-the-art language (and multimedia)
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techniques can help build applications for the social
good.

2 Outline of Tutorial Content

2.1 Background and Motivation [20min]

We begin motivating the tutorial topic with a se-
lection of real-world examples of fake news and
their harmful impacts to society, followed by a ped-
agogical exercise of how humans tend to approach
the problem of fake news detection, characteriza-
tion, and correction. We will point out conceptual
distinctions amongst various types of fake news,
including serious fabrication in news journalism
about misattributed or nonexisting events, over-
sensationalized clickbaits, hoaxes which are false
with the intention to be picked up by traditional
news websites and satire which mimic genuine
news but contain irony and absurdity (Rubin et al.,
2015). For example, in general, news articles more
likely involve serious fabrications, while social me-
dia posts involve more humour such as satire and
hoaxes. We will also describe the cognitive, social
and affective factors that lead people to form or en-
dorse misinformed views (e.g., intuitive thinking,
illusory truths, source cues, emotions, etc.), and
the psychological barriers to knowledge revision
after misinformation has been corrected, including
correction not integrated, selective retrieval, and
continued influence theories (Ecker et al., 2022).

2.2 Fake News Detection [60min]

Bearing these properties in mind, we introduce:

• stylistic approaches that focus on lexical fea-
tures, readability, and syntactic clues (Pérez-
Rosas et al., 2018; Rashkin et al., 2017;
Choshen et al., 2019)

• fact-checking approaches that compare check-
worthy content with background knowledge,
such as external knowledge bases (FreeBase,
WikiBase, etc) and previously fact-checked
claims (Baly et al., 2018; Shaar et al., 2020;
Hu et al., 2021; Liu et al., 2021; Guo et al.,
2022)

• semantic-consistency approaches that extract
features related to single-document discourse-
level coherence (Karimi and Tang, 2019) and
cross-document event-centric coherence (Wu
et al., 2022) in text. Extending to cross-media

domain, the common strategy is to check text–
image consistency (Tan et al., 2020; Huang
et al., 2022; Aneja et al., 2021) and text–video
consistency (Wang et al., 2022).

• propagation patterns that capture confound-
ing factors from the dynamics of how a news
topic spreads and the social network inter-
actions (Lu and Li, 2020; Shu et al., 2020;
Cheng et al., 2021).

We will discuss the merits and the limitations
of these different lines of fake news detection
approaches. For example, fact-checking ap-
proaches may not fare well for early rumours or
breaking news not yet groundable to an established
background knowledge (Zhou et al., 2019; Guo
et al., 2022), in which case, the credibility of the
news source can offer complementary assistance
(Cheng et al., 2021). Stylistic approaches may be
simple but yet effective for detecting low-quality
human-written fake news, but not so good for
machine-generated misinformation, which is
stylistically consistent regardless of the underlying
motives (Schuster et al., 2020). We then cover
recent approaches (Lee et al., 2021b; Fung
et al., 2021) that leverage a combination of these
elements for greater representation power and
robustness. Importantly, we also cover works that
explore the diachronic bias of fake news detection
and portability across data in different time and
language settings (Murayama et al., 2021; Gereme
et al., 2021).

Special Note on Neural Fake News Generation
& Detection:
Advancements in natural language generation
spawn the rise of news generation models which
represent a double-edged sword (Zellers et al.,
2019). On one hand, malicious actors may irrespon-
sibility take advantage of the technology to influ-
ence opinions and gain revenue. But, on the other
hand, it can also be used as a source of machine-
synthesized training data for detector models to
overcome data scarcity since real-world fake news
tends to be eventually removed by platforms, as
well as a tool for threat modeling to develop proac-
tive defenses against potential threats. We review
how popular detectors perform on fake news cre-
ated from large-scale language and vision generator
model (Zellers et al., 2019; Güera and Delp, 2018;
Agarwal et al., 2019). We also review progress in
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generating fake news that better aligns with the key
topic and facts (Mosallanezhad et al., 2021; Shu
et al., 2021; Fung et al., 2021), and work towards
applying topic/fact-constrained fake news genera-
tion to construct silver-standard data annotations
for finer-grained fake news detection (Fung et al.,
2021).

2.3 Fake News Characterization [30min]
To better understand and fight fake news, we next
address some fundamental questions of character-
izing fake news based on underlying source bias,
reporting agenda, propaganda techniques, and tar-
get audience (Buchanan, 2020). First, we intro-
duce modeling approaches for detecting political
and socio-cultural biases in news articles (Kulka-
rni et al., 2018; Fan et al., 2019; Baly et al., 2020;
Forbes et al., 2020). Next, we introduce the recent
EMU benchmark that require models to answer
open-ended questions capturing the intent and the
implications of a media edit (Da et al., 2021). We
cover methodologies for identifying the specific
propaganda techniques used, e.g., smears, glitter-
ing generalities, association transfer, etc. (Dim-
itrov et al., 2021). We also discuss the latest explo-
rations in predicting the intended target of harmful
media content, e.g., the person, the organization,
the community, or the society level (Pramanick
et al., 2021).

2.4 Corrective Actions for Misinformation
and Biased News Reporting [30min]

After misinformation has been detected and cate-
gorized based on its various characteristics, there
is naturally follow-up interest in corrective expla-
nations on why a piece of information is fake or
misleading, and how to report less biased and more
comprehensive news in general. Hence, we cover
frameworks for explaining why a given piece of
news is actually fake news through the leverage
of reader comments, as well as appropriate strate-
gies for placing the corrective explanations based
on user studies (Shu et al., 2019; Brashier et al.,
2021). We also cover research on mitigating me-
dia bias, such as through neutral article generation
(Lee et al., 2021a).
Industry Initiatives: We further point out recent
actions by tech companies with media-hosting plat-
forms for fighting fake news. With urges from the
government, they experiment with removing eco-
nomic incentives for traffickers of misinformation,
promoting media literacy, suspending improper

posts and accounts, and adding colored labels, with
corrections constructed from a community-based
point system similar to Wikipedia, directly beneath
misinformation posted by public figures1.

2.5 Concluding Remarks & Future Directions
[30min]

Finally, we summarize the major remaining chal-
lenges in this space, including the detection of sub-
tle inconsistencies, enforcing schema or logical
constraints in the detection, identifying semanti-
cally consistent but misattributed cross-media pair-
ings, and greater precision in fine-grained explana-
tions for the detected misinformation.

3 Specification of the Tutorial

The proposed tutorial is a cutting-edge tutorial
that introduces new frontiers in research on bat-
tling misinformation and news bias. The pre-
sented topic has not been covered by previous
ACL/NAACL/AACL tutorials in the past four
years. While there has been an EMNLP’20 tutorial
on “Fact-Checking, Fake News, Propaganda, and
Media Bias: Truth Seeking in the Post-Truth Era”
(Nakov and Da San Martino, 2020) and a COL-
ING’20 tutorial on “Detection and Resolution of
Rumors and Misinformation with NLP” (Derczyn-
ski and Zubiaga, 2020), fake news is a continuously
evolving and extremely important societal problem.
In our tutorial, we place particular emphasis on the
latest lines of development, including an empha-
sis on multimedia contextualization, sociocultural
awareness in characterization, and corrective ac-
tions. We estimate at least 75% of the work we
reference has not been covered in the two previous
aforementioned tutorials. We further estimate that
at least 75% of the research covered in this tutorial
is by researchers other than the instructors.
Audience and Prerequisites Based on the level of
interest in this topic, we expect around 100 partici-
pants. While no specific background knowledge is
assumed of the audience, it would be best for the
attendees to know basic deep learning, pre-trained
word embeddings (e.g., Word2Vec) and language
models (e.g., BERT).
Reading List We recommend the literature cited
in this paper, particularly: the rising threats of neu-
ral fake news (Zellers et al., 2019; Chawla, 2019),

1https://www.nbcnews.com/tech/tech-ne
ws/twitter-testing-new-ways-fight-misinf
ormation-including-community-based-point
s-n1139931

https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
https://www.nbcnews.com/tech/tech-news/twitter-testing-new-ways-fight-misinformation-including-community-based-points-n1139931
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knowledge-driven misinformation detection (Hu
et al., 2021; Fung et al., 2021; Guo et al., 2022),
intent characterization (Buchanan, 2020; Da et al.,
2021), and study of fake news impact from a psy-
chological point of view (Ecker et al., 2022).
Desired Venue The most desired venue for this tu-
torial would be AACL-IJCNLP’2022. The majority
of our tutorial speakers have educational experi-
ence in Asia. At the same time, we also represent a
global diversity in our research work.
Open Access We agree to allow the publication
of the tutorial materials and presentation in the
ACL Anthology. All the materials will be openly
available at the UIUC Blender Lab website.

4 Tutorial Instructors

Below, we give the biographies of the speakers.
Yi R. Fung is a second-year Ph.D. student at the
Computer Science Department of UIUC, with re-
search interests in knowledge reasoning, misin-
formation detection, and computation for the so-
cial good. Her recent works include the INFO-
SURGEON fake news detection framework, and
multiview news summarization. Yi is a recipient
of the NAACL’21 Best Demo Paper, the UIUC
Lauslen and Andrew fellowship, and the National
Association of Asian American Professionals Fu-
ture Leaders award. She has also been previ-
ously selected for invited talk (1 hour presenta-
tion) at the Harvard Medical School Bioinformat-
ics Seminar. Additional information is available at
https://yrf1.github.io.
Kung-Hsiang Huang is a first-year Ph.D. student
at the Computer Science Department of UIUC. His
research focuses on fact-checking and fake news
detection. Prior to joining UIUC, he obtained his
B.Eng. in Computer Science from the Hong Kong
University of Science and Technology, and his M.S.
in Computer Science is from USC. He is also a
co-founder of an AI startup, Rosetta.ai. Additional
information is available at https://khuangaf
.github.io.
Preslav Nakov is a Principal Scientist at the Qatar
Computing Research Institute (QCRI), HBKU,
who received his PhD degree from the University
of California at Berkeley (supported by a Fulbright
grant). Dr. Nakov is President of ACL SIGLEX,
Secretary of ACL SIGSLAV, a member of the
EACL advisory board, as well as a member of
the editorial board of Computational Linguistics,
TACL, CS&L, IEEE TAC, NLE, AI Communica-

tions, and Frontiers in AI. His research on fake
news was featured by over 100 news outlets, includ-
ing Forbes, Boston Globe, Aljazeera, MIT Technol-
ogy Review, Science Daily, Popular Science, The
Register, WIRED, and Engadget, among others.
He has driven relevant tutorials such as:

• WSDM’22: Fact-Checking, Fake News, Pro-
paganda, Media Bias, and the COVID-19 In-
fodemic.

• CIKM’21: Fake News, Disinformation, Pro-
paganda, and Media Bias.

• EMNLP’20: Fact-Checking, Fake News, Pro-
paganda, and Media Bias: Truth Seeking in
the Post-Truth Era.

Additional information is available at https://
en.wikipedia.org/wiki/Preslav_Nak
ov.

Heng Ji is a Professor at the Computer Science
Department of the University of Illinois Urbana-
Champaign, and an Amazon Scholar. Her research
interests focus on NLP, especially on Multimedia
Multilingual Information Extraction, Knowledge
Base Population and Knowledge-driven Genera-
tion. She was selected as “Young Scientist” and a
member of the Global Future Council on the Fu-
ture of Computing by the World Economic Forum.
The awards she received include “AI’s 10 to Watch”
Award, NSF CAREER award, Google Research
Award, IBM Watson Faculty Award, Bosch Re-
search Award, Amazon AWS Award, ACL2020
Best Demo Paper Award, and NAACL2021 Best
Demo Paper Award. She has given a large number
of keynotes and 20 tutorials on Information Extrac-
tion, Natural Language Understanding, and Knowl-
edge Base Construction in many conferences in-
cluding but not limited to ACL, EMNLP, NAACL,
NeurIPS, AAAI, SIGIR, WWW, IJCAI, COLING
and KDD. A selected handful of her recent tutorials
include:

• AAAI’22: Deep Learning on Graphs for Nat-
ural Language Processing. Language Process-
ing.

• EMNLP’21: Knowledge-Enriched Natural
Language Generation.

• ACL’21: Event-Centric Natural Language
Processing.

Additional information is available at https://
blender.cs.illinois.edu/hengji.h
tml.

https://yrf1.github.io
https://khuangaf.github.io
https://khuangaf.github.io
https://en.wikipedia.org/wiki/Preslav_Nakov
https://en.wikipedia.org/wiki/Preslav_Nakov
https://en.wikipedia.org/wiki/Preslav_Nakov
https://blender.cs.illinois.edu/hengji.html
https://blender.cs.illinois.edu/hengji.html
https://blender.cs.illinois.edu/hengji.html
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Ethical Considerations

Technological innovations often face the dual us-
age dilemma, in which the same advance may offer
potential benefits and harms. For the news prob-
ing methodologies introduced in this tutorial, the
distinction between beneficial use and harmful use
depends mainly on the data and intention. Proper
use of the technology requires that input corpora
be legally and ethically obtained, with the target
goal to fight misinformation and mal-intents. Be-
sides, training and assessment data may be biased
in ways that limit the system performance on less
well-represented populations and in new domains –
causing performance discrepancy for different eth-
nic, gender, and other sub-populations. Thus, ques-
tions concerning generalizability and fairness need
to be carefully considered when applying news
analysis techniques to specific settings. A general
approach to ensure proper application of dual-use
technology should incorporate ethical considera-
tions as the first-order principles in every step of
the system design, maintain transparency and in-
terpretability of the data, algorithms, and models,
and explore counter-measures to protect vulnerable
groups.
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