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1 Brief Description

Deep learning-based natural language processing
(NLP) has become mainstream research in recent
years and has shown significant improvements
over conventional methods. Among all deep learn-
ing methods, fine-tuning a self-supervisedly pre-
trained language model (PLM) on downstream
tasks of interest has become the standard pipeline
in NLP tasks. Ever since ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019) were proposed in
2018, models fine-tuned from PLMs have domi-
nated numerous leader-boards in various tasks in-
cluding question answering, natural language un-
derstanding, natural language inference, machine
translation, and sentence similarity. Aside from ap-
plying PLMs on various downstream tasks, many
have been delving into understanding the properties
and characteristics of PLMs, including the linguis-
tic knowledge encoded in the representations of
PLMs, and the factual knowledge the PLMs ac-
quire during pre-training. While it has been three
years since PLMs were first proposed, there is no
sign of decay in the research related to PLMs.

There were two tutorials focusing self-
supervised learning/PLMs: a tutorial in NAACL
2019 (Ruder et al., 2019) and one in AACL
20201. However, given the ever-evolving nature
of this realm, it is conceivable that there have
been significant progress in the study of PLMs.
Specifically, compared with PLMs back in 2019,
when they are mostly held by tech giants and
used in scientific research, the PLMs nowadays
have become more widely adopted in various
real-world scenarios by users with different
hardware infrastructures and amount of data, and
thus posing problems that have never arisen before.
Substantial progress, including possible answers
to the effectiveness of PLMs and new training

1https://www.youtube.com/watch?v=
Okgeff7PN14

paradigms, have been made to allow PLMs better
deployed in more realistic settings. Hence, we
see it necessary and timely to inform the NLP
community about the recent advances in PLMs
through a well-organized tutorial.

This tutorial is divided into two parts: why do
PLMs work and how do PLMs work. Table 1
summarizes the content this tutorial will cover.
This tutorial intends to facilitate researchers in the
NLP community to have a more comprehensive
view of the advances in PLMs during recent years,
and apply these newly emerging techniques to their
domain of interest. As self-supervised learning and
PLMs are very popular in these days, we expect
our tutorial to have at least 100 attendees.

Type of the tutorial The type of this tutorial
is Cutting-edge. We will cover the cutting-
edge advances in PLMs which have been flour-
ishing in the NLP community since 2020. No
tutorial has systematically reviewed any topics
that we aim to cover (as listed in Table 1) at
ACL/EMNLP/NAACL/EACL/AACL/COLING.

2 Tutorial Structure and Content

Pre-trained language models are language mod-
els that are pre-trained on large-scaled corpora in a
self-supervised fashion. Traditional self-supervised
pre-training tasks mostly involve recovering a cor-
rupted input sentence, or auto-regressive language
modeling. After these PLMs are pre-trained, they
can be fine-tuned on downstream tasks. Conven-
tionally, these fine-tuning protocol includes adding
a linear layer on top of the PLMs and training the
whole model on the downstream tasks, or formu-
lating the downstream tasks as a sentence com-
pletion task and fine-tuning the downstream tasks
in a seq2seq way. Fine-tuning PLMs on down-
stream tasks often yield exceptional performance
gain, which is why PLMs have become so popular.

In the first part of the tutorial (estimated 40

https://www.youtube.com/watch?v=Okgeff7PN14
https://www.youtube.com/watch?v=Okgeff7PN14
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Part Sub-Category References

(I)
Why

(A) Empirical
Sinha et al. (2021); Aghajanyan et al. (2021); Chiang and Lee (2022);

Sanh et al. (2022); Abdou et al. (2022)

(B) Theoretical
Saunshi et al. (2020); Zhang and Hashimoto (2021); Lee et al. (2021);

Xie et al. (2022)

(II)
How

Pre-training
(C) Improving existing

methods

Micheli et al. (2020); Zhang et al. (2021);
Chiang et al. (2020); Izsak et al. (2021);
Tay et al. (2022); Wettig et al. (2022);

Gao et al. (2022); Hou et al. (2022)

(D) New methods

Meng et al. (2021); Gao et al. (2021b);
Su et al. (2021); Meng et al. (2022);

Giorgi et al. (2021); Yan et al. (2021);
Chuang et al. (2022); Du et al. (2022);

Jiang et al. (2022); Jiang and Wang (2022);
Zhang et al. (2022); Jian et al. (2022)

Fine-tuning

(E)
Parameter-efficient

fine-tuning

Adapter/Prefix tuning
Houlsby et al. (2019); Lester et al. (2021);

Zhong et al. (2021); Qin and Eisner (2021);
Zaken et al. (2021); Li and Liang (2021);

Hambardzumyan et al. (2021); Hu et al. (2022);
Mahabadi et al. (2021); He et al. (2022);

Webson and Pavlick (2022)

(F)
Data-efficient

fine-tuning

Semi-supervised learning
Schick and Schütze (2021a,b);

Mi et al. (2021); Lang et al. (2022)
Few-shot learning

Brown et al. (2020); Zhao et al. (2021);
Gao et al. (2021a); Vu et al. (2021);

Le Scao and Rush (2021); Min et al. (2022b);
Cui et al. (2022); Min et al. (2022a);

Zheng et al. (2022)
Zero-shot learning

Brown et al. (2020); Sanh et al. (2022);
Wei et al. (2022); Xu et al. (2022);

Aghajanyan et al. (2022)

(G) Cross-task
transfer

Inter-mediate task fine-tuning:
Wang et al. (2019); Pruksachatkun et al. (2020);

Vu et al. (2020); Phang et al. (2020);
Chang and Lu (2021); Vu et al. (2022)

Multi-task learning:
Pilault et al. (2020); Chen et al. (2022)

Table 1: Works in the past three years (from 2020 to 2022) related to our tutorial, to list just a few.

mins), we will summarize some findings that par-
tially explain why PLMs lead to exceptional down-
stream performance. Some of these results have
helped researchers to design better pre-training and
fine-tuning methods. In the second part (estimated
2 hrs 20 mins), we will introduce recent progress
in how to pre-train and fine-tune PLMs; the new

techniques covered in this part have been shown to
bring significant efficiency in terms of hardware re-
source, training data, and model parameters while
achieving superb performance.
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2.1 Part I: Why Do PLMs Work

We will introduce several results that partially ex-
plain the effectiveness of PLMs from two aspects:
empirical and theoretical.

2.1.1 Empirical Explanations
Many researchers have conducted empirical experi-
ments to show what PLMs have learned during pre-
training that aids downstream performance. They
mostly construct a special pre-training dataset to
examine the transferability of the PLM and draw
connect the transferability of the PLM with the
characteristic of the pre-training dataset. Block (A)
in Table 1 lists the relevant works in recent years.

2.1.2 Theoretical Explanations
Some researchers aim to understand the effective-
ness of PLMs by rigorous mathematics, as shown
in block (B) in Table 1. Their results range from
using statistical models to what PLMs are learning
during pre-training, or bounding the generalization
errors of the downstream tasks.

2.2 Part II: How Do PLM Work

In this part, we will introduce some new techniques
in pre-training and fine-tuning PLMs.

2.2.1 Pre-training
Improving Existing Pre-training Methods Lan-
guage model pre-training is a resource-hungry task
when PLMs were first proposed, requiring a large
amount of data, high-end hardware equipment, and
lengthy pre-training time. To mitigate the above
issues, some research aims to mitigate the above
issues, as listed in block (C) in Table 1. Some of
these works provide answers about the sufficient
amount of data and time to pre-train a PLM that
is good enough for downstream tasks, and others
provide implementation optimization solutions to
cut down the high-end requirement on hardware
resources.

New Pre-training Methods Aside from improv-
ing existing pre-training methods, there have also
been new pre-training methods designed for spe-
cific downstream tasks. One of the important topics
we aim to cover is applying contrastive learning
on language model pre-training. Contrastive learn-
ing has been widely applied to pre-training models
in computer vision, and we will introduce how
contrastive learning has improved PLMs recently.
Relevant works are listed in block (D) in Table 1.

2.2.2 Fine-tuning

In this part, we will go through several important
fine-tuning protocols that have emerged recently.
We categorize them based on the scenario in which
the fine-tuning method is used.

Parameter-Efficient Fine-tuning PLMs are
enormous, often having millions or even billions
of numbers of parameters. In the traditional fine-
tuning method, fine-tuning each distinct down-
stream task produces a fine-tuned model that is
are bulky as the original PLM. To reduce the num-
ber of parameters for fine-tuning PLMs on down-
stream tasks, there has been a surge of research on
parameter-efficient fine-tuning in NLP, as listed in
block (E) in Table 1.

Data-Efficient Fine-tuning A large amount of
labeled data is not always available for all down-
stream tasks, and it is thus important to find a way
to apply the PLMs on downstream tasks with lim-
ited labeled data. These endeavors are included
in block (F) in Table 1. We will discuss how to
apply PLMs under different levels of labeled data
scarcity.

In case we have a large amount of unlabeled data,
semi-supervised learning fine-tuning protocols
provide effective ways to utilize those unlabeled
data and can boost the downstream performance.
If those few labeled data are the only thing avail-
able, then we must harness the knowledge that the
PLM possesses to aid the performance of few-shot
learning. When we have no labeled data, zero-
shot learning is still possible in certain cases, if
you use the PLM correctly. We will discuss how to
make a PLM able to perform well in the zero-shot
setting.

Cross-Task Transfer When we have a target task
of interest, it is canonical to fine-tune the PLM
on the target task. While transferring from PLMs
leads to exceptional performance gain, sometimes
we want more. This can be achieved by transfer-
ring from the PLMs and additional guidance from
other auxiliary tasks in the form of intermediate
task fine-tuning or mutitask learning. Relevant
works are listed in block (G) in Table 1. We will
discuss how can cross-task transfer improve the
downstream performance together with the power
of PLMs.



11

3 Diversity

PLMs have shown promising results on different
domains and have boosted the performance of low-
resource languages on many tasks. The why part
covered in this tutorial has the potential to help
individuals of different groups to pre-train their
own PLMs more efficiently. The how part cov-
ered in this tutorial specifically focuses on how to
apply PLMs under different real-world scenarios
with data scarcity and restricted model parameters,
which will enable individuals of different groups to
apply PLMs on the domains of interest in a more re-
alistic setting. We see this tutorial to benefit diverse
groups in the community.

The tutorial instructors are also diverse: Chuang
is a PhD student in the USA, and Lee and Chi-
ang are researchers in Taiwan. Also, Chuang and
Chiang are currently Ph.D. students familiar with
precise implementations, while Lee is a senior re-
searcher with ten years of experience in human
language processing research. This diversity in
members enables our team to provide a thorough
and detailed yet comprehensive and unified view
on PLMs.

4 Prerequisites for Attendees

We expect the attendees to have basic machine
learning concepts such as gradient descent and
model optimization. The attendees will need to
have basic knowledge in linear algebra and calcu-
lus to understand some contents in block (B) in
Table 1. The attendees should also have minimal
knowledge about PLMs and transformer models.

5 Reading List

We encourage attendees to read the following em-
blematic papers on PLMs and transformer model
architectures:

• Transformer model: Vaswani et al. (2017)

• PLMs: Radford et al.; Devlin et al. (2019);
Raffel et al. (2019)

6 Biographies of Presenters

Cheng-Han Chiang2 is a PhD student in National
Taiwan University. His research focuses on natu-
ral language processing and self-supervised learn-
ing, and he has published several papers analyz-
ing PLMs. He has experiences in giving lectures

2https://d223302.github.io/

on machine learning topics: he gave a lecture on
BERT in AI Summer School 20203, and his two
lectures on graph neural network (in Mandarin) has
received over 68k views on Youtube 45. He has
also served as reviewers in EMNLP 2021, ICLR
2022, NeurIPS 2022, EMNLP 2022, and AAAI
2023.

Yung-Sung Chuang6 is a PhD student in Elec-
trical Engineering and Computer Science at MIT
CSAIL, where he works with Dr. James Glass.
His research focuses on learning representations
for natural language which helps downstream tasks
such as natural language understanding, natural
language generation, question answering. He has
published several paper in this direction in EMNLP,
ACL, NeurIPS, and NAACL. He also has served
as reviewers in NeurIPS 2021, ICLR 2022, ICML
2022, NeurIPS 2022, EMNLP 2022, and AAAI
2023.

Hung-yi Lee7 is an associate professor of the
Department of Electrical Engineering of National
Taiwan University, with a joint appointment at the
Department of Computer Science & Information
Engineering of the university. His research fo-
cuses on deep learning, speech processing, and
natural language processing. He owns a YouTube
channel teaching deep learning (in Mandarin) with
more than 8M views and 100k subscribers. He
gave tutorials at ICASSP 20188, APSIPA 2018,
ISCSLP 2018, INTERSPEECH 20199, SIPS 2019,
INTERSPEECH 2020, ICASSP 2021, ACL 2021.
He is the co-organizer of the special session on
“New Trends in self-supervised speech process-
ing” at INTERSPEECH (2020), the workshop on
"Self-Supervised Learning for Speech and Audio
Processing" at NeurIPS (2020), the workshop on
"Meta Learning and Its Applications to Natural
Language Processing" at ACL (2021), and the
workshop on "Self-Supervised Learning for Speech
and Audio Processing" at AAAI (2022). He will
give the tutorial, "Self-supervised Representation

3https://ai.ntu.edu.tw/?p=3534
4https://www.youtube.com/watch?v=

eybCCtNKwzA&ab_channel=Hung-yiLee
5https://www.youtube.com/watch?v=

M9ht8vsVEw8&ab_channel=Hung-yiLee
6https://people.csail.mit.edu/

yungsung/
7https://speech.ee.ntu.edu.tw/~hylee/

index.php
8The tutorial has the most participants among the 14 tuto-

rials in ICASSP 2018.
9The tutorial also has the most participants among the 8

tutorials in INTERSPEECH 2019.

https://d223302.github.io/
https://ai.ntu.edu.tw/?p=3534
https://www.youtube.com/watch?v=eybCCtNKwzA&ab_channel=Hung-yiLee
https://www.youtube.com/watch?v=eybCCtNKwzA&ab_channel=Hung-yiLee
https://www.youtube.com/watch?v=M9ht8vsVEw8&ab_channel=Hung-yiLee
https://www.youtube.com/watch?v=M9ht8vsVEw8&ab_channel=Hung-yiLee
https://people.csail.mit.edu/yungsung/
https://people.csail.mit.edu/yungsung/
https://speech.ee.ntu.edu.tw/~hylee/index.php
https://speech.ee.ntu.edu.tw/~hylee/index.php
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Learning for Speech Processing" with other re-
searchers at ICASSP 2022 and NAACL 2022. He is
the lead guest editor of IEEE JSTSP Special Issue
on Self-Supervised Learning for Speech and Audio
Processing, member of the Speech and Language
Technical Committee (SLTC) of IEEE Signal Pro-
cessing Society (SPS), SPS Education Center Edi-
torial Board member, and Associate Editor for the
SPS Open Journal of Signal Processing.

7 Open Access

We will allow our slides and video recording of the
tutorial published in the ACL Anthology. All the
slides and videos used in the tutorial, along with
the reading lists related with the tutorial, will be
updated at this tutorial website10.
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